实体入水FLUENT模拟过程_包括划分网格方法
- 格式:pdf
- 大小:896.49 KB
- 文档页数:21
流体分析软件Fluent仿真无敌全过程随着计算机技术的发展,流体分析技术在工业、航空、船舶、化工等领域得到越来越广泛的应用,其中,流体动力学仿真技术是流体分析技术的重要组成部分。
现在,很多企业和研究机构都在使用流体分析软件Fluent进行流体仿真分析。
本文将为大家介绍如何使用Fluent软件进行流体分析仿真,从模型导入、边界条件设置、网格划分、求解、后处理等环节全面详细地介绍Fluent软件的使用。
一、模型导入首先,将需要进行流体分析仿真的模型导入到Fluent软件中,这里假设读者已经有了需要进行仿真的模型。
导入模型的方法如下:1.打开Fluent软件,点击“File” → “Import” → “Mesh”,弹出文件选择窗口;2.在文件选择窗口中,选择需要导入的模型文件;3.点击“Open”按钮,等待软件自动加载模型。
二、边界条件设置在导入模型后,需要进行边界条件的设置,这是进行流体分析仿真的重要步骤。
边界条件的设置包括两个方面,一个是流体属性的设置,一个是模型边界的设置。
1.流体属性的设置在Fluent软件中,可以设置流体的密度、黏度、温度等属性。
设置方法如下:•在菜单栏中选择“Define” → “Material Properties”,弹出“Material”对话框;•在“Material”对话框中,可以设置流体密度、黏度、热导等属性;•点击“OK”按钮完成流体属性的设置。
2.模型边界的设置模型边界的设置包括几何边界的定义和边界条件的设置。
在定义模型几何边界时,需要将模型分为充气室、出气口等边界。
在定义边界条件时,需要设置速度、压力、温度等参数。
•定义几何边界:在菜单栏中选择“Mesh” → “Surface Operation” → “Boundary Type”,弹出“Boundary Types”对话框,选择需要设置的表面并设置其边界类型;•设置边界条件:在菜单栏中选择“Define” → “Boundary Conditions” → “Velocity Inlet”或“Pressure Outlet”等,设置边界条件相关参数。
ansys fluent中文版流体计算工程案例详解ANSYS Fluent是一种流体计算动力学软件,可用于解决各种流体力学问题。
本文将详细介绍ANSYS Fluent中文版的流体计算工程案例,包括案例的基本背景、模拟过程和结果分析。
这些案例旨在帮助用户深入了解ANSYS Fluent的使用方法和流体计算工程实践。
一个典型的案例是流体在管道中的流动。
该案例背景是,一根长直管道内有水流动,管道的直径为0.1米,长度为10米。
水的初始速度为1 m/s,管道的壁面是光滑的,管道两端的压差为100Pa。
现在需要使用ANSYS Fluent模拟该流体流动过程,并进一步分析不同参数对流动的影响。
首先,在ANSYS Fluent中创建一个新的仿真项目,并选择“仿真”模块。
在界面上点击“新建”按钮,在弹出的对话框中填写相应的参数,例如案例名称、计算器类型和尺寸单位。
点击“确定”后,进入模拟设置页面。
首先,需要定义获得流动场稳定解所需的物理模型和求解方法。
在“物理模型”选项卡中,选择“连续相”和“非恒定模型”。
在“湍流模型”中选择某种适合的模型,例如k-ε模型。
在“重力”选项卡中,定义流体的密度和重力加速度。
接下来,在“模型”选项卡中,定义管道的几何和边界条件。
选择“管道”作为流体领域的几何模型,并定义长度、直径和内壁面的润滑系数。
在“边界”选项卡中,定义管道两端的入口和出口条件,例如速度和压力。
将管道两端的压力差设置为100Pa,在入口处设置水的初始速度为1 m/s。
在出口处选择“出流”边界条件。
完成几何和边界条件的定义后,点击“模拟”选项卡进入模拟设置界面。
在“求解控制”中,设置计算时间步长和迭代次数。
选择合适的网格划分方法,并进行网格划分。
点击“网格”选项卡,选择合适的网格类型,并进行网格划分。
在划分网格后,可以使用“导入”按钮导入网格文件,并进行网格优化。
完成设置后,点击“计算”按钮开始进行模拟计算。
在计算过程中,可以实时观察流体场的变化情况,并通过Fluent Post-processing工具进行结果分析。
FLUENT知识点解析
1.网格生成:
在使用FLUENT进行模拟之前,首先需要生成一个合适的网格。
网格
的划分对于模拟结果的准确性和计算效率都有很大的影响。
FLUENT提供
了多种网格生成方法,包括结构化网格和非结构化网格。
结构化网格适用
于简单几何形状,而非结构化网格适用于复杂几何形状。
2.边界条件:
在模拟中,需要设置合适的边界条件来模拟真实物理系统中的边界行为。
常见的边界条件包括:壁面条件、入口条件、出口条件和对称条件。
