2019_2020学年高中数学第二讲参数方程一曲线的参数方程3参数方程和普通方程的互化讲义(含解析)新人教A版
- 格式:doc
- 大小:195.50 KB
- 文档页数:7
第3课时 参数方程和普通方程的互化[核心必知]参数方程和普通方程的互化(1)将曲线的参数方程化为普通方程,有利于识别曲线类型,曲线的参数方程和普通方程是曲线方程的不同形式,一般地,可以通过消去参数而从参数方程得到普通方程.(2)在参数方程与普通方程的互化中,必须使x ,y 的取值范围保持一致.[问题思考]1.将参数方程化为普通方程的实质是什么?提示:将参数方程化为普通方程的实质是消参法的应用. 2.将普通方程化为参数方程时,所得到的参数方程是唯一的吗?提示:同一个普通方程,选取的参数不同,所得到的参数方程也不同,所以在写参数方程时,必须注明参数是哪一个.根据所给条件,把曲线的普通方程化为参数方程.(1)(x -1)23+(y -2)25=1,x =3cos θ+1.(θ为参数)(2)x 2-y +x -1=0,x =t +1.(t 为参数)[精讲详析] 本题考查化普通方程为参数方程的方法,解答本题只需将已知的变量x 代入方程,求出y 即可.(1)将x =3cos θ+1代入(x -1)23+(y -2)25=1得:y =2+5sin θ.∴⎩⎨⎧x =3cos θ+1,y =5sin θ+2.(θ为参数) 这就是所求的参数方程.(2)将x =t +1代入x 2-y +x -1=0得: y =x 2+x -1=(t +1)2+t +1-1 =t 2+3t +1∴⎩⎪⎨⎪⎧x =t +1,y =t 2+3t +1.(t 为参数) 这就是所求的参数方程.(1)求曲线的参数方程,首先要注意参数的选取,一般来说,选择参数时应注意以下两点:一是曲线上每一点的坐标(x ,y )都能由参数取某一值唯一地确定出来;二是参数与x ,y 的相互关系比较明显,容易引出方程.(2)选取参数后,要特别注意参数的取值范围,它将决定参数方程是否与普通方程等价.1.把方程xy =1化为以t 为参数的参数方程是( ) A.⎩⎨⎧x =t 12,y =t -12 B.⎩⎪⎨⎪⎧x =sin t ,y =1sin t C.⎩⎪⎨⎪⎧x =cos t ,y =1cos t D.⎩⎪⎨⎪⎧x =tan t ,y =1tan t 解析:选D 由xy =1得x ∈(-∞,0)∪(0,+∞),而A 中x ∈[0,+∞),B 中x ∈[-1,1],C 中x ∈[-1,1],只有D 选项中x 、y 的取值范围与方程xy =1中x 、y 的取值范围相对应.分别在下列两种情况下,把参数方程⎩⎨⎧x =12(e t +e-t)cos θ,y =12(e t-e-t)sin θ化为普通方程:(1)θ为参数,t 为常数; (2)t 为参数,θ为常数.[精讲详析] 本题考查化参数方程为普通方程的方法,解答本题需要分清谁为参数,谁为常数,然后想办法消掉参数.(1)当t =0时,y =0,x =cos θ,即|x |≤1,且y =0; 当t ≠0时,cos θ=x 12(e t +e -t ),sin θ=y12(e t -e -t ),而sin 2θ+cos 2θ=1, 即x 214(e t +e -t )2+y 214(e t -e -t )2=1.(2)当θ=k π,k ∈Z 时,y =0,x =±12(e t +e -t ),即|x |≥1,且y =0;当θ=k π+π2,k ∈Z 时,x =0,y =±12(e t -e -t ),即x =0;当θ≠k π2,k ∈Z 时,得⎩⎨⎧e t +e -t =2x cos θ,e t -e -t =2y sin θ,即⎩⎨⎧2e t =2x cos θ+2y sin θ,2e -t =2x cos θ-2y sin θ.得2e t ·2e -t =(2x cos θ+2y sin θ)(2x cos θ-2y sin θ),即x 2cos 2θ-y 2sin 2θ=1.(1)将参数方程化为普通方程时,消去参数的常用方法有:①代入法.先由一个方程求出参数的表达式(用直角坐标变量表示),再代入另一个方程.②利用代数或三角函数中的恒等式消去参数.例如对于参数方程⎩⎨⎧x =a ⎝⎛⎭⎫t +1t cos θ,y =a ⎝⎛⎭⎫t -1t sin θ,如果t 是常数,θ是参数,那么可以利用公式sin 2θ+cos 2θ=1消参;如果θ是常数,t 是参数,那么可以利用⎝⎛⎭⎫t +1t 2-⎝⎛⎭⎫t -1t 2=4消参.(2)一般来说,如果消去曲线的参数方程中的参数,就可以得到曲线的普通方程,但要注意,这种消参的过程要求不减少也不增加曲线上的点,即要求参数方程和消去参数后的普通方程是等价的.2.已知某曲线C 的参数方程为⎩⎪⎨⎪⎧x =1+2t ,y =at 2(其中t 是参数,a ∈R ),点M (3,1)在该曲线上.(1)求常数a ;(2)求曲线C 的普通方程.解:(1)由题意可知有⎩⎪⎨⎪⎧1+2t =3at 2=1,故⎩⎪⎨⎪⎧t =1,a =1,∴a =1.(2)由已知及(1)可得,曲线C 的方程为⎩⎪⎨⎪⎧x =1+2t ,y =t 2.由第一个方程得t =x -12代入第二个方程得y =(x -12)2,即(x -1)2=4y 为所求.已知曲线C 1:⎩⎪⎨⎪⎧x =-4+cos t ,y =3+sin t (t 为参数),C 2:⎩⎪⎨⎪⎧x =8cos θ,y =3sin θ(θ为参数).(1)化C 1,C 2的方程为普通方程,并说明它们分别表示什么曲线;(2)若C 1上的点P 对应的参数为t =π2,Q 为C 2上的动点,求PQ 中点M 到直线x -2y-7=0距离的最小值.[精讲详析] 本题考查化参数方程为普通方程的方法以及点到直线的距离的求法.解答本题需要先把题目条件中的参数方程转化为普通方程,然后根据普通方程解决问题.(1)C 1:(x +4)2+(y -3)2=1,C 2:x 264+y 29=1.C 1为圆心是(-4,3),半径是1的圆.C 2为中心是坐标原点,焦点在x 轴上,长半轴长是8,短半轴长是3的椭圆. (2)当t =π2时,P (-4,4),Q (8cos θ,3sin θ),故M (-2+4cos θ,2+32sin θ).M到C 3的距离d =55|4cos θ-3sin θ-13|=55|5sin (φ-θ)-13|(φ为锐角且tan φ=43). 从而当sin (φ-θ)=1时,d 取得最小值855.(1)将参数方程转化为我们所熟悉的普通方程是解决问题的关键. (2)将所求的问题用恰当的参数表示,是解决此类问题的转折点.3.已知方程y 2-6y sin θ-2x -9cos 2θ+8cos θ+9=0,(0≤θ<2π). (1)试证:不论θ如何变化,方程都表示顶点在同一椭圆上的抛物线; (2)θ为何值时,该抛物线在直线x =14上截得的弦最长,并求出此弦长.解:(1)证明:将方程y 2-6y sin θ-2x -9cos 2θ+8cos θ+9=0可配方为(y -3sin θ)2=2(x -4cos θ)∴图象为抛物线设其顶点为(x ,y ),则有⎩⎪⎨⎪⎧x =4cos θ,y =3sin θ,消去θ得顶点轨迹是椭圆x 216+y 29=1.