2018_2019学年高中数学第二讲参数方程一曲线的参数方程2圆的参数方程讲义(含解析)新人教A版选修4_4
- 格式:doc
- 大小:184.50 KB
- 文档页数:6
第二讲 参数方程一、曲线的参数方程第2课时 圆的参数方程A 级 基础巩固一、选择题1.已知圆P :⎩⎪⎨⎪⎧x =1+10cos θ,y =-3+10sin θ(θ为参数),则圆心P 及半径r 分别是( ) A .P(1,3),r =10B .P(1,3),r =10C .P(1,-3),r =10D .P(1,-3),r =10解析:由圆P 的参数方程可知圆心(1,-3),半径r =10.答案:C2.圆x 2+y 2+4x -6y -3=0的参数方程为( )A.⎩⎨⎧x =2+4cos θ,y =-3+4sin θ(θ为参数) B.⎩⎨⎧x =-2+4cos θ,y =3+4sin θ(θ为参数) C.⎩⎨⎧x =2-4cos θ,y =3-4sin θ(θ为参数) D.⎩⎨⎧x =-2-4cos θ,y =3-4sin θ(θ为参数) 解析:圆的方程配方为:(x +2)2+(y -3)2=16,所以圆的圆心为(-2,3),半径为4,故参数方程为B 选项.答案:B3.已知圆O 的参数方程是⎩⎨⎧x =2+4cos θ,y =-3+4sin θ(0≤θ<2π),圆上点A 的坐标是(4,-33),则参数θ=( )A.7π6B.4π3C.11π6D.5π3解析:由题意⎩⎨⎧4=2+4cos θ,-33=-3+4sin θ(0≤θ<2π), 所以⎩⎪⎨⎪⎧cos θ=12,sin θ=-32(0≤θ<2π),解得θ=5π3. 答案:D4.若P(x ,y)是圆⎩⎨⎧x =2+cos α,y =sin α(α为参数)上任意一点,则(x -5)2+(y +4)2的最大值为( )A .36B .6C .26D .25解析:依题意P(2+cos α,sin α),所以(x -5)2+(y +4)2=(cos α-3)2+(sin α+4)2=26-6cos α+8sin α=26+10sin(α-φ)⎝⎛⎭⎪⎫其中cos φ=45,sin φ=35, 所以当sin(α-φ)=1,即α=2k π+π2+φ(k ∈Z)时,有最大值为36. 答案:A5.直线:3x -4y -9=0与圆:⎩⎨⎧x =2cos θ,y =2sin θ(θ为参数)的位置关系是( ) A .相切B .相离C .直线过圆心D .相交但直线不过圆心 解析:圆心坐标为(0,0),半径为2,显然直线不过圆心,又圆心到直线距离d =95<2. 所以直线与圆相交,但不过圆心.答案:D二、填空题6.已知圆的方程为x 2+y 2=2x ,则它的一个参数方程是______.解析:将x 2+y 2=2x 化为(x -1)2+y 2=1知圆心坐标为(1,0),半径r =1,所以它的一个参数方程为⎩⎨⎧x =1+cos θ,y =sin θ(θ为参数). 答案:⎩⎨⎧x =1+cos θ,y =sin θ(θ为参数) 7.已知曲线方程⎩⎨⎧x =1+cos θ,y =sin θ(θ为参数),则该曲线上的点与定点(-1,-2)的距离的最小值为________. 解析:设曲线上动点为P(x ,y),定点为A ,则|PA|=(1+cos θ+1)2+(sin θ+2)2= 9+42sin ⎝ ⎛⎭⎪⎫θ+π4, 故|PA|min =9-42=22-1.答案:22-18.曲线C :⎩⎨⎧x =cos θ,y =-1+sin θ(θ为参数)的普通方程为__________.如果曲线C 与直线x +y +a =0有公共点,那么a 的取值范围是________.解析:⎩⎨⎧x =cos θ,y =-1+sin θ(θ为参数)消参可得 x 2+(y +1)2=1,利用圆心到直线的距离d ≤r 得|-1+a|2≤1, 解得1-2≤a ≤1+ 2. 答案:x 2+(y +1)2=1 [1-2,1+2]三、解答题9.已知曲线C 的极坐标方程是ρ=2cos θ,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,直线l 的参数方程是⎩⎪⎨⎪⎧x =32t +m ,y =12t(t 为参数). (1)求曲线C 的直角坐标方程和直线l 普通方程;。
曲线的参数方程教学目标:1.通过分析抛物运动中时间与运动物体位置的关系,写出抛物运动轨迹的参数方程,体会参数的意义。
2.分析圆的几何性质,选择适当的参数写出它的参数方程。
3.会进行参数方程和普通方程的互化。
教学重点:根据问题的条件引进适当的参数,写出参数方程,体会参数的意义。
参数方程和普通方程的互化。
教学难点:根据几何性质选取恰当的参数,建立曲线的参数方程。
参数方程和普通方程的等价互化。
教学过程一.参数方程的概念1.探究:(1)平抛运动: 为参数)t gt y tx (215001002⎪⎩⎪⎨⎧-== 练习:斜抛运动:为参数)t gt t v y t v x (21sin cos 200⎪⎩⎪⎨⎧-⋅=⋅=αα2.参数方程的概念 (见教科书第22页) 说明:(1)一般来说,参数的变化X 围是有限制的。
