基于Fluent的换热器流场模拟
- 格式:doc
- 大小:1.66 MB
- 文档页数:33
基于FLUENT的管壳式换热器流场的数值模拟与分析鲍苏洋(南京工业大学机械与动力工程学院,南京210009)摘要:通过简化管壳式换热器模型,采用非结构网格划分,选用κ-ε湍流模型,应用CFD 软件FLUENT 对壳程流体流动和传热过程进行了数值模拟,得到了不同折流板间距情况下壳程流体温度场、压力场以及速度场的分布情况。
分析了折流板间距对壳程流体流场分布、换热器传热速率以及压力损失的影响,并得出了进口流速与传热量和压力损失之间的关系。
模拟结果与理论研究结果相符合,对管壳式换热器的设计和改进有一定的参考价值。
关键词:化工机械; 换热器; 数值模拟; 温度场; 速度场; 压力场Numerical Simulation and Analysis of Flow Field in Shell-and-Tube Heat Exchanger Based on FLUENTSuyang BAO( School of Mechanical and Power Engineering,Nanjing University of Technology,Nanjing 210009,China)Abstract: By simplified the model of shell-and-tube heat exchangers,adopted the unstructured mesh,chose the κ-εturbulence model to gain the static temperature field,velocity field and static pressure field distribution of shell by taking numerical simulation of the shell side turbulent flow and heat transfer process with the CFD software FLUENT at different baffle spacing.Analyzed the effect of baffle spacing on the distribution of shell fluid flow,heat transfer rate and pressure drop,also acquired the relationship between inlet velocity and heat transfer rate,pressure drop.The simulation results consistent with the theoretical results of shell-and-tube heat exchangers,which can be a reference for the design and improvement of shell-and-tube heat exchangers.Key words: chemical machinery; heat exchanger; numerical simulation; temperature field; velocity field; pressure field0 引言换热器是石油化工行业广泛应用的工艺设备,换热器不仅能够合理调节工艺介质的温度以满足生产工艺的需要,同时也是余热回收利用的有效设备[1]。
精选全文完整版(可编辑修改)【流体】Fluent周期性流动换热仿真实例-翅片换热器案例描述:氨水在间断式翅片换热器的流动换热仿真。
由于在间断式翅片换热器中重复的几何单元多,这里取它的一个重复单元进行仿真分析即可,尺寸和边界条件见下图。
FLUENT 提供流向周期流的计算。
这种流动具有广泛的应用,如热交换管道以及通过水箱的管流。
在这些流动模式中,几何外形沿流动方向上具有重复性的特点,从而导致了周期性完全发展的流动。
这些周期性条件在足够的入口长度后就会形成,具体与雷诺数和几何外形有关。
周期性热传导的解策略:完成了周期性热传导常数壁面温度的用户输入之后,你就可以解决流动和热传导问题直至收敛。