根据具体情况,可以根据需要自定义边界条件。
3.流动模型:
4.输运方程:
FLUENT使用质量守恒、动量守恒和能量守恒方程来描述流体流动和
传热过程。
质量守恒方程包括连续性方程,动量守恒方程包括Navier-Stokes方程,能量守恒方程包括热传导和对流传热方程。
根据具体问题,可以选择合适的输运方程进行模拟。
5.数值解算方法:
6.辅助模型:
7.后处理:
FLUENT提供了丰富的后处理功能,用于分析和可视化模拟结果。
通
过后处理,可以绘制流速矢量图、压力分布图、温度分布图等,以及计算
流量、阻力系数、换热系数等物理量。
此外,在后处理过程中,还可以进行轨迹计算、剪切应力计算等。
8.并行计算:
9.耦合求解:
以上是FLUENT的一些重要知识点解析。
FLUENT作为一款强大的CFD 软件,具有广泛的应用前景。
在使用FLUENT进行模拟时,需要了解和掌握以上知识点,以确保模拟结果的准确性和可靠性。
FLUENT操作过程及参数选择FLUENT是一种用于模拟流体力学问题的商业计算机软件,由ANSYS公司开发。
它采用计算流体力学(CFD)方法,用于模拟和分析流体流动、传热、化学反应和其他与流体相关的问题。
在FLUENT软件中,用户需要选择适当的操作过程和参数以进行模拟分析。
下面将详细介绍FLUENT的操作过程以及常见的参数选择。
操作过程:1. 几何建模:在使用FLUENT之前,必须先进行几何建模,以创建流体域和边界条件。
可以使用专业的三维建模软件(如CATIA、SolidWorks 等)或使用FLUENT提供的基本几何建模工具。
2.网格划分:在几何建模之后,需要对流体域进行网格划分。
网格的划分质量直接影响模拟结果的准确性和计算效率。
FLUENT提供了多种网格生成方法,如结构化网格、非结构化网格和混合网格。
根据具体情况选择合适的网格划分方法,并确保网格质量良好。
3.物理模型:在模拟之前,需要选择适当的物理模型以描述流体的行为。
FLUENT支持多种物理模型,如流体动力学模型、传热模型、湍流模型、多相流模型、化学反应模型等。
根据实际情况选择合适的物理模型,以获得准确的模拟结果。
4.数值方法:选择合适的数值方法对流体流动进行离散化计算。
FLUENT提供了多种数值方法,如有限体积法、有限差分法和有限元法等。
选择合适的数值方法可以提高计算精度和稳定性。
5.边界条件:为流体域的边界设置适当的边界条件。
边界条件描述了流体在边界上的特性,如流量、速度、温度、压力等。
根据实际情况选择合适的边界条件,并设置相应的数值。
6.运行模拟:设置好物理模型、数值方法和边界条件后,可以开始运行模拟。
FLUENT将使用所选的数值方法和物理模型,通过迭代计算的方式求解流体力学方程组。
7.后处理:模拟运行结束之后,可以对计算结果进行后处理。
FLUENT提供了多种后处理工具,如可视化工具、图表生成工具、数据输出工具等,可以对模拟结果进行分析、比较和展示。
第一章Fluent 软件的介绍fluent 软件的组成:软件功能介绍:GAMBIT 专用的CFD 前置处理器(几何/网格生成) Fluent4.5 基于结构化网格的通用CFD 求解器 Fluent6.0 基于非结构化网格的通用CFD 求解器 Fidap 基于有限元方法的通用CFD 求解器 Polyflow 针对粘弹性流动的专用CFD 求解器 Mixsim 针对搅拌混合问题的专用CFD 软件 Icepak专用的热控分析CFD 软件软件安装步骤:step 1: 首先安装exceed软件,推荐是exceed6.2版本,再装exceed3d,按提示步骤完成即可,提问设定密码等,可忽略或随便填写。
step 2: 点击gambit文件夹的setup.exe,按步骤安装;step 3: FLUENT和GAMBIT需要把相应license.dat文件拷贝到FLUENT.INC/license目录下;step 4:安装完之后,把x:\FLUENT.INC\ntbin\ntx86\gambit.exe命令符拖到桌面(x为安装的盘符);step 5: 点击fluent源文件夹的setup.exe,按步骤安装;step 6: 从程序里找到fluent应用程序,发到桌面上。
注:安装可能出现的几个问题:1.出错信息“unable find/open license.dat",第三步没执行;2.gambit在使用过程中出现非正常退出时可能会产生*.lok文件,下次使用不能打开该工作文件时,进入x:\FLUENT.INC\ntbin\ntx86\,把*.lok文件删除即可;3.安装好FLUENT和GAMBIT最好设置一下用户默认路径,推荐设置办法,在非系统分区建一个目录,如d:\usersa) win2k用户在控制面板-用户和密码-高级-高级,在使用fluent用户的配置文件修改本地路径为d:\users,重起到该用户运行命令提示符,检查用户路径是否修改;b) xp用户,把命令提示符发送到桌面快捷方式,右键单击命令提示符快捷方式在快捷方式-起始位置加入D:\users,重起检查。