(2)联立⎩⎪⎨⎪⎧x =14,y 2-6y sin θ-2x -9cos 2θ+8cos θ+9=0, 消去x ,得y 2-6y sin θ+9sin 2θ+8cos θ-28=0. 弦长|AB |=|y 1-y 2|=47-2cos θ, 当cos θ=-1,即θ=π时,弦长最大为12.曲线的参数方程化为普通方程是解决参数方程问题的根本方法,也是高考命题的重点内容,它体现了转化与化归的数学思想.湖北高考中,以射线(极坐标方程)与曲线(参数方程)相交为背景设置问题,是高考命题的一个新亮点.[考题印证](湖北高考)在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.已知射线θ=π4与曲线⎩⎪⎨⎪⎧x =t +1,y =(t -1)2,(t 为参数)相交于A ,B 两点,则线段AB 的中点的直角坐标为________.[命题立意] 本题主要考查参数方程与普通方程的互化,射线的极坐标方程及联立方程解方程组的解题思想.[解析] 记A (x 1,y 1),B (x 2,y 2),将θ=π4,转化为直角坐标方程为y =x (x ≥0),曲线为y =(x -2)2,联立上述两个方程得x 2-5x +4=0,所以x 1+x 2=5,故线段AB 的中点坐标为(52,52). 答案:(52,52)一、选择题1.将参数方程⎩⎪⎨⎪⎧x =2+sin 2θ,y =sin 2θ(θ为参数)化为普通方程为( ) A .y =x -2 B .y =x +2 C .y =x -2(2≤x ≤3) D .y =x +2(0≤y ≤1)解析:选C 化为普通方程:y =x -2,但是x ∈[2,3],y ∈[0,1].2.下列在曲线⎩⎪⎨⎪⎧x =sin 2θ,y =cos θ+sin θ(θ为参数)上的点是( )A.⎝⎛⎭⎫12,-2B.⎝⎛⎭⎫-34,12 C .(2,3) D .(1,3)解析:选B 化为普通方程:y 2=1+x (-1≤x ≤1), 当x =-34时,y =±12.3.曲线的参数方程为⎩⎪⎨⎪⎧x =3t 2+2,y =t 2-1(t 是参数),则曲线是( ) A .线段 B .双曲线的一支C .圆D .射线解析:选D 消去参数得:x -3y -5=0,且x ≥2,故是射线.4.与参数方程为⎩⎨⎧x =t ,y =21-t(t 为参数)等价的普通方程为 ( )A .x 2+y 24=1B .x 2+y 24=1(0≤x ≤1)C .x 2+y 24=1(0≤y ≤2)D .x 2+y 24=1(0≤x ≤1,0≤y ≤2)解析:选D x 2=t ,y 24=1-t =1-x 2,x 2+y 24=1,而由⎩⎪⎨⎪⎧t ≥01-t ≥0得0≤t ≤1,从而0≤x ≤1,0≤y ≤2.二、填空题5.曲线的参数方程是⎩⎪⎨⎪⎧x =1-1t ,y =1-t 2(t 为参数,t ≠0),则它的普通方程为________.解析:1-x =1t ,t =11-x ,而y =1-t 2,即y =1-(11-x )2=x (x -2)(x -1)2(x ≠1).答案:y =x (x -2)(x -1)2(x ≠1)6.参数方程⎩⎪⎨⎪⎧x =e t +e -t,y =2(e t-e -t )(t 为参数)的普通方程为________. 解析:⎩⎪⎨⎪⎧x =e t+e -t,y 2=e t -e -t ,⇒⎩⎨⎧x +y2=2e t,x -y 2=2e -t ,⇒(x +y 2)(x -y2)=4.答案:x 24-y 216=1(x ≥2)7.若点(x ,y )在圆⎩⎪⎨⎪⎧x =3+2cos θ,y =-4+2sin θ(θ为参数)上,则x 2+y 2的最小值是________.解析:法一:由题可知,x 2+y 2=(3+2cos θ)2+(-4+2sin θ)2=29+12cos θ- 16sin θ=29+20cos (θ+φ)(tan φ=43),当cos (θ+φ)=-1时最小,因此可得最小值为9.法二:将原式转化为普通方程(x -3)2+(y +4)2=4,它表示圆.令t =x 2+y 2,则t 可看做圆上的点到点(0,0)的距离的平方,圆外一点与圆上点的最近距离为该点与圆心的距离减去半径,t min =()(0-3)2+(0+4)2-22=9,所以x 2+y 2的最小值为9. 答案:98.点(x ,y )是曲线C :⎩⎪⎨⎪⎧x =-2+cos θ,y =sin θ(θ为参数,0≤θ<2π)上任意一点,则yx 的取值范围是________.解析:曲线C :⎩⎪⎨⎪⎧x =-2+cos θ,y =sin θ是以(-2,0)为圆心,1为半径的圆,即(x +2)2+y 2=1.设yx =k , ∴y =kx .当直线y =kx 与圆相切时,k 取得最小值与最大值. ∴|-2k |k 2+1=1,k 2=13.∴y x 的范围为⎣⎡⎦⎤-33,33. 答案:⎣⎡⎦⎤-33,33 三、解答题9.化下列参数方程为普通方程.(1)⎩⎪⎨⎪⎧x =1-t 1+t,y =2t1+t(t ∈R 且t ≠-1);(2)⎩⎨⎧x =tan θ+1tan θ,y =1cos θ+1sin θ⎝⎛⎭⎫θ≠k π,k π+π2,k ∈Z . 解:(1)变形为⎩⎨⎧x =-1+21+t,y =2-21+t.∴x ≠-1,y ≠2,∴x +y =1(x ≠-1).(2)⎩⎪⎨⎪⎧x =1sin θcos θ, ①y =sin θ+cos θsin θ·cos θ. ②②式平方结合①得y 2=x 2+2x , 又x =tan θ+1tan θ知|x |≥2,所以方程为(x +1)2-y 2=1(|x |≥2).10.求直线x +y =2被圆⎩⎪⎨⎪⎧x =3cos α,y =3sin α(α为参数)截得的弦长.解:将圆⎩⎪⎨⎪⎧x =3cos α,y =3sin α化为普通方程为x 2+y 2=9.圆心O 到直线的距离d =22=2,∴弦长L =2R 2-d 2=29-2=27.所以直线x +y =2被圆⎩⎪⎨⎪⎧x =3cos α,y =3sin α截得的弦长为27.11.已知曲线C 的参数方程是⎩⎪⎨⎪⎧x =cos θ,y =1+sin θ(θ为参数),直线l 的方程是4x +3y -8=0.(1)将曲线C 的参数方程化为普通方程;(2)设直线l 与x 轴的交点是M ,N 是曲线C 上一动点,求|MN |的最大值. 解:(1)曲线C 的普通方程为x 2+(y -1)2=1. (2)在方程4x +3y -8=0中, 令y =0,得x =2,即M 点的坐标为(2,0).又曲线C 为圆,圆C 的圆心坐标为(0,1),半径r =1,则|MC |= 5.所以|MN |≤|MC |+r =5+1. 即|MN |的最大值为5+1.。