最为有效的解决方法是首先解没有热传导的周期性流动,然后不改变流场来解热传导问题,具体步骤如下:1.在解控制面板中关闭能量方程选项。
菜单:Solve/Controls/Solution...。
2.解剩下的方程(连续性,动量以及湍流参数(可选))来获取收敛的周期性流动的流场解。
注意,当你在开始计算之前初始化流场时,请使用入口体积温度和壁面温度的平均值作为流场的初始温度。
3.回到解控制面板,关闭流动方程打开能量方程。
4.解能量方程直至收敛获取周期性温度场。
当同时考虑流动和热传导来解决周期性流动和热传导问题时,你就会发现上面所介绍的方法相当有效。
1、导入网格1.1 打开Fluent软件,选择2D求解器。
1.2 导入网格,网格源文件在文章底部有下载链接。
1.3 尺寸缩放。
在本案例的附件网格,需要点击Scale两次,如下图。
2、模型选择打开能量方程和湍流模型,其中,湍流模型设置如下。
3、材料在流体材料库中调出氨水ammonia-liquid (nh3)的物性。
4、计算域设置将计算域的材料设置为氨水。
5、边界条件5.1 翅片wall边界,包括wall-top和wall-bottom。
给定wall温度为350K,其余保持默认。
5.2 周期性边界,Periodic。
基于Fluent的风力致热装置内部流场模拟研究【摘要】本研究基于Fluent进行风力致热装置内部流场模拟研究,通过设计与原理、软件模拟流场、模拟参数设定、结果分析和内部流场优化等步骤展开。
通过对模拟结果的验证和内部流场优化效果评价,发现XXX。
未来的研究展望包括进一步优化内部流场,提高风力致热装置的效率和稳定性,以实现更广泛的应用前景。
本研究对于风力致热装置的设计和性能优化具有重要的指导意义,有望为相关领域的研究提供参考和借鉴。
【关键词】风力致热装置、Fluent、流场模拟、内部流场优化、模拟结果、验证、效果评价、未来研究、研究背景、研究意义、研究目的、风力致热装置设计、流场模拟参数设定。
1. 引言1.1 研究背景风力发电是一种利用风力转化为电力的技术,具有环保、可再生、资源广泛等优点,受到越来越多的关注和发展。
风力致热装置则是一种利用风力将空气加热的设备,常被用于供暖、热水等领域。
随着人们对清洁能源的需求不断增加,风力致热装置的研究和应用也日益受到重视。
风力致热装置在实际应用中存在一些问题,如内部流场设计不合理、能效低下等,制约了其性能的提升和应用的推广。
对风力致热装置内部流场进行模拟研究,优化设计,提高能效,具有十分重要的意义。
本研究旨在通过Fluent软件对风力致热装置内部流场进行模拟研究,探究其流动特性,优化设计参数,提高能效,为风力致热装置的应用和发展提供技术支持。
通过模拟分析与实验验证相结合,评价优化效果,并展望未来的研究方向,推动风力致热技术的进一步发展。
1.2 研究意义风力致热装置是一种利用风能进行加热的设备,广泛应用于工业生产和生活供暖领域。
通过利用风力将空气加热,可以实现节能减排,减少对传统能源的依赖,具有环保和经济的优势。
对风力致热装置内部流场进行模拟研究具有重要的意义。
在工程实际应用中,了解风力致热装置内部流场情况对于提高设备的性能和效率至关重要。
通过模拟研究,可以深入理解流场特性,优化设计和操作参数,提高加热效率,降低能耗,实现节能减排的目标。
第37卷,总第214期2019年3月,第2期《节能技术》ENERGY CONSERVATION TECHNOLOGYVol.37,Sum.No.214Mar.2019,No.2 基于Fluent的相变储能换热器回路仿真分析贾卓杭,郭 亮,张旭升(中国科学院长春光学精密机械与物理研究所,吉林 长春 130033)摘 要:研究了一种相变储能换热器。
基于流体仿真软件,对其换热过程中的整个回路进行了建模分析。
主要研究了相变材料液相分数及关键位置温度随时间变化的特性,并对比了不同相变材料导热系数及流体回路质量流速对控温特性的影响。
研究发现,熔化工况时,导热系数的提高可以加速相变材料熔化速率,同时有效改善相变换热器的运行温度水平及稳定性;而流速的提高可以降低运行温度但同时会降低稳定性。
凝固工况时,导热系数和流速的提高均有利于加速相变材料凝固。
采用该种回路仿真分析方法可为储能换热器的设计和优化提供指导。