1 网格分割的一般方法在用Fluent 的并行求解器时,需要将网格细分割为几组单元,以便在分离处理器上求解将未分割的网格读入并行求解器里,可用系统默认的分割原则(推荐使用)还可以在连续求解器里或将mesh 文件读入并行求解器后自己分割。
在建立问题(定义模型、边界条件等)之前或之后分割网格都可以,不过,由于某些模型的特点(象非等形接触面、滑移网格、shell-conduction encapsulation 的自适应),最好是在建立问题后。
!!如果case 文件含有滑移网格或非等形接触面,要在计算过程中进行自适应,因此要用连续求解器分割。
值得注意的是计算节点间的相关单元的分布在网格自适应时要保持不变,除非是非等形接触面,这样在自适应后就不必重新分割了。
若在网格分割前用连续求解器建立问题,用于此项工作的计算机必须有足够大的内存来读入网格。
如果网格太大,不能读进连续求解器,可将未分割的网格直接读入并行求解器里(使用所有被定义主机的内存),然后让并行机自动分割。
在这种情况下,你将在做一个初步网格分割后建立问题。
如果必要可以手工再重新分割一次。
2 自动分割网格在将case 文件读入并行求解器之前选用两分法或是其他网格分割方法来自动分割网格。
对一些方法,可预览来确定是否为最佳的网格分割,注意case 文件中含有滑移网格或非等形接触面,在计算过程中要自适应,则需要在连续求解器中分割此文件,然后再把它读入并行求解器,在Auto Partition Grid 控制面板上选择Case File 选项。
并行求解器上自动网格分割的步骤如下:1. (任选)在菜单栏上点Parallel Auto Partition...,弹出Auto Partition Grid 控制面板设置分割参数。
读入mesh 文件或case 文件时如果没有获取分割信息,那就保持Case File 选项开启,Fluent 会用Method 下拉菜单里的方法分割网格。
International Journal of Mechanics Research 力学研究, 2019, 8(2), 118-125Published Online June 2019 in Hans. /journal/ijmhttps:///10.12677/ijm.2019.82014Simulation and Simulation of InternalPressure MBR Wastewater TreatmentProcess Based on CFDXuefei Dai, Chunqing Li, Ming MaSchool of Computer Science and Software Technology, Tianjin Polytechnic University, TianjinReceived: May 16th, 2019; accepted: Jun. 4th, 2019; published: Jun. 11th, 2019AbstractMBR (membrane bioreactor) is an emerging high-efficiency water treatment technology in recent years. Its working principle is to use the membrane separation equipment to intercept the acti-vated sludge and macromolecular organic matter in the sewage. The essence of this process is solid-liquid separation. To study the wastewater treatment process of MBR, we simulated the process using CFD-related software. First, the membrane module portion of the internal pressure MBR is selected for modeling and meshing. Then, we use the Euler multiphase flow model to set the fluid in the membrane tube as water and suspended particles. The model was solved by FLUENT calculation, and it was found that after 500 