第二节参数方程一、基础知识批注——理解深一点1.曲线的参数方程在平面直角坐标系中,如果曲线上任意一点的坐标x ,y 都是某个变数t 的函数⎩⎪⎨⎪⎧x =f (t ),y =g (t ),并且对于t 的每一个允许值,由这个方程组所确定的点M (x ,y )都在这条曲线上,那么这个方程组就叫做这条曲线的参数方程,联系变数x ,y 的变数t 叫做参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程F (x ,y )=0叫做普通方程. 2.参数方程和普通方程的互化(1)参数方程化普通方程:利用两个方程相加、减、乘、除或者代入法消去参数. (2)普通方程化参数方程:如果x =f (t ),把它代入普通方程,求出另一个变数与参数的关系y =g (t ),则得曲线的参数方程⎩⎪⎨⎪⎧x =f (t ),y =g (t ).3.直线、圆、椭圆的参数方程(1)过点M (x 0,y 0),倾斜角为α的直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).直线参数方程的标准形式的应用过点M 0(x 0,y 0),倾斜角为α的直线l 的参数方程是⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α.若M 1,M 2是l上的两点,其对应参数分别为t 1,t 2,则①|M 1M 2|=|t 1-t 2|.在参数方程与普通方程的互化中,一定要注意变量的范围以及转化的等价性.②若线段M 1M 2的中点M 所对应的参数为t ,则t =t 1+t 22,中点M 到定点M 0的距离|MM 0|=|t |=⎪⎪⎪⎪t 1+t 22.③若M 0为线段M 1M 2的中点,则t 1+t 2=0. ④|M 0M 1||M 0M 2|=|t 1t 2|.(2)圆心在点M 0(x 0,y 0),半径为r 的圆的参数方程为⎩⎪⎨⎪⎧x =x 0+r cos θ,y =y 0+r sin θ(θ为参数).(3)椭圆x 2a 2+y 2b 2=1(a >b >0)的参数方程为⎩⎪⎨⎪⎧x =a cos φ,y =b sin φ (φ为参数).二、基础小题强化——功底牢一点(一)判一判(对的打“√”,错的打“×”)(1)参数方程⎩⎪⎨⎪⎧x =f (t ),y =g (t )中的x ,y 都是参数t 的函数.( )(2)过M 0(x 0,y 0),倾斜角为α的直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).参数t 的几何意义表示:直线l 上以定点M 0为起点,任一点M (x ,y )为终点的有向线段M 0M ―→的数量.( )(3)已知椭圆的参数方程⎩⎪⎨⎪⎧x =2cos t ,y =4sin t (t 为参数),点M 在椭圆上,对应参数t =π3,点O为原点,则直线OM 的斜率为 3.( )答案:(1)√ (2)√ (3)×(二)填一填1.在平面直角坐标系中,若曲线C 的参数方程为⎩⎨⎧x =2+22t ,y =1+22t (t 为参数),则其普通方程为____________.解析:依题意,消去参数可得x -2=y -1,即x -y -1=0. 答案:x -y -1=02.曲线C 的参数方程为⎩⎪⎨⎪⎧x =sin θ,y =cos 2θ+1(θ为参数),则曲线C 的普通方程为____________.解析:由⎩⎪⎨⎪⎧x =sin θ,y =cos 2θ+1(θ为参数)消去参数θ,得y =2-2x 2(-1≤x ≤1).答案:y =2-2x 2(-1≤x ≤1)3.在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎨⎧x =1+12t ,y =32t(t 为参数),椭圆C 的方程为x 2+y 24=1,设直线l 与椭圆C 相交于A ,B 两点,则线段AB 的长为____________.解析:将直线l 的参数方程⎩⎨⎧x =1+12t ,y =32t代入x 2+y 24=1,得⎝⎛⎭⎫1+12t 2+⎝⎛⎭⎫32t 24=1,即7t 2+16t =0,解得t 1=0,t 2=-167, 所以|AB |=|t 1-t 2|=167. 答案:167考点一 参数方程与普通方程的互化[典例] 已知直线l 的参数方程为⎩⎪⎨⎪⎧x =a -2t ,y =-4t (t 为参数),圆C 的参数方程为⎩⎪⎨⎪⎧x =4cos θ,y =4sin θ(θ为参数). (1)求直线l 和圆C 的普通方程;(2)若直线l 与圆C 有公共点,求实数a 的取值范围. [解] (1)直线l 的普通方程为2x -y -2a =0, 圆C 的普通方程为x 2+y 2=16. (2)因为直线l 与圆C 有公共点,故圆C 的圆心到直线l 的距离d =|-2a |5≤4,解得-25≤a ≤2 5.即实数a 的取值范围为[-25,2 5 ]. [解题技法] 将参数方程化为普通方程的方法将参数方程化为普通方程,需要根据参数方程的结构特征,选取适当的消参方法.常见的消参方法有:代入消参法、加减消参法、平方消参法等,对于含三角函数的参数方程,常利用同角三角函数关系式消参(如sin 2θ+cos 2θ=1等).[提醒] 将参数方程化为普通方程时,要注意两种方程的等价性,防止增解. [题组训练]1.将下列参数方程化为普通方程.(1)⎩⎨⎧x =12(e t +e -t),y =12(e t-e-t)(t 为参数).(2)⎩⎪⎨⎪⎧x =2tan 2θ,y =2tan θ(θ为参数). 解:(1)由参数方程得e t =x +y ,e -t =x -y ,所以(x +y )(x -y )=1,即x 2-y 2=1.(2)因为曲线的参数方程为⎩⎪⎨⎪⎧ x =2tan 2θ,y =2tan θ(θ为参数),①②由y =2tan θ,得tan θ=y2,代入①得y 2=2x .2.如图,以过原点的直线的倾斜角θ为参数,求圆x 2+y 2-x =0的参数方程.解:圆的半径为12,记圆心为C ⎝⎛⎭⎫12,0,连接CP , 则∠PCx =2θ,故x P =12+12cos 2θ=cos 2θ,y P =12sin 2θ=sin θcos θ.所以圆的参数方程为⎩⎪⎨⎪⎧x =cos 2θ,y =sin θcos θ(θ为参数).考点二 参数方程的应用[典例] (2019·广州高中综合测试)已知过点P (m,0)的直线l 的参数方程是⎩⎨⎧x =m +32t ,y =12t(t 为参数),以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为ρ=2cos θ.(1)求直线l 的普通方程和曲线C 的直角坐标方程;(2)若直线l 和曲线C 交于A ,B 两点,且|PA |·|PB |=2,求实数m 的值. [解] (1)消去参数t ,可得直线l 的普通方程为x =3y +m ,即x -3y -m =0. 因为ρ=2cos θ,所以ρ2=2ρcos θ.可得曲线C 的直角坐标方程为x 2+y 2=2x ,即x 2-2x +y 2=0.(2)把⎩⎨⎧x =m +32t ,y =12t代入x 2-2x +y 2=0,得t 2+(3m -3)t +m 2-2m =0. 由Δ>0,得-1<m <3.设点A ,B 对应的参数分别为t 1,t 2,则t 1·t 2=m 2-2m . 因为|PA |·|PB |=|t 1·t 2|=2,所以m 2-2m =±2, 解得m =1±3.