关键词:相变材料;储能;换热器;导热系数;质量流速;回路仿真中图分类号:TP391.9 文献标识码:A 文章编号:1002-6339(2019)02-0126-04 Simulation Analysis of Phase Change Thermal Storage ExchangerLoop based on FluentJIA Zhuo-hang,GUO Liang,ZHANG Xu-sheng(Changchun Institute of optics,Fine Mechanics and Physics,Chinese Academy of Sciences,Changchun130033,China)Abstract:In this paper,a phase change energy storage heat exchanger was researched.The whole loop in the heat transfer process was analyzed based on fluid simulation software.Primary studies on the state of phase change materials melting/solidification and the temperature variation characteristics of critical posi⁃tion over time were taken,as well as the influence on temperature control properties of different phase change materials thermal conductivity and fluid loop mass velocity was compared.It is found that the in⁃crease of thermal conductivity can accelerate the melting rate of phase change material,lower the operat⁃ing temperature and improve temperature stability of the phase change heat exchanger.The increase in velocity can reduce the operating temperature but also the stability.The increase of thermal conductivity and flow velocity both can accelerate the solidification of phase change materials.The method of whole loop simulation can be taken as a guidance for the design and optimization of energy storage heat exchanger.Key words:phase change material;energy storage;heat exchanger;thermal conductivity;mass veloci⁃ty;loop simulation收稿日期 2018-11-06 修订稿日期 2018-12-11基金项目:国家自然科学基金资助项目(61605203);中国科学院青年促进会资助项目(Y56039Y150)作者简介:贾卓杭(1992~),男,硕士,研究实习员,主要研究方向为航天器热控及相变传热技术。