iterations, the residual curve converges at about 17 times. Finally, the calculation results were imported into the post-processing software for visualization. It was observed that the pressure distribution and water flow direction of the membrane module were consistent with the actual situation. At the same time, the actual data of a sewage treatment plant was used for calculation and verification, which proved that the model is reliable and effective.KeywordsCFD, MBR, Euler Multiphase Flow Model基于CFD的内压式MBR污水处理过程的模拟与仿真戴雪飞,李春青,马明天津工业大学计算机科学与软件学院,天津戴雪飞 等收稿日期:2019年5月16日;录用日期:2019年6月4日;发布日期:2019年6月11日摘 要MBR (膜生物反应器)是近年来新兴的一种高效水处理技术,其处理原理为利用膜分离设备将污水中的活性污泥和大分子有机物截留住,这个过程的本质就是固液分离。
2023年fluent教程讲解模板第一部分:介绍Fluent是一款流体动力学仿真软件,广泛应用于航空航天、汽车、能源和环境工程等领域。
本教程旨在帮助初学者了解和使用Fluent。
通过本教程,您将学习如何进行模型准备、网格划分、边界和边界条件的设定,以及模拟运行和结果分析等基本操作。
以下是本教程的详细讲解。
第二部分:模型准备在使用Fluent进行仿真之前,首先需要准备好模型。
模型的准备包括选择合适的几何形状、导入或创建几何模型,并进行必要的前处理操作。
在本教程中,我们将介绍如何导入和创建几何模型,并对其进行修复和优化。
1.导入几何模型Fluent可以导入多种几何模型格式,如STL、STEP、IGES等。
我们将展示如何导入不同格式的几何模型,并介绍如何处理不完整或有错误的几何模型。
2.创建几何模型如果无法找到或导入合适的几何模型,我们可以使用Fluent的几何建模功能来创建几何体。
我们将介绍几何建模的基本操作,包括创建基本几何体、合并和切割几何体等。
3.修复几何模型导入的几何模型中可能存在不完整或有错误的部分。
我们将展示如何使用Fluent的几何修复工具来修复几何模型,以保证后续的网格划分和仿真计算的准确性。
第三部分:网格划分网格划分是进行仿真计算的关键步骤。
合理的网格划分可以极大地影响仿真结果的准确性和计算效率。
在本部分,我们将介绍不同类型的网格划分方法和常用的划分工具。
1.网格类型Fluent支持结构化网格和非结构化网格。
我们将介绍这两种网格类型的优缺点,并在实例中展示如何选择合适的网格类型。
2.网格划分工具Fluent提供了多种网格划分工具,包括GAMBIT和TGrid。
我们将展示如何使用这些工具进行网格划分,并介绍划分参数的设置和调整。
3.网格质量控制合理的网格质量是保证仿真结果准确性的关键。
我们将介绍如何使用Fluent的网格质量评估工具来检查和改进网格质量,并介绍一些常用的网格质量指标。
实体入水模拟过程3.2.1利用GAMBIT建立计算模型1)启动GAMBIT,打开对话框如图3.2.1选择工作目录为D:\GAMBIT working。
图 3.2.12)首先建立等边三角形,单击Geometry Vertex Create Real Vertex,在Create Real Vertex面板的x、y、z坐标输入(0,0,0),单击Apply按钮生成第一个点,按同样的方法建立点(0.4,0,0)。
然后单击Geometry Edge Create Straight Edge,在Create Straight Edge面板中选择点1与点2,连接这两点省成线段。
如图3.2.2图3.2.23)单击Edge面板中的Move/Copy Edges按钮,打开如图3.2.3的面板,选择线段1,单击copy按钮,并选择Operation为Rotate,在Angle栏输入60,其他保持默认,单击Apply 按钮。
即旋转复制生成第二条线段。
图3.2.34)剩下的一条线段只需连接右侧两点即可,如图3.2.4所示。
图3.2.45)创建三角形面。
单击Geometry Face Create Face from Wireframe,在Create Facefrom Wireframe面板中利用鼠标左键框选等边三角形的三条边,然后单击Apply按钮创建面。
