2021-2022学年人教A版高中数学必修第一册第二章一元二次函数、方程和不等式 学案知识点考点汇总
- 格式:doc
- 大小:1.00 MB
- 文档页数:39
第二章一元二次函数、方程和不等式2.1等式性质与不等式性质 (1)第一课时不等关系与比较大小 (1)第二课时等式性质与不等式性质 (8)2.2基本不等式 (14)第一课时基本不等式 (14)第二课时基本不等式的应用(习题课) (22)2.3二次函数与一元二次方程、不等式 (28)第一课时二次函数与一元二次方程、不等式 (28)第二课时二次函数与一元二次方程、不等式的应用(习题课) (35)2.1等式性质与不等式性质新课程标准解读核心素养梳理等式的性质,理解不等式的概念,掌握不等式的逻辑推理性质第一课时不等关系与比较大小(1)如图,某城市的高楼有高、有矮,有的高度相同.(2)任意两个实数之间有三种关系:a>b,a=b,a<b.(3)同号两数的积为正值.[问题]通过以上三例我们可以发现在客观世界中,量与量之间的关系有哪些?知识点一不等关系与不等式1.不等式的概念用数学符号“≠”“>”“<”“≥”“≤”连接两个数或代数式,以表示它们之间的不等关系.含有这些不等号的式子叫做不等式.2.不等式中文字语言与符号语言之间的转换文字语言大于,高于,超过小于,低于,少于大于或等于,至少,不低于小于或等于,至多,不多于,不超过符号语言><≥≤不等式a≥b读作“a大于或等于b”,其含义是指“a>b或a=b”,等价于“a不小于b”,即a>b或a=b中有一个正确,则a≥b正确.1.某路段竖立的的警示牌,是指示司机通过该路段时,车速v km/h应满足的关系式为()A.v<60B.v>60C.v≤60 D.v≥36答案:C2.一个两位数,个位数字为x,十位数字为y,且这个两位数大于70,用不等式表示为________.答案:10y+x>70知识点二实数大小比较的基本事实1.文字叙述如果a-b是正数,那么a>b;如果a-b等于0,那么a=b;如果a-b是负数,那么a<b,反过来也对.2.符号表示a-b>0⇔a>b;a-b=0⇔a=b;a-b<0⇔a<b.1.在比较两实数a,b大小的依据中,a,b两数是任意实数吗?提示:是.2.p⇔q的含义是什么?提示:p⇔q的含义是:p可以推出q,q也可以推出p,即p与q可以互推.1.设m =2a 2+2a +1,n =(a +1)2,则m ,n 的大小关系是________. 答案:m ≥n2.若实数a >b ,则a 2-ab ________ba -b 2.(填“>”或“<”) 答案:>[例408个,最初三天中,每天加工24个,则以后平均每天至少需加工多少个,才能在规定的时间内超额完成任务?列出解决此问题需要构建的不等关系式;(2)用一段长为30 m 的篱笆围成一个一边靠墙的矩形菜园,墙长18 m ,要求菜园的面积不小于110 m 2,靠墙的一边长为x m .试用不等式表示其中的不等关系.[解] (1)设该车工3天后平均每天需加工x 个零件,加工(15-3)天共加工12x 个零件,15天里共加工(3×24+12x )个零件,则3×24+12x >408.故不等关系表示为72+12x >408.(2)由于矩形菜园靠墙的一边长为x m ,而墙长为18 m , 所以0<x ≤18,这时菜园的另一条边长为30-x 2=⎝ ⎛⎭⎪⎫15-x 2(m). 因此菜园面积S =x ⎝ ⎛⎭⎪⎫15-x 2,依题意有S ≥110,即x ⎝ ⎛⎭⎪⎫15-x 2≥110,故该题中的不等关系可用不等式表示为⎩⎪⎨⎪⎧0<x ≤18,x ⎝ ⎛⎭⎪⎫15-x 2≥110.1.将不等关系表示成不等式的思路 (1)读懂题意,找准不等式所联系的量; (2)用适当的不等号连接; (3)多个不等关系用不等式组表示.2.用不等式(组)表示不等关系时应注意的问题在用不等式(组)表示不等关系时,应注意必须是具有相同性质,可以进行比较时,才可用,没有可比性的两个(或几个)量之间不能用不等式(组)来表示.[跟踪训练]1.雷电的温度大约是28 000 ℃,比太阳表面温度的4.5倍还要高.设太阳表面温度为t ℃,那么t 应满足的关系式是________.解析:由题意得,太阳表面温度的4.5倍小于雷电的温度,即4.5t <28 000. 答案:4.5t <28 0002.某汽车公司因发展需要,需购进一批汽车,计划使用不超过1 000万元的资金购买单价分别为40万元、90万元的A 型汽车和B 型汽车,根据需要,A 型汽车至少买5辆,B 型汽车至少买6辆,写出满足上述所有不等关系的不等式(组).解:设购买A 型汽车和B 型汽车分别为x 辆、y 辆,则⎩⎪⎨⎪⎧40x +90y ≤1 000,x ≥5,y ≥6,x ,y ∈N *.[例2] (2-2x 的大小; (2)已知a >0,试比较a 与1a 的大小. [解] (1)(x 3-1)-(2x 2-2x ) =(x -1)(x 2+x +1)-2x (x -1) =(x -1)(x 2-x +1) =(x -1)⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫x -122+34.∵x <1,∴x -1<0.