基于Fluent的换热器流场模拟第1章绪论 (2)1.1换热器的分类 (2)1.2 换热器研究与发展 (3)1.2.1换热器发展历史 (3)1.2.2 换热器研究及发展动向 (3)1.2.3 国外新型换热器技术⾛向 (4)第2章管壳式换热器 (9)2.1 管壳式换热器结构 (9)2.2 管壳式换热器类型 (9)2.3 换热器的安装、使⽤及维护 (10)2.3.1换热器的安装 (10)2.3.2 换热器的清洗 (10)2.3.3换热器的维护和检修 (12)2.3.4换热器的防腐 (13)2.4 换热器的强化 (14)2.4.1管程的传热强化 (14)2.4.2 壳程的传热强化 (16)第3章流体传热的研究⽅法 (17)3.1 传热学的常⽤研究⽅法 (17)3.2数值模拟的求解过程 (17)第4章基于Fluent的管壳式换热器的数值计算 (20)4.1 Fluent简介 (20)4.2 基于Fluent的三⾓形排列的换热器流畅模拟 (21)结论 (31)第1章绪论换热器是将热流体的部分热量传递给冷流体,使流体温度达到⼯艺流程规定的指标的热量交换设备,⼜称热交换器,⼴泛应⽤于化⼯、⽯油化⼯、动⼒、医药、冶⾦、制冷、轻⼯业等⾏业。
随着节能技术的飞速发展,换热器的种类越来越多。
1.1换热器的分类换热器作为传热设备随处可见,在⼯业中应⽤⾮常普遍,特别是耗能量⼗分⼤的领域。
随着节能技术的飞速发展,换热器的种类开发越来越多。
适⽤于不同介质、不同⼯况、不同温度、不同压⼒的换热器结构和形式亦不相同,换热器种类随新型,⾼效换热器的开发不断更新,具体分类如下。
(1)冷、热流体热量交换的原理和⽅式基本上可分三⼤类:间壁式、混合式和蓄热式。
间壁式换热器是温度不同的两种流体在被壁⾯分开的空间⾥流动,通过壁⾯的导热和流体在壁表⾯对流进⾏换热。
间壁式换热器根据传热⾯的结构不同可分为管式、板⾯式和其他型式。
管式换热器以管⼦表⾯作为传热⾯,包括蛇管式换热器、套管式换热器和管壳式换热器等;板⾯式换热器以板⾯作为传热⾯,包括板式换热器、螺旋板换热器、板翅式换热器、板壳式换热器和伞板换热器等;其他型式换热器是为满⾜某些特殊要求⽽设计的换热器,如刮⾯式换热器、转盘式换热器和空⽓冷却器等。
fluent heat exchange热交换模型介绍
"Fluent" 是一种计算流体力学(CFD)软件,而"heat exchange" 则指的是热交换,即在流体中传递热量的过程。
在Fluent 中,可以使用不同的模型和方法来模拟和分析流体中的热交换过程。
热交换模型在Fluent 中涉及到流体流动、传热和传质等多个方面。
以下是一些常见的Fluent 中用于热交换模拟的模型和方法:
1.传热模型:Fluent 提供了多种传热模型,包括传导、对流和辐射传热。
用户可以选择
适当的传热模型,根据系统的特点来模拟热量的传递。
2.壁面热通量:可以在Fluent 中设置不同表面的壁面热通量,以模拟具体区域的热交
换情况。
这对于热交换器、散热器等设备的仿真很重要。
3.热源和热汇:用户可以设置热源和热汇,模拟系统中的加热或散热过程。
这对于热交
换系统的设计和优化非常有用。
4.多相流和相变:在一些热交换系统中,可能涉及到多相流动和相变过程,如蒸发、冷
凝等。
Fluent 支持多相流和相变模型,以更全面地模拟系统中的热交换。
5.换热器模块:Fluent 中有专门的换热器模块,用于更方便地建模和分析换热器的性能,
包括壁面传热系数、温度分布等。
使用Fluent 进行热交换模拟需要用户详细了解系统的几何形状、边界条件、材料属性等信息,并选择合适的模型和参数。
通过模拟,用户可以获得系统内部的流动、温度场等信息,帮助设计和优化热交换设备。
基于Fluent的风力致热装置内部流场模拟研究
风力致热装置是一种利用风力转换为热能的装置,通常由风轮、发电机、热水储罐等部件组成。
在风力致热装置内部,空气流动是至关重要的,它直接影响到装置的能量转换效率和稳定性。
对风力致热装置内部流场进行模拟研究,可以帮助优化设计和提高性能。
本文基于Fluent软件,对风力致热装置内部流场进行了模拟研究。
我们建立了风力致热装置的三维几何模型。
这个模型包括风轮、发电机、热水储罐等关键部件,以及周围的空气。
然后,我们建立了数值模型,并设置了边界条件和流体材料参数。
在模拟中,我们考虑了风力驱动下的空气流动、热传导和对流换热等多物理场耦合问题。
接着,我们利用Fluent软件对风力致热装置内部流场进行了数值模拟。
通过对模拟结果的分析,我们得到了风力致热装置内部空气流动速度、温度分布等详细信息。
我们还分析了风力致热装置的能量转换效率、传热性能等重要参数。
我们对模拟结果进行了验证和分析。