因为-1<m <3,所以m =1±3. [解题技法]1.应用直线参数方程的注意点在使用直线参数方程的几何意义时,要注意参数前面的系数应该是该直线倾斜角的正、余弦值,否则参数不具备该几何含义.2.圆和圆锥曲线参数方程的应用有关圆或圆锥曲线上的动点距离的最大值、最小值以及取值范围的问题,通常利用它们的参数方程转化为三角函数的最大值、最小值求解,掌握参数方程与普通方程互化的规律是解此类题的关键.[题组训练]1.(2019·湖北八校联考)在平面直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =3cos α,y =sin α(α为参数),以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρsin ⎝⎛⎭⎫θ+π4= 2. (1)求曲线C 1的普通方程与曲线C 2的直角坐标方程;(2)设P 为曲线C 1上的动点,求点P 到C 2的距离的最大值,并求此时点P 的坐标. 解:(1)曲线C 1的普通方程为x 23+y 2=1,由ρsin ⎝⎛⎭⎫θ+π4=2,得ρsin θ+ρcos θ=2,得曲线C 2的直角坐标方程为x +y -2=0. (2)设点P 的坐标为(3cos α,sin α),则点P 到C 2的距离为|3cos α+sin α-2|2=⎪⎪⎪⎪2sin ⎝⎛⎭⎫α+π3-22,当sin ⎝⎛⎭⎫α+π3=-1,即α+π3=-π2+2k π(k ∈Z),α=-5π6+2k π(k ∈Z)时,所求距离最大,最大值为22,此时点P 的坐标为⎝⎛⎭⎫-32,-12. 2.(2018·全国卷Ⅱ)在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =4sin θ(θ为参数),直线l 的参数方程为⎩⎪⎨⎪⎧x =1+t cos α,y =2+t sin α(t 为参数).(1)求C 和l 的直角坐标方程;(2)若曲线C 截直线l 所得线段的中点坐标为(1,2),求l 的斜率. 解:(1)曲线C 的直角坐标方程为x 24+y 216=1.当cos α≠0时,直线l 的直角坐标方程为y =tan α·x +2-tan α, 当cos α=0时,直线l 的直角坐标方程为x =1.(2)将直线l 的参数方程代入C 的直角坐标方程,整理得关于t 的方程(1+3cos 2α)t 2+4(2cos α+sin α)t -8=0.①因为曲线C 截直线l 所得线段的中点(1,2)在C 内, 所以①有两个解,设为t 1,t 2,则t 1+t 2=0. 又由①得t 1+t 2=-4(2cos α+sin α)1+3cos 2α,故2cos α+sin α=0,于是直线l 的斜率k =tan α=-2.考点三 极坐标、参数方程的综合应用[典例] (2018·河北保定一中摸底)在平面直角坐标系xOy 中,圆C 的参数方程为⎩⎨⎧x =-5+2cos t ,y =3+2sin t(t 为参数),在以原点O 为极点,x 轴的非负半轴为极轴建立的极坐标系中,直线l 的极坐标方程为22ρcos ⎝⎛⎭⎫θ+π4=-1. (1)求圆C 的普通方程和直线l 的直角坐标方程;(2)设直线l 与x 轴,y 轴分别交于A ,B 两点,点P 是圆C 上任一点,求A ,B 两点的极坐标和△PAB 面积的最小值.[解] (1)由⎩⎨⎧x =-5+2cos t ,y =3+2sin t消去参数t ,得(x +5)2+(y -3)2=2,所以圆C 的普通方程为(x +5)2+(y -3)2=2.由22ρcos ⎝⎛⎭⎫θ+π4=-1,得ρcos θ-ρsin θ=-2, 所以直线l 的直角坐标方程为x -y +2=0.(2)直线l 与x 轴,y 轴的交点分别为A (-2,0),B (0,2),则点A ,B 的极坐标分别为(2,π+2k π)(k ∈Z),⎝⎛⎭⎫2,π2+2k π(k ∈Z). 设点P 的坐标为(-5+2cos α,3+2sin α),则点P 到直线l 的距离d =|-5+2cos α-3-2sin α+2|2=⎪⎪⎪⎪-6+2cos ⎝⎛⎭⎫α+π42,当cos ⎝⎛⎭⎫α+π4=1,即α+π4=2k π(k ∈Z),α=-π4+2k π(k ∈Z)时,点P 到直线l 的距离取得最小值,所以d min =42=22,又|AB |=22, 所以△PAB 面积的最小值S =12×d min ×|AB |=12×22×22=4.[解题技法] 极坐标、参数方程综合问题的解题策略(1)求交点坐标、距离、线段长.可先求出直角坐标系方程,然后求解. (2)判断位置关系.先转化为平面直角坐标方程,然后再作出判断.(3)求参数方程与极坐标方程综合问题.一般是先将方程化为直角坐标方程,利用直角坐标方程来研究问题.[题组训练]1.在直角坐标系xOy 中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系, 曲线C 1:ρ2-4ρcos θ+3=0,θ∈[0,2π],曲线C 2:ρ=34sin ⎝⎛⎭⎫π6-θ,θ∈[0,2π].(1)求曲线C 1的一个参数方程;(2)若曲线C 1和曲线C 2相交于A ,B 两点,求|AB |的值. 解:(1)由ρ2-4ρcos θ+3=0,得x 2+y 2-4x +3=0, 所以(x -2)2+y 2=1. 令x -2=cos α,y =sin α,所以C 1的一个参数方程为⎩⎪⎨⎪⎧x =2+cos α,y =sin α(α为参数).(2)因为C 2:4ρ⎝⎛⎭⎫sin π6cos θ-cos π6sin θ=3, 所以4⎝⎛⎭⎫12x -32y =3,即2x -23y -3=0,因为直线2x -23y -3=0与圆(x -2)2+y 2=1相交于A ,B 两点, 所以圆心到直线的距离为d =|4-0-3|22+(-23)2=14,所以|AB |=21-⎝⎛⎭⎫142=2×154=152. 2.在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧x =2+t cos φ,y =3+t sin φ⎝⎛⎭⎫t 为参数,φ∈⎣⎡⎦⎤0,π3,以坐标原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,已知圆C 的圆心C 的极坐标为⎝⎛⎭⎫2,π3,半径为2,直线l 与圆C 交于M ,N 两点. (1)求圆C 的极坐标方程;(2)当φ变化时,求弦长|MN |的取值范围.解:(1)由已知,得圆心C 的直角坐标为(1,3),圆的半径为2, ∴圆C 的直角坐标方程为(x -1)2+(y -3)2=4, 即x 2+y 2-2x -23y =0,∵x =ρcos θ,y =ρsin θ,∴ρ2-2ρcos θ-23ρsin θ=0, 故圆C 的极坐标方程为ρ=4cos ⎝⎛⎭⎫π3-θ.