6)由于三角形面域的位置不对,所以还要对其位置进行调整。
首先需将其旋转210度。
单击Face面板中的Move/Copy Faces按钮,在Move/Copy Faces面板中,选择面1(face.1),单击Move并选择Operation为Rotate,在Angle栏输入210,其他保持默认,单击Apply 按钮。
其次,需要将三角形平移,在Move/Copy Edges面板中选择面1(face.1),单击Move 并选择Operation为Translate,在x与y栏分别输入3和8.4,单击Apply按钮完成平移操作,此时的视图窗口如图3.2.5所示。
图3.2.57)建立矩形面域。
单击Geometry Face Create Real Rectangular Face,打开对话框如图3.2.6,在Create Real Rectangular Face面板的Width文本框和Height文板块中输入数值10,并选择Direction为+X+Y(表示以坐标原点为矩形在左下角进行绘制),单击Apply 按钮生成矩形面。
图3.2.68)至此,还需要绘制包裹三角形的外围区域。
点击Geometry Face Move/Copy Faces 在Move/Copy Faces面板中选择三角形面,单击Copy按钮,并选择Operation为Scale,设置Factor为1.5,其余保持默认设置,单击Apply按钮,生成了一个放大的三角形面域,然后将这个新生成的面域移动至合适位置,即在Move/Copy Faces面板中选择face.3,单击Move并选择Operation为Translate,在x与y栏分别输入-1.45和-4.1,单击Apply 按钮,此时的两个三角形位置如图3.2.7所示。
图3.2.79)对面域进行布尔运算操作。
单击Geometry Face Subtract Face,打开对话框如图3.2.8,在第一行Face文本框中选取矩形面,第二行Face文本框中选择面3,(放大的三角形),并选择Remain(保留面3),单击Apply按钮,完成布尔操作。
图3.2.810)此时,大三角形的3条边都含有重合的边,可使用Edge面板中的Connect Edges按钮重合为一条。
11)将两三角形对应的顶点相连,单击Geometry Edge Create Straight Edge,顶点连接之后,单击Geometry Face Create Face from Wireframe,将两三角形的空隙处建立成三个梯形面域,如图3.2.9所示。
图3.2.912)到这一步,大小三角形面域都已经不再需要,单击Geometry Face Delete Faces,选择face.1和face.3,单击Apply按钮删除,只保留face.2、face.4、face.5、face.6。
3.1.2计算网格的划分1)首先对三个梯形面域face.4、face.5、face.6进行网格划分。
单击Mesh Edge Mesh Edges,打开Mesh Edges面板,如图3.2.10,在面板中选取大三角的三条边,运用Interval size划分方法,并在左侧输入0.05。
图3.2.10单击Apply按钮,生成3.2.11所示的线网格。
图3.2.112)然后对连接两个三角形的3条边进行划分,在Mesh Edge面板中相关操作,在Edges中选择两三角形顶点的三条连线。
选择完后设置Ratio为0.9,以Interval count的方式进行划分,并在左侧输入10,即划分为10个间隔,单击Apply按钮生成这三条边的线网格,如图3.2.12所示。
图3.2.123)梯形面的线网格划分好后,进行梯形面的面网格划分,单击Mesh Face Mesh Faces,打开Mesh Faces面板,选中这三个面,运用Quad单元和Map方法对该面进行面网格划分,其他保持默认值,单击Apply按钮即可,其生成的网格如图3.2.13所示。
图3.2.13 梯形面域的网格划分4)外围计算区域的网格划分。
首先对矩形区域的四条边进行线网格划分,单击Mesh Edge Mesh Edges,在Edges中选取矩形的四条边,运用Interval size的划分方法,并在左侧输入0.1,单击Apply按钮,生成如图3.2.14所示的线网格。
图3.2.145)单击Mesh Face Mesh Faces ,在Mesh Faces面板中选取大矩形面,运用Tri单元与Pave方法对该面进行面网格划分,其他设置保持默认,单击Apply按钮,生成的网格如图3.2.15所示。