通过与实际试验数据的对比,我们发现模拟结果与实验结果吻合较好,证明了我们建立的数值模型和采用的模拟方法的有效性。
我们还通过对模拟结果的分析,找到了风力致热装置内部流场的一些优化方向,为进一步提高装置性能提供了重要参考。
通过本文的研究,我们深入分析了风力致热装置内部流场的特性,为风力致热装置的设计优化和性能提升提供了重要参考。
我们建立的数值模型和模拟方法也可为类似装置的研究提供借鉴和参考。
希望本文的研究成果能够为风力致热装置的发展和推广做出一定的贡献。
对于外掠平板的流场与换热的数值模拟,这里将简要介绍本例的关键要点,其他详细内容可参考书本。
1.求解器设置
这里选择SIMPLEC求解方法,SIMPLEC算法与SIMPLE算法的基本思路一致,仅在通量修正方法上有所改进,因而加快了计算的收敛速度。
SIMPLEC算法为求解非复杂问题时比较好的选择,使用SIMPLEC算法时,压力耦合算法的欠松弛因子一般应设为1.0,这样能加快收敛。
2.离散格式的选择
在用结构网格计算旋转流动问题时,QUICK格式可以提供更高的计算精度,但是在其他情况下,QUICK格式的精度与二阶格式相当,并没有很大的改进。
对于与流动方向对齐的结构网格而言,QUICK格式将可产生比二阶迎风格式等更精确的计算结果,因此,QUICK格式常用于六面体(或二维问题中的四边形)网格。
对于其他类型的网格,一般使用二阶迎风格式。
如上所述这里选用QUICK格式。
3.Monitors相关设置
默认设置中所有的变量残差都被监视,并在迭代过程中确认其是否满足收敛标准。
收敛将在满足变量的收敛标准后实现。
默认的收敛标准是除能量能量、辐射等方程的收敛标准是
6
10-外,其他变量的收敛标准均为3
10-。
一般而言当选择高阶离散格式时,可将上述标准10-,得到严格的收敛标准。
全部调整至6
4.创建等值面及等值面上的点
为了得到努赛尔数和沿平面方向上的壁面摩擦系数的图,用户应创建沿平板长度方向上的等值面,具体设置在此不再详述。
5.相关参数报告
在Report选项卡中有相关内容,具体设置可参考书本内容。
第1章绪论 (2)1.1换热器的分类 (2)1.2 换热器研究与发展 (3)1.2.1换热器发展历史 (3)1.2.2 换热器研究及发展动向 (3)1.2.3 国外新型换热器技术走向 (4)第2章管壳式换热器 (9)2.1 管壳式换热器结构 (9)2.2 管壳式换热器类型 (9)2.3 换热器的安装、使用及维护 (10)2.3.1换热器的安装 (10)2.3.2 换热器的清洗 (10)2.3.3换热器的维护和检修 (12)2.3.4换热器的防腐 (13)2.4 换热器的强化 (14)2.4.1管程的传热强化 (14)2.4.2 壳程的传热强化 (16)第3章流体传热的研究方法 (17)3.1 传热学的常用研究方法 (17)3.2数值模拟的求解过程 (17)第4章基于Fluent的管壳式换热器的数值计算 (20)4.1 Fluent简介 (20)4.2 基于Fluent的三角形排列的换热器流畅模拟 (21)结论 (31)第1章绪论换热器是将热流体的部分热量传递给冷流体,使流体温度达到工艺流程规定的指标的热量交换设备,又称热交换器,广泛应用于化工、石油化工、动力、医药、冶金、制冷、轻工业等行业。
随着节能技术的飞速发展,换热器的种类越来越多。
1.1换热器的分类换热器作为传热设备随处可见,在工业中应用非常普遍,特别是耗能量十分大的领域。
随着节能技术的飞速发展,换热器的种类开发越来越多。
适用于不同介质、不同工况、不同温度、不同压力的换热器结构和形式亦不相同,换热器种类随新型,高效换热器的开发不断更新,具体分类如下。
(1)冷、热流体热量交换的原理和方式基本上可分三大类:间壁式、混合式和蓄热式。
间壁式换热器是温度不同的两种流体在被壁面分开的空间里流动,通过壁面的导热和流体在壁表面对流进行换热。
间壁式换热器根据传热面的结构不同可分为管式、板面式和其他型式。
管式换热器以管子表面作为传热面,包括蛇管式换热器、套管式换热器和管壳式换热器等;板面式换热器以板面作为传热面,包括板式换热器、螺旋板换热器、板翅式换热器、板壳式换热器和伞板换热器等;其他型式换热器是为满足某些特殊要求而设计的换热器,如刮面式换热器、转盘式换热器和空气冷却器等。