(2)由(1)知,圆C 的直角坐标方程为x 2+y 2-2x -23y =0, 将直线的参数方程代入圆的直角坐标方程得,(2+t cos φ)2+(3+t sin φ)2-2(2+t cos φ)-23(3+t sin φ)=0, 整理得,t 2+2t cos φ-3=0,设M ,N 两点对应的参数分别为t 1,t 2, 则t 1+t 2=-2cos φ,t 1·t 2=-3,∴|MN |=|t 1-t 2|=(t 1+t 2)2-4t 1·t 2=4cos 2φ+12. ∵φ∈⎣⎡⎦⎤0,π3,∴cos φ∈⎣⎡⎦⎤12,1,∴|MN |∈[13,4]. 故弦长|MN |的取值范围为[13,4].[课时跟踪检测]1.若直线⎩⎪⎨⎪⎧ x =t cos α,y =t sin α(t 为参数)与圆⎩⎪⎨⎪⎧x =4+2cos θ,y =2sin θ(θ为参数)相切,求直线的倾斜角α.解:直线⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数)的普通方程为y =x tan α.圆⎩⎪⎨⎪⎧x =4+2cos θ,y =2sin θ(θ为参数)的普通方程为(x -4)2+y 2=4. 由于直线与圆相切,则|4tan α|1+tan 2α=2,即tan 2α=13,解得tan α=±33,由于α∈[0,π),故α=π6或5π6.2.在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =-8+t ,y =t2(t 为参数),曲线C 的参数方程为⎩⎨⎧x =2s 2,y =22s (s 为参数),设P 为曲线C 上的动点,求点P 到直线l 的距离的最小值.解:直线l 的普通方程为x -2y +8=0. 因为点P 在曲线C 上,设P (2s 2,22s ), 从而点P 到直线l 的距离d =|2s 2-42s +8|12+(-2)2=2(s -2)2+45,当s =2时,d min =455. 因此当点P 的坐标为(4,4)时,曲线C 上的点P 到直线l 的距离取到最小值455.3.已知P 为半圆C :⎩⎪⎨⎪⎧x =cos θ,y =sin θ(θ为参数,0≤θ≤π)上的点,点A 的坐标为(1,0),O 为坐标原点,点M 在射线OP 上,线段OM 与C 的弧AP 的长度均为π3.(1)以O 为极点,x 轴的正半轴为极轴建立极坐标系,求点M 的极坐标; (2)求直线AM 的参数方程. 解:(1)由已知,点M 的极角为π3,且点M 的极径等于π3,故点M 的极坐标为⎝⎛⎭⎫π3,π3.(2)由(1)知点M 的直角坐标为⎝⎛⎭⎫π6,3π6,A (1,0). 故直线AM 的参数方程为⎩⎨⎧x =1+⎝⎛⎭⎫π6-1t ,y =3π6t (t 为参数).4.(2019·长春质检)以直角坐标系的原点O 为极点,x 轴的正半轴为极轴建立极坐标系,已知点P 的直角坐标为(1,2),点C 的极坐标为⎝⎛⎭⎫3,π2,若直线l 过点P ,且倾斜角为π6,圆C 以点C 为圆心,3为半径.(1)求直线l 的参数方程和圆C 的极坐标方程; (2)设直线l 与圆C 相交于A ,B 两点,求|PA |·|PB |.解:(1)由题意得直线l 的参数方程为⎩⎨⎧x =1+32t ,y =2+12t (t 为参数),圆C 的极坐标方程为ρ=6sin θ.(2)由(1)易知圆C 的直角坐标方程为x 2+(y -3)2=9,把⎩⎨⎧x =1+32t ,y =2+12t 代入x 2+(y -3)2=9,得t 2+(3-1)t -7=0,设点A ,B 对应的参数分别为t 1,t 2,∴t 1t 2=-7, 又|PA |=|t 1|,|PB |=|t 2|,∴|PA |·|PB |=7.5.(2018·南昌一模)在平面直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos t ,y =2sin t +2(t为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系.(1)求曲线C 的极坐标方程;(2)若直线l 1,l 2的极坐标方程分别为θ1=π6(ρ1∈R ),θ2=2π3(ρ2∈R ),设直线l 1,l 2与曲线C 的交点分别为O ,M 和O ,N ,求△OMN 的面积.解:(1)由参数方程⎩⎪⎨⎪⎧x =2cos t ,y =2sin t +2得普通方程为x 2+(y -2)2=4,把⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ代入x 2+(y -2)2=4,得ρ2-4ρsin θ=0. 所以曲线C 的极坐标方程为ρ=4sin θ.(2)由直线l 1:θ1=π6(ρ1∈R )与曲线C 的交点为O ,M ,得|OM |=4sin π6=2.由直线l 2:θ2=2π3(ρ2∈R )与曲线C 的交点为O ,N ,得|ON |=4sin 2π3=2 3. 易知∠MON =π2,所以S △OMN =12|OM |×|ON |=12×2×23=2 3.6.(2018·全国卷Ⅲ)在平面直角坐标系xOy 中,⊙O 的参数方程为⎩⎪⎨⎪⎧x =cos θ,y =sin θ(θ为参数),过点(0,-2)且倾斜角为α的直线l 与⊙O 交于A ,B 两点.(1)求α的取值范围;(2)求AB 中点P 的轨迹的参数方程. 解:(1)⊙O 的直角坐标方程为x 2+y 2=1. 当α=π2时,l 与⊙O 交于两点.当α≠π2时,记tan α=k ,则l 的方程为y =kx - 2.l 与⊙O 交于两点需满足21+k 2<1, 解得k <-1或k >1, 即α∈⎝⎛⎭⎫π2,3π4或α∈⎝⎛⎭⎫π4,π2. 综上,α的取值范围是⎝⎛⎭⎫π4,3π4.(2)l 的参数方程为⎩⎨⎧x =t cos α,y =-2+t sin α⎝⎛⎭⎫t 为参数,π4<α<3π4. 设A ,B ,P 对应的参数分别为t A ,t B ,t P , 则t P =t A +t B2,且t A ,t B 满足t 2-22t sin α+1=0.于是t A +t B =22sin α,t P =2sin α.又点P 的坐标(x ,y )满足⎩⎨⎧x =t P cos α,y =-2+t P sin α,所以点P 的轨迹的参数方程是⎩⎨⎧x =22sin 2α,y =-22-22cos 2α⎝⎛⎭⎫α为参数,π4<α<3π4.7.(2019·洛阳第一次统考)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =t ,y =m +t (t 为参数,m ∈R ),以原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ2=33-2cos 2θ(0≤θ≤π).(1)写出曲线C 1的普通方程和曲线C 2的直角坐标方程;(2)已知点P 是曲线C 2上一点,若点P 到曲线C 1的最小距离为22,求m 的值. 解:(1)由曲线C 1的参数方程消去参数t ,可得C 1的普通方程为x -y +m =0. 由曲线C 2的极坐标方程得3ρ2-2ρ2cos 2θ=3,θ∈[0,π], ∴曲线C 2的直角坐标方程为x 23+y 2=1(0≤y ≤1).