图3.2.153.2.3 定义边界和区域1)单击Zones Specify Boundary Types,在Specify Boundary Types面板中选择小三角形的三条边定义为壁面条件(WALL),命名为Dong-wall;选择矩形区域的左右和下边界,类型为WALL,命名为w-w;矩形的上边界,类型为PRESSURE_OUTLET,命名为p-out。
如图3.2.16所示。
图3.2.162)划分静区域和动区域,单击Zones Specify Continuum Types,在Specify ContinuumTypes面板中选择梯形面域face.4、face.5、face.6,,类型为FLUID,命名为dong;将外围计算区域也定义为FLUID,命名为jing。
如图3.2.17所示。
图3.2.173)执行File Export Mesh命令,输出网格文件,在文件名中输入shitiluoshui.mesh,并选择Export 2-D(X-Y)Mesh,确定输出的为二维模型网格文件。
如图3.2.18所示。
图3.2.15输出二维网格文件自此,在GAMBIT软件中,模型建立完毕,网格划分成功,边界定义之后,就可以生成Fluent软件进行仿真计算需要用的相关文件,为导入Fluent计算左做准备。
GAMBIT中总共生成五个文件:mesh文件、jou文件、lok文件、trn文件。
3.3 利用Fluent软件进行小球如水数值仿真计算求解计算的操作步骤如下:1)启动Fluent软件。
双击fluent6.3图标,弹出fluent version对话框,选择2d(二维单精度)计算器,单击Run按钮启动软件。
如图3.3.1所示。
图3.3.12)读入网格文件。
执行File Read Case…命令,读入划分好的网格文件shitiluoshui.msh,找到文件后,单击OK按钮确认3)检查网格。
执行Grid Check命令,网格读入后,一定要进行网格检查。
(注意最小体积一定不能为负值)4)网格比例设置。
执行Grid Scale…命令,弹出Scale Grid对话框,由于在GAMBIT 中是按照m为单位1:1建立的几何模型,所以不需要重新定义网格的尺寸,直接单击Close 按钮关闭对话框即可。
5)选择计算模型,设置求解器。
执行Define Models Solver…命令,弹出的Solver 对话框,在Time中选择Unsteady,其他保持默认值,单击OK按钮。
6)选择多相流模型。
执行Define Models Multiphase...命令,在弹出的Multiphase Model对话框中选择VOF模型,其他保持默认值。
7)定义流体材料性质。
执行Define Material命令。
从Fluent6.3自带的材料数据库中调用water-liquid[h2o<l>],顺序单击Copy,Change/Create和Close按钮,完成材料的定义,如图3.3.3所示。
图3.3.3 材料设置对话框8)定义基本相和第二相。
执行Define Phases…命令,在Phase列表框中选择Phase-1,定义为air,并在Name文本框中输入air代替原来的phase-1,选择Phase-2,定义为water-liquid,并在Name文本框中输入water代替原来的phase-2,单击OK按钮。
9)设置操作环境。
执行Define Operating Conditions命令,打开Operating Conditions 对话框,如图3.3.4所示,选中Gravity,指定重力方向为Y轴,在Y[m/s2]右侧输入-9.81,即重力方向指向底部。
同时选择Specified Operating Density选项,保持Operating Density[kg/m3]为1.225,单击OK按键确认。
图3.3.410)设置边界条件。
执行Define Boundary Conditions…命令,弹出Boundary Conditions对话框。
定义p-out(压力出口边界),单击set按钮,弹出如图3.3.5所示的对话框,保持相对压力值Gauge Pressure为0,单击OK按钮。
回到Boundary Conditions 对话框,选择phase为Water,再单击set按钮,在Pressure Outlet对话框中的Backflow Volume Fraction中输入0.图3.2.511)设置网格运动。
激活动网格并说明相关参数。
执行Define Dynamic Mesh Parameters命令,在弹出的Dynamic Mesh Parameters对话框中勾选Dynamic Mesh 复选框,对话框自动展开如图3.3.6所示,在Smoothing选项卡输入图示参数,图3.3.6勾选Remeshing,选中Size Function和Must Improve Skewness,在展开的对话框中,单击Mesh Scale Info,根据其中的参数,按照图3.3.7所示的相对较小的参数输入,单击OK按钮。