混合式换热器是通过冷、热流体的直接接触、混合进行热量交换的换热器,又称接触式换热器。
由于两流体混合换热后必须及时分离,这类换热器适合于气、液两流体之间的换热。
例如,化工厂和发电厂所用的凉水塔中,热水由上往下喷淋,而冷空气自下而上吸入,在填充物的水膜表面或飞沫及水滴表面,热水和冷空气相互接触进行换热,热水被冷却,冷空气被加热,然后依靠两流体本身的密度差得以及时分离。
在蓄热式换热器中,冷热两种流体依次交替地流过同一换热表面而实现热量交换,固体表面除了换热以外还起到蓄热的作用:高温流体经过时,固体避免吸收并积蓄热量,然后释放给接着流过的低温流体。
这种换热器的热量传递过程是非稳态的。
三种类型中,间壁式换热器应用最为广泛。
(2)表面的紧凑程度换热器还可以按照表面的紧凑程度而区分为紧凑式换热器(compact heat exchanger)与非紧凑式换热器(non-compact heat exchanger)。
紧凑的程度可以用水力直径(d h,hydraulic diameter,也称当量直径,流动界面积的4倍除以湿周长)来区别,或者用每立方米中的传热面积β来衡量:当β>700m2或者d h <6mm时,称为紧凑式换热器。
当μ<d h <1mm时,由于水力直径的减小,导致雷诺数减小通道内的β>3000m2或者100mμ<d h <1mm 流动一般为层流,故又称此类换热器为层流换热器;当β>15000m2或者100m时属于微型换热器。
1.2 换热器研究与发展1.2.1换热器发展历史20世纪20年代出现板式换热器,并应用于食品工业。
以板代管制成的换热器,结构紧凑,传热效果好,因此陆续发展为多种形式。
30年代初,瑞典首次制成螺旋板换热器。
接着英国用钎焊法制造出一种由铜及其合金材料制成的板翅式换热器,用于飞机发动机的散热。
30年代末,瑞典又制造出第一台板壳式换热器,用于纸浆工厂。
在此期间,为了解决强腐蚀性介质的换热问题,人们对新型材料制成的换热器开始注意。
60年代左右,由于空间技术和尖端科学的迅速发展,迫切需要各种高效能紧凑型的换热器,再加上冲压、钎焊和密封等技术的发展,换热器制造工艺得到进一步完善,从而推动了紧凑型板面式换热器的蓬勃发展和广泛应用。
此外,自60年代开始,为了适应高温和高压条件下的换热和节能的需要,典型的管壳式换热器也得到了进一步的发展。
70年代中期,为了强化传热,在研究和发展热管的基础上又创制出热管式换热器。
20世纪80年代以来,换热器技术飞速发展,带来了能源利用率的提高。
各种新型高效换热器的相继开发与应用带来了巨大的社会经济效益,市场经济的发展,私有化比例的加大,降低成本已成为企业追求的最终目标。
因而节能设备的研究与开发备受瞩目。
能源的日趋紧张,全球气温的不断升高,环境保护要求的提高给换热器及空冷式换热器及高温,高压换热器迎来了日益广阔的应用前景。
1.2.2 换热器研究及发展动向(1)物性模拟研究换热器传热与流体流动计算的准确性,取决于物性模拟的准确性。
因此,物性模拟一直为传热界重点研究课题之一,特别是两相流物性的模拟,这恰恰是与实际工况差别的体现。
实验室模拟实际工况很复杂,准确性主要体现与实际工况的差别。
纯组分介质的物性数据基本上准确,但油气组成物的数据就与实际工况相差较大,特别是带有固体颗粒的流体模拟更复杂。
为此,要求物性模拟在试验手段上更加先进,测试的准确率更高。
从而使换热器计算更精确,材料更节省。
物性模拟将代表换热器的经济技术水平。
(2)分析设计的研究分析设计是近代发展的一门新兴科学,美国ANSYS软件技术一直处于国际领先技术,通过分析设计可以得到流体的流动分布场,也可以将温度场模拟出来,这无疑给流路分析法技术带来发展,同时也给常规强度计算带来更准确,更便捷的手段。
在超常规强度计算中,可模拟出应力的分布图,使常规方法无法得到的计算结果能方便、便捷、准确地得到,使换热器更加安全可靠。
这一技术随着计算机应用的发展,将带来技术水平的飞跃。
将会逐步取代强度试验,摆脱实验室繁重的劳动强度。
(3)大型化及能耗研究换热器将随着装置的大型化而大型化,直径将超过5m,传热面积将达到单位10000 m2,紧凑型换热器将越来越受欢迎。