(2)设曲线C 2上任意一点P 的坐标为(3cos α,sin α),α∈[0,π],则点P 到曲线C 1的距离d =|3cos α-sin α+m |2=⎪⎪⎪⎪2cos ⎝⎛⎭⎫α+π6+m 2.∵α∈[0,π],∴cos ⎝⎛⎭⎫α+π6∈⎣⎡⎦⎤-1,32,2cos ⎝⎛⎭⎫α+π6∈[-2, 3 ], 当m +3<0时,m +3=-4,即m =-4- 3. 当m -2>0时,m -2=4,即m =6.当m +3≥0,m -2≤0,即-3≤m ≤2时,d min =0,不合题意,舍去. 综上,m =-4-3或m =6.8.已知直线l 的参数方程为⎩⎪⎨⎪⎧x =1+t cos θ,y =t sin θ(t 为参数),曲线C 的参数方程为⎩⎨⎧x =3cos α,y =sin α(α为参数),且直线l 交曲线C 于A ,B 两点. (1)将曲线C 的参数方程化为普通方程,并求θ=π3时,|AB |的值;(2)已知点P (1,0),求当直线l 的倾斜角θ变化时,|PA |·|PB |的取值范围. 解:(1)曲线C 的普通方程为x 23+y 2=1.当θ=π3时,直线l 的参数方程为⎩⎨⎧x =1+12ty =32t(t 为参数),将l 的参数方程代入x 23+y 2=1,得5t 2+2t -4=0,设A ,B 对应的参数分别为t 1,t 2, 则t 1+t 2=-25,t 1t 2=-45,所以|AB |=|t 1-t 2|=(t 1+t 2)2-4t 1t 2=2215. (2)将直线l 的参数方程⎩⎪⎨⎪⎧x =1+t cos θ,y =t sin θ代入x 23+y 2=1,得(1+2sin 2θ)t 2+2t cos θ-2=0,设A ,B 对应的参数分别为t 3,t 4,则t 3t 4=-21+2sin 2θ,则|PA |·|PB |=-t 3t 4=21+2sin 2θ.又0≤sin 2θ≤1,所以23≤|PA |·|PB |≤2,所以|PA |·|PB |的取值范围是⎣⎡⎦⎤23,2.。
[课时作业] [A 组 基础巩固]1.参数方程为⎩⎪⎨⎪⎧x =3t 2+2,y =t 2-1(0≤t ≤5)的曲线为( )A .线段B .双曲线的一支C .圆弧D .射线解析:化为普通方程为x =3(y +1)+2, 即x -3y -5=0, 由于x =3t 2+2∈[2,77], 故曲线为线段.故选A. 答案:A2.参数方程⎩⎪⎨⎪⎧x =cos 2θ,y =sin 2θ(θ为参数)表示的曲线是( )A .直线B .圆C .线段D .射线解析:x =cos 2θ∈[0,1],y =sin 2θ∈[0,1],∴x +y =1,(x ∈[0,1])为线段. 答案:C3.直线y =2x +1的参数方程是( )A.⎩⎪⎨⎪⎧ x =t2y =2t 2+1 B.⎩⎪⎨⎪⎧x =2t -1y =4t +1 C.⎩⎪⎨⎪⎧x =t -1y =2t -1 D.⎩⎪⎨⎪⎧x =sin θy =2sin θ+1 解析:由y =2x +1知x ,y 可取全体实数,故排除A 、D ,在B 、C 中消去参数t ,知C 正确.答案:C4.下列各组方程中,表示同一曲线的是( ) A.⎩⎪⎨⎪⎧x =tan θ,y =1tan θ⎝⎛⎭⎫θ为参数且θ∈⎝⎛⎭⎫0,π2与xy =1 B.⎩⎪⎨⎪⎧ x =a cos θ,y =b sin θ(θ为参数)与⎩⎪⎨⎪⎧x =-a cos θ,y =b sin θ(θ为参数)C.⎩⎪⎨⎪⎧x =a sin θ,y =b sin θ(θ为参数且a ≠0)与y =b a xD.⎩⎪⎨⎪⎧x =a cos θ,y =b sin θ(a >0,b >0,θ为参数且0≤θ<π)与x 2a 2+y 2b 2=1解析:A 中前者x >0,y >0,后者x ,y ∈R ,xy ≠0;C 中前者x ∈[-|a |,|a |],y ∈[-|b |,|b |],后者无此要求;D 中若0≤θ<2π,则二者相同.答案:B5.参数方程⎩⎪⎨⎪⎧x =2t +21-t ,y =2t -1+2-t (t 为参数且t ∈R)代表的曲线是( ) A .直线 B .射线 C .椭圆D .双曲线解析:∵x =2t +21-t =2-t (22t +2),y =2t -1+2-t =2-t (22t -1+1)=12×2-t (22t +2),∴y =12x ,且x ≥22,y ≥2,故方程表示的是一条射线. 答案:B6.方程⎩⎪⎨⎪⎧x =3t 2+2,y =t 2-1(t 是参数)的普通方程是________,与x 轴交点的直角坐标是________.解析:由y =t 2-1,得t 2=y +1, 代入x =3t 2+2,可得x -3y -5=0, 又x =3t 2+2,所以x ≥2, 当y =0时,t 2=1,x =3t 2+2=5, 所以与x 轴交点的坐标是(5,0). 答案:x -3y -5=0(x ≥2) (5,0)7.设y =tx (t 为参数),则圆x 2+y 2-4y =0的参数方程是________. 解析:把y =tx 代入x 2+y 2-4y =0, 得x =4t 1+t 2,y =4t 21+t 2,所以参数方程为⎩⎪⎨⎪⎧x =4t1+t 2,y =4t21+t2(t 为参数).答案:⎩⎨⎧x =4t 1+t 2,y =4t21+t2(t 为参数)8.将参数方程⎩⎪⎨⎪⎧x =1+cos θ,y =sin θ(θ为参数),转化为普通方程是________________,该曲线上的点与定点A (-1,-1)的距离的最小值为________.解析:易得直角坐标方程是(x -1)2+y 2=1,所求距离的最小值应为圆心到点A 的距离减去半径,易求得为5-1.答案:(x -1)2+y 2=15-19.化普通方程x 2+y 2-2x =0为参数方程.解析:曲线过(0,0)点,可选择(0,0)为定点,可设过这个定点的直线为y =kx ,选择直线的斜率k 为参数,不同的k 值,对应着不同的点(异于原点),所以⎩⎪⎨⎪⎧x 2+y 2-2x =0,y =kx ,故(1+k 2)x 2-2x =0,得x =0或x =21+k 2. 将x =21+k 2代入y =kx 中,得y =2k 1+k 2. 所以⎩⎪⎨⎪⎧x =21+k 2,y =2k1+k2(k 为参数)是原曲线的参数方程.10.参数方程⎩⎪⎨⎪⎧x =cos θ(sin θ+cos θ),y =sin θ(sin θ+cos θ)(θ为参数)表示什么曲线?解析:显然y x =tan θ,则y 2x 2+1=1cos 2θ,cos 2θ=1y2x 2+1,x =cos 2θ+sin θcos θ=12sin 2θ+cos 2θ=12×2tan θ1+tan 2θ+cos 2θ,即x =12×2y x 1+y 2x 2+11+y 2x2, x ⎝⎛⎭⎫1+y 2x 2=y x +1,得x +y 2x =x +y x,即x 2+y 2-x -y =0.该参数方程表示圆.[B 组 能力提升]1.参数方程⎩⎪⎨⎪⎧x =3t 21+t 2,y =5-t21+t2(t 为参数)表示的图形为( )A .直线B .圆C .线段(但不包括右端点)D .椭圆解析:从x =3t 21+t 2中解得t 2=x 3-x ,代入y =5-t 21+t 2中,整理得到2x +y -5=0.