又⎝ ⎛⎭⎪⎫x -122+34>0,∴(x -1)⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫x -122+34<0.即x 3-1<2x 2-2x .(2)∵a -1a =a 2-1a =(a -1)(a +1)a ,又∵a >0,∴当a >1时,(a -1)(a +1)a >0,有a >1a ;当a=1时,(a-1)(a+1)a=0,有a=1a;当0<a<1时,(a-1)(a+1)a<0,有a<1a.综上,当a>1时,a>1a;当a=1时,a=1a;当0<a<1时,a<1a.作差法比较大小的步骤[注意]上述步骤可概括为“三步一结论”,这里的“判断符号”是目的,“变形”是关键.其中变形的技巧较多,常见的有因式分解法、配方法、有理化法等.[跟踪训练]1.设a=3x2-x+1,b=2x2+x,则()A.a>b B.a<bC.a≥b D.a≤b解析:选C a-b=(3x2-x+1)-(2x2+x)=x2-2x+1=(x-1)2≥0,所以a≥b.2.已知x>y>0,试比较x3-2y3与xy2-2x2y的大小.解:由题意,知(x3-2y3)-(xy2-2x2y)=x3-xy2+2x2y-2y3=x(x2-y2)+2y(x2-y2)=(x2-y2)·(x+2y)=(x-y)(x+y)(x+2y),∵x>y>0,∴x-y>0,x+y>0,x+2y>0,∴(x3-2y3)-(xy2-2x2y)>0,即x3-2y3>xy2-2x2y.题型三不等关系的实际应用[例3]“如果领队买全票一张,其余人可享受7.5折优惠”,乙车队说:“你们属团体票,按原价的8折优惠.”这两车队的原价、车型都是一样的,试根据单位的人数,比较两车队的收费哪家更优惠.[解] 设该单位职工有n 人(n ∈N *),全票价为x 元,坐甲车队的车需花y 1元,坐乙车队的车需花y 2元.由题意,得y 1=x +34x ·(n -1)=14x +34nx ,y 2=45nx . 因为y 1-y 2=14x +34nx -45nx =14x -120nx =14x ⎝ ⎛⎭⎪⎫1-n 5, 当n =5时,y 1=y 2; 当n >5时,y 1<y 2; 当n <5时,y 1>y 2.所以,当单位去的人数为5人时,两车队收费相同;多于5人时,选甲车队更优惠;少于5人时,选乙车队更优惠.现实生活中的许多问题都能够用不等式解决,其解题思路是将解决的问题转化成不等关系,利用作差法比较大小,进而解决实际问题.[跟踪训练]某公司有20名技术人员,计划开发A ,B 两类共50件电子器件,每类每件所需人员和预计产值如下:今制订计划欲使总产值最高,则A 类电子器件应开发________件,最高产值为________万元.解析:设应开发A 类电子器件x 件,则开发B 类电子器件(50-x )件.根据题意,得x 2+50-x3≤20,解得x ≤20.由题意,得总产值y =7.5x +6(50-x )=300+1.5x ≤330,当且仅当x =20时,y 取最大值330.所以欲使总产量最高,A 类电子器件应开发20件,最高产值为330万元.答案:20 330随堂检测1.下列说法正确的是( ) A .x 为非正数可表示为“x ≥0”B .小华的实际年龄n 不足18岁,表示为“n ≤18”C .两数x ,y 的平方和不小于2,表示为“x 2+y 2≥2”D .甲数a 比乙数b 大,表示为“a ≥b ” 答案:C2.某校对高一美术生划定录取分数线,专业成绩x 不低于95分,文化课总分y 高于380分,体育成绩z 超过45分,用不等式表示就是( )A.⎩⎨⎧x ≥95,y ≥380,z >45B.⎩⎨⎧x ≥95,y >380,z ≥45C.⎩⎨⎧x >95,y >380,z >45D.⎩⎨⎧x ≥95,y >380,z >45解析:选D “不低于”即“≥”,“高于”即“>”,“超过”即“>”,∴x ≥95,y >380,z >45.3.不等式a 2+4≥4a 中,等号成立的条件为________. 解析:令a 2+4=4a ,则a 2-4a +4=0, 即(a -2)2=0,∴a =2. 答案:a =24.已知a ,b ∈R ,x =a 3-b ,y =a 2b -a ,试比较x 与y 的大小.解:因为x -y =a 3-b -a 2b +a =a 2(a -b )+a -b =(a -b )(a 2+1),所以当a >b 时,x -y >0,所以x >y ;当a =b 时,x -y =0,所以x =y ; 当a <b 时,x -y <0,所以x <y .第二课时 等式性质与不等式性质在日常生活中,糖水中加些糖后就会变的更甜,也可以用不等式来表示这一现象.[问题] 你能利用这一事实表示出糖水浓度不等式吗?知识点一 等式的性质性质1 如果a =b ,那么b =a ; 性质2 如果a =b ,b =c ,那么a =c ; 性质3 如果a =b ,那么a ±c =b ±c ; 性质4 如果a =b ,那么ac =bc ; 性质5 如果a =b ,c ≠0那么a c =b c .运用等式的基本性质3时,等式两边要同时加上(或减去)同一个数(或代数式),才能保证所得结果仍是等式,否则就会破坏相等关系.知识点二 不等式的性质性质 别名 性质内容 注意 (1) 对称性 a >b ⇔b <a 可逆 (2)传递性a >b ,b >c ⇒a >c不可逆。