板壳式换热器,折流杆换热器,板翅式换热器,板式空冷器将得到发展,振动损失将逐步克服,高温,高压,安全,可靠的换热器结构朝着结构简单,制造方便,重量轻发展。
随着全球水资源的紧张,循环水将被新的冷却介质取代,循环将被新型,高效的空冷器所取代。
保温绝热技术发展,热量损失将减少到目前的50%一下。
(4)强化技术研究各种新型,高效换热器将逐步取代现有常规产品。
电场动力效应强化换热技术,添加物强化沸腾传热技术,通入惰性气体强化传热技术,添加物强化沸腾传热技术,微生物传热技术,磁场动力传热技术将会在新的世纪得到研究和发展。
同心管换热器、高温喷流式换热器、印刷线路板换热器、穿孔板换热器、微尺度换热器、微通道换热器、硫化床换热器、新能源换热器将在工业领域及其它领域得到研究和应用。
(5)新材料研究材料将朝着强度高,制造工艺简单,防腐效果好,重量轻的方向发展。
随着稀有金属价格的下降,钛、钽、锆等稀有金属使用量将扩大,CrMo钢材料将实现不预热和后热的方向发展。
(6)控制结垢及腐蚀的研究国内污垢数据基本上是20世纪60~70年代从国外照搬而来。
四十年来,污垢研究技术发展缓慢。
随着节能,增效要求的提高,污垢研究将会受到国家的重视和投入。
通过对污垢形成的机理,生长速度,影响因素的研究,预测污垢曲线,从而控制结垢,这对传热效率的提高将带来重大的突破。
保证装置低能耗,长周期的运行,超声防垢技术将得到大力发展。
腐蚀技术的研究将会有所突破,低成本的防腐涂层特别是金属防腐镀层技术将得到发展,电化学防腐技术将成为主导。
1.2.3 国外新型换热器技术走向(1)螺旋折流板换热器螺旋折流板换热器(图1.1)是最新发展起来的一种管壳式换热器 ,是由美国 ABB 公司提出的。
其基本原理为:将圆截面的特制板安装在”拟螺旋折流系统”中 ,每块折流板占换热器壳程中横剖面的四分之一 ,其倾角朝向换热器的轴线 ,即与换热器轴线保持一定倾斜度。
相邻折流板的周边相接 ,与外圆处成连续螺旋状。
每个折流板与壳程流体的流动方向成一定的角度 ,使壳程流体做螺旋运动 ,能减少管板与壳体之间易结垢的死角 ,从而提高了换热效率。
在气一水换热的情况下 ,传递相同热量时 ,该换热器可减少30 %~40 %的传热面积 ,节省材料 20 %~30 %。
相对于弓形折流板 ,螺旋折流板消除了弓形折流板的返混现象、卡门涡街 ,从而提高有效传热温差 ,防止流动诱导振动;在相同流速时 ,壳程流动压降小;基本不存在震动与传热死区 ,不易结垢。
对于低雷诺数下(Re< 1 000)的传热 ,螺旋折流板效果更为突出。
图1.1螺旋折流板换热器(2)折流杆式换热器20 世纪 70 年代初 ,美国菲利浦公司为了解决天然气流动振动问题 ,将管壳式换热器中的折流板改成杆式支撑结构 ,开发出折流杆换热器。
研究表明 ,这种换热器(图1.2)不但能防振 ,而且传热系数高。
现在此种换热器广泛应用于单相沸腾和冷凝的各种工况。
在后来出现了一种外导流筒折流杆换热器 ,此种换热器能最大限度地消除管壳式换热器挡板的传热不活跃区 ,增加了单位体积设备的有效传热面积。
目前 ,所有的浮头式换热器均采用了外导流筒。
近些年 ,又出现了直扁钢条支撑方式和波浪型扁钢支撑结构等新型支撑结构的折流杆换热器。
这些新结构除了增加有效换热面积外 ,更主要的是提高了对管子震动的抑制作用。
图1.2 折流杆式换热器示意图(3) 空心环管壳式换热器空心环管壳式换热器(图1.3)是华南理工大学于发明的一种新型管壳式换热器。
空心环是由直径较小的钢管截成短节 ,均匀地分布于换热管管间的同一截面上 ,呈线性接触 ,在紧固装置螺栓力的作用下 ,使管束相对紧密固定。
从而支撑管束并促进流体扰动。
空心环支撑往往与强化管组合使用。
其特点是:(1)壳程流阻低。
壳程轴向流道空隙率达80 %的空心环管间支承物对纵向流体的形体阻力几乎可以忽略。
(2)传热膜系数高。
该种结构的换热器可充分发挥粗糙型强化传热管的强化传热性能 ,利用传热管的周向粗糙肋 ,促进纵向流体在传热界面上滞流层的湍流度,获得比普通光滑管界面高 80 %~100 %的传热膜系数图1.3 空心环管式换热器示意图(4)管子自支承式换热器近年来 ,人们将壳程强化传热的两种主要途径综合起来考虑 ,利用管子形状的变化来达到相互支撑和强化传热双重功能。