但由t 2=x 3-x ≥0解得0≤x <3.所以化为普通方程为2x +y -5=0(0≤x <3),表示一条线段,但不包括右端点.答案:C2.参数方程⎩⎪⎨⎪⎧x =12cos 2t +sin 2t ,y =cos t +sin t (t 为参数)表示的曲线( )A .关于x 轴对称B .关于y 轴对称C .关于原点对称D .关于直线y =x 对称解析:方程⎩⎪⎨⎪⎧x =12cos 2t +sin 2t ,y =cos t +sin t⇒⎩⎨⎧x =12(1-2sin 2t )+sin 2t =12,y =2sin ⎝⎛⎭⎫t +π4⇒⎩⎪⎨⎪⎧x =12,-2≤y ≤ 2,它表示以点⎝⎛⎭⎫12,-2和点⎝⎛⎭⎫12,2为端点的线段,故关于x 轴对称. 答案:A3.已知两曲线参数方程分别为⎩⎨⎧x =5cos θ,y =sin θ(0≤θ<π)和⎩⎪⎨⎪⎧x =54t 2,y =t(t ∈R),它们的交点坐标为________.解析:将两曲线的参数方程化为一般方程分别为x 25+y 2=1(0≤y ≤1,-5<x ≤ 5)和y 2=45x ,联立解得交点坐标为⎝⎛⎭⎫1,255.答案:⎝⎛⎭⎫1,2554.若直线l 1:⎩⎪⎨⎪⎧ x =1-2t ,y =2+kt (t 为参数)与直线l 2:⎩⎪⎨⎪⎧x =s ,y =1-2s (s 为参数)垂直,则k =________. 解析:直线l 1化为普通方程是y -2=-k 2(x -1),该直线的斜率为-k2.直线l 2化为普通方程是y =-2x +1,该直线的斜率为-2, 则由两直线垂直的充要条件,得⎝⎛⎭⎫-k 2·(-2)=-1,即k =-1. 答案:-15.已知方程y 2-6y sin θ-2x -9cos 2 θ+8cos θ+9=0(0≤θ<2π). (1)试证:不论θ如何变化,方程都表示顶点在同一椭圆上的抛物线; (2)θ为何值时,该抛物线在直线x =14上截得的弦最长,并求出此弦长.解析:(1)证明:方程y 2-6y sin θ-2x -9cos 2θ+8cos θ+9=0可配方为(y -3sin θ)2=2(x -4cos θ),∴图象为抛物线.设其顶点为(x ,y ),则有⎩⎪⎨⎪⎧x =4cos θ,y =3sin θ,消去θ,得顶点轨迹是椭圆x 216+y 29=1.∴不论θ如何变化,方程都表示顶点在同一椭圆x 216+y 29=1上的抛物线.(2)联立⎩⎪⎨⎪⎧x =14,y 2-6y sin θ-2x -9cos 2θ+8cos θ+9=0,消去x ,得y 2-6y sin θ+9sin 2θ+8cos θ-28=0, 弦长|AB |=|y 1-y 2|=47-2cos θ ,当cos θ=-1即θ=π时,弦长最长为12.6.水库排放的水流从溢流坝下泄时,通常采用挑流的方法减弱水流的冲击作用,以保护水坝的坝基.如图是运用鼻坝进行挑流的示意图.已知水库的水位与鼻坝的落差为9 m ,鼻坝的鼻坎角为30°,鼻坝下游的基底比鼻坝低18 m .求挑出水流的轨迹方程,并计算挑出的水流与坝基的水平距离.解析:建立如图所示的直角坐标系. 设轨迹上任意一点为P (x ,y ). 由机械能守恒定律,得12m v 2=mgh .鼻坝出口处的水流速度为v =2gh =18g . 取时间t 为参数,则有x =v t cos 30°=36g2t , y =v t sin 30°-12gt 2=32g 2t -12gt 2,所以,挑出水流的轨迹的参数方程为⎩⎨⎧x =36g 2t ,y =32g 2t -12gt2(t 为参数),消去参数t ,得y =-127x 2+33x .取y =-18,得-127x 2+33x =-18,解得x =93+2732=183或x =93-2732=-93(舍去).挑出的水流与坝基的水平距离为 x =183≈31.2(m). 挑出水流的轨迹方程为y =-127x 2+33x ,x ∈[0,18 3 ].。
3.参数方程和普通方程的互化参数方程和普通方程的互化(1)将曲线的参数方程化为普通方程,有利于识别曲线类型,曲线的参数方程和普通方程是曲线方程的不同形式,一般地,可以通过消去参数而从参数方程得到普通方程.(2)在参数方程与普通方程的互化中,必须使x ,y 的取值范围保持一致.[例1] (1)(x -1)23+(y -2)25=1,x =3cos θ+1,(θ为参数);(2)x 2-y +x -1=0,x =t +1,(t 为参数).[解] (1)将x =3cos θ+1代入(x -1)23+(y -2)25=1,得y =2+5sin θ.∴⎩⎨⎧x =3cos θ+1,y =5sin θ+2(θ为参数).这就是所求的参数方程.(2)将x =t +1代入x 2-y +x -1=0,得y =x 2+x -1=(t +1)2+t +1-1=t 2+3t +1, ∴⎩⎪⎨⎪⎧x =t +1,y =t 2+3t +1(t 为参数).这就是所求的参数方程.普通方程化为参数方程时的注意点(1)选取参数后,要特别注意参数的取值范围,它将决定参数方程是否与普通方程等价. (2)参数的选取不同,得到的参数方程是不同的.如本例(2),若令x =tan θ(θ为参数),则参数方程为⎩⎪⎨⎪⎧x =tan θ,y =tan 2θ+tan θ-1(θ为参数).1.如图,以过原点的直线的倾斜角θ为参数,则圆x 2+y 2-x =0的参数方程为______________.解析:由题意得圆的方程为⎝ ⎛⎭⎪⎫x -122+y 2=14,圆心⎝ ⎛⎭⎪⎫12,0在x 轴上,半径为12,则该圆的参数方程为⎩⎪⎨⎪⎧x =12+12cos α,y =12sin α(α为参数),注意α为圆心角,θ为圆弧所对的圆周角,则有α=2θ,故⎩⎪⎨⎪⎧x =12+12cos 2θ,y =12sin 2θ,即⎩⎪⎨⎪⎧x =cos 2θ,y =sin θcos θ(θ为参数).答案:⎩⎪⎨⎪⎧x =cos 2θ,y =sin θcos θ(θ为参数)[例2] (1)⎩⎨⎧x =1-t ,y =1+2t(t 为参数);(2)⎩⎪⎨⎪⎧x =5cos θy =4sin θ-1(θ为参数).[思路点拨] (1)可采用代入法,由x =1-t 解出t ,代入y 的表达式; (2)采用三角恒等变换求解.[解] (1)由x =1-t 得 t =1-x ,将其代入y =1+2t 得y =3-2x .因为t ≥0,所以x =1-t ≤1,所以参数方程化为普通方程为y =3-2x (x ≤1). 方程表示的是以(1,1)为端点的一条射线(包括端点).(2)由⎩⎪⎨⎪⎧x =5cos θy =4sin θ-1得⎩⎪⎨⎪⎧cos θ=x5 ①sin θ=y +14②,①2+②2得x 225+(y +1)216=1(-5≤x ≤5,-5≤y ≤3).将参数方程化为普通方程的三种方法(1)利用解方程的技巧求出参数的表示式,然后代入消去参数; (2)利用三角恒等式消去参数;(3)根据参数方程本身的结构特征,选用一些灵活的方法从整体上消去参数. 将参数方程化为普通方程时,要注意防止变量x 和y 取值范围的扩大或缩小,必须根据参数的取值范围,确定函数f (t )和g (t )的值域,即x 和y 的取值范围.2.参数方程⎩⎪⎨⎪⎧x =1-t 21+t2,y =2t1+t2(t 为参数)化为普通方程为( )A .x 2+y 2=1B .x 2+y 2=1去掉(0,1)点 C .x 2+y 2=1去掉(1,0)点 D .x 2+y 2=1去掉(-1,0)点解析:选D 结合题意,x 2+y 2=⎝ ⎛⎭⎪⎫1-t 21+t 22+⎝ ⎛⎭⎪⎫2t 1+t 22=1,x =1-t 21+t 2=-1+21+t 2≠-1,故选D.3.已知曲线的参数方程为⎩⎪⎨⎪⎧x =sin 2θ,y =cos θ-sin θ(θ为参数),则曲线的普通方程为( )A .y 2=1+x B .y 2=1-x C .y 2=1-x (-2≤y ≤2)D .以上都不对解析:选C 因为y =cos θ-sin θ=2cos ⎝⎛⎭⎪⎫θ+π4,所以y ∈[-2, 2 ],由y 2=1-2sin θcos θ=1-sin 2θ,得y 2=1-x ,y ∈[-2, 2 ],故选C.一、选择题1.将参数方程⎩⎪⎨⎪⎧x =2+sin 2θ,y =sin 2θ(θ为参数)化为普通方程为( )A .y =x -2B .y =x +2C .y =x -2(2≤x ≤3)D .y =x +2(0≤y ≤1)解析:选C 方程可化为y =x -2,x ∈[2,3],y ∈[0,1],故选C.2.参数方程⎩⎪⎨⎪⎧x =cos 2θ,y =sin 2θ(θ为参数)表示的曲线是( )A .直线B .圆C .线段D .射线解析:选C x =cos 2θ∈[0,1],y =sin 2θ∈[0,1], ∴x +y =1(x ∈[0,1])为线段.3.曲线⎩⎪⎨⎪⎧x =-1+cos θ,y =2+sin θ(θ为参数)的对称中心( )A .在直线y =2x 上B .在直线y =-2x 上C .在直线y =x -1上D .在直线y =x +1上解析:选B 将⎩⎪⎨⎪⎧x =-1+cos θ,y =2+sin θ(θ为参数)化为普通方程为(x +1)2+(y -2)2=1,其表示以(-1,2)为圆心,1为半径的圆,其对称中心即圆心,显然(-1,2)在直线y =-2x 上,故选B.4.已知曲线C :⎩⎪⎨⎪⎧x =22t ,y =a +22t (t 为参数),A (-1,0),B (1,0),若曲线C 上存在点P 满足AP ―→·BP ―→=0,则实数a 的取值范围为( )A.⎣⎢⎡⎦⎥⎤-22,22 B .[-1,1] C .[-2,2]D .[-2,2]解析:选C 设P (x ,y ),∵A (-1,0),B (1,0),点P 满足AP ―→·BP ―→=0, ∴P 的轨迹方程是x 2+y 2=1,表示圆心为(0,0),半径为1的圆.曲线C :⎩⎪⎨⎪⎧x =22t ,y =a +22t (t 为参数)化成普通方程为x -y +a =0,由题意知,圆心(0,0)到直线x-y +a =0的距离d =|a |2≤1,∴-2≤a ≤ 2.二、填空题5.x 2+y 2+2x -4y +1=0化为参数方程为________.解析:x 2+y 2+2x -4y +1=0化成标准方程是(x +1)2+(y -2)2=4,表示圆心为(-1,2),半径为2的圆,故参数方程为⎩⎪⎨⎪⎧x =-1+2cos θ,y =2+2sin θ(θ为参数).答案:⎩⎪⎨⎪⎧x =-1+2cos θ,y =2+2sin θ(θ为参数)6.直线⎩⎪⎨⎪⎧x =2+t ,y =-1-t(t 为参数)与曲线⎩⎪⎨⎪⎧x =3cos α,y =3sin α(α为参数)的交点个数为________.解析:⎩⎪⎨⎪⎧x =2+t ,y =-1-t (t 为参数)化为普通方程为x +y =1,⎩⎪⎨⎪⎧x =3cos α,y =3sin α(α为参数)化为普通方程为x 2+y 2=9,表示以(0,0)为圆心,3为半径的圆.圆心(0,0)到直线的距离为12=22,小于半径3,所以直线与圆相交.因此,交点的个数为2. 答案:27.已知曲线C 的极坐标方程为ρ=2cos θ.以极点为原点,极轴为x 轴的正半轴建立直角坐标系,则曲线C 的参数方程为________________.解析:曲线C 的直角坐标方程是(x -1)2+y 2=1,其参数方程为⎩⎪⎨⎪⎧x =1+cos θ,y =sin θ(θ为参数).答案:⎩⎪⎨⎪⎧x =1+cos θ,y =sin θ(θ为参数)三、解答题8.把下列参数方程化为普通方程,并说明它们各表示什么曲线.(1)⎩⎪⎨⎪⎧x =-4t 2,y =t +1(t 为参数,t ≥0);(2)⎩⎪⎨⎪⎧x =2cos t ,y =3sin t (π≤t ≤2π).解:(1)⎩⎪⎨⎪⎧x =-4t 2,①y =t +1,②由②得t =y -1,又t ≥0,所以y ≥1.所以x =-4(y -1)2(y≥1),即(y -1)2=-14x (y ≥1).方程表示的是顶点为(0,1),对称轴平行于x 轴,开口向左的抛物线的一部分.(2)由⎩⎪⎨⎪⎧x =2cos t ,y =3sin t ,得x 24+y 29=1.∵π≤t ≤2π,∴-2≤x ≤2,-3≤y ≤0. ∴所求方程为x 24+y 29=1(-3≤y ≤0),它表示半个椭圆⎝ ⎛⎭⎪⎫椭圆x 24+y 29=1在x 轴下方的部分. 9.如图所示,经过圆x 2+y 2=4上任一点P 作x 轴的垂线,垂足为Q ,求线段PQ 中点轨迹的普通方程.解:圆x2+y 2=4的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =2sin θ(θ为参数).在此圆上任取一点P (2cos θ,2sin θ), 则PQ 的中点为M (2cos θ,sin θ), 所以PQ 中点轨迹的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =sin θ(θ为参数),化成普通方程x 24+y 2=1.10.已知曲线C 1的参数方程为⎩⎨⎧x =-2+10cos θ,y =10sin θ(θ为参数),曲线C 2的极坐标方程为ρ=2cos θ+6sin θ.(1)将曲线C 1的参数方程化为普通方程,将曲线C 2的极坐标方程化为直角坐标方程; (2)曲线C 1,C 2是否相交?若相交,请求出公共弦的长;若不相交,请说明理由.解:(1)由⎩⎨⎧x =-2+10cos θ,y =10sin θ(θ为参数)得(x +2)2+y 2=10,∴曲线C 1的普通方程为(x +2)2+y 2=10.∵ρ=2cos θ+6sin θ,∴ρ2=2ρcos θ+6ρsin θ,∴x 2+y 2=2x +6y ,即(x -1)2+(y -3)2=10. ∴曲线C 2的直角坐标方程为(x -1)2+(y -3)2=10. (2)∵圆C 1的圆心为(-2,0),圆C 2的圆心为(1,3), ∴|C 1C 2|=(-2-1)2+(0-3)2=32<210,∴两圆相交.设相交弦长为d ,∵两圆半径相等,∴公共弦平分线段C 1C 2,∴⎝ ⎛⎭⎪⎫d 22+⎝ ⎛⎭⎪⎫3222=(10)2,解得d =22,∴公共弦长为22.。