(2)参数是联系变量x ,y 的桥梁,可以有实际意义,也可无实际意义。
例1.(教科书第22页例1)已知曲线C 的参数方程是⎩⎨⎧+==1232t y tx (t 为参数) (1)判断点M 1(0,1),M 2(5,4)与曲线C 的位置关系; (2)已知点M 3(6,a )在曲线C 上,求a 的值。
)0,1()21,21()21,31()7,2()(2cos sin 2D C B A y x ,、,、,、的坐标是表示的曲线上的一个点为参数、方程θθθ⎩⎨⎧==A 、一个定点B 、一个椭圆C 、一条抛物线D 、一条直线二.圆的参数方程)(sin cos 为参数t t r y t r x ⎩⎨⎧==ωω)(sin cos 为参数θθθ⎩⎨⎧==r y r x说明:(1)随着选取的参数不同,参数方程形式也有不同,但表示的曲线是相同的。
(2)在建立曲线的参数方程时,要注明参数及参数的取值X 围。
例2.(教科书第24页例2)思考:你能回答教科书第25页的思考吗?三.参数方程和普通方程的互化1.阅读教科书第25页,明确参数方程和普通方程的互化的方法。
1.椭圆的参数方程椭圆的参数方程(1)中心在原点,焦点在x 轴上的椭圆x 2a 2+y 2b 2=1(a >b >0)的参数方程是⎩⎪⎨⎪⎧x =a cos φy =b sin φ(φ为参数),规定参数φ的取值范围是[0,2π).(2)中心在(h ,k )的椭圆普通方程为(x -h )2a 2+(y -k )2b 2=1,则其参数方程为⎩⎪⎨⎪⎧x =h +a cos φy =k +b sin φ(φ为参数).[例1] 已知曲线C :x 24+y 29=1,直线l :⎩⎪⎨⎪⎧x =2+t ,y =2-2t (t 为参数).(1)写出曲线C 的参数方程,直线l 的普通方程;(2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求|PA |的最大值与最小值.[思路点拨] (1)由椭圆的参数方程公式,求椭圆的参数方程,由换元法求直线的普通方程.(2)将椭圆上的点的坐标设成参数方程的形式,将问题转化为三角函数求最值问题. [解] (1)曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =3sin θ(θ为参数),直线l 的普通方程为2x+y -6=0.(2)曲线C 上任意一点P (2cos θ,3sin θ)到l 的距离为d =55|4cos θ+3sin θ-6|.则|PA |=d sin 30°=255|5sin(θ+α)-6|,其中α为锐角,且tan α=43.当sin(θ+α)=-1时,|PA |取得最大值, 最大值为2255.当sin(θ+α)=1时,|PA |取得最小值,最小值为255.利用椭圆的参数方程,求目标函数的最大(小)值,通常是利用辅助角公式转化为三角函数求解.1.已知椭圆x 225+y 216=1,点A 的坐标为(3,0).在椭圆上找一点P ,使点P 与点A 的距离最大.解:椭圆的参数方程为⎩⎪⎨⎪⎧x =5cos θ,y =4sin θ(θ为参数).设P (5cos θ,4sin θ),则|PA |=(5cos θ-3)2+(4sin θ)2=9cos 2θ-30cos θ+25 =(3cos θ-5)2=|3cos θ-5|≤8, 当cos θ=-1时,|PA |最大.此时,sin θ=0,点P 的坐标为(-5,0).[例2] 已知A ,B 分别是椭圆36+9=1的右顶点和上顶点,动点C 在该椭圆上运动,求△ABC 的重心G 的轨迹方程.[思路点拨] 由条件可知,A ,B 两点坐标已知,点C 在椭圆上,故可设出点P 坐标的椭圆参数方程形式,由三角形重心坐标公式求解.[解] 由题意知A (6,0)、B (0,3).由于动点C 在椭圆上运动,故可设动点C 的坐标为(6cos θ,3sin θ),点G 的坐标设为(x ,y ),由三角形重心的坐标公式可得⎩⎪⎨⎪⎧x =6+0+6cos θ3,y =0+3+3sin θ3,即⎩⎪⎨⎪⎧x =2+2cos θ,y =1+sin θ.消去参数θ得△ABC 的重心G 的轨迹方程为(x -2)24+(y -1)2=1.本题的解法体现了椭圆的参数方程对于解决相关问题的优越性,运用参数方程显得很简单,运算更简便.2.已知椭圆方程是x 216+y 29=1,点A (6,6),P 是椭圆上一动点,求线段PA 中点Q 的轨迹方程.解:设P (4cos θ,3sin θ),Q (x ,y ),则有 ⎩⎪⎨⎪⎧x =4cos θ+62,y =3sin θ+62,即⎩⎪⎨⎪⎧x =2cos θ+3,y =32sin θ+3(θ为参数),∴9(x -3)2+16(y -3)2=36即为所求.3.设F 1,F 2分别为椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右两个焦点.(1)若椭圆C 上的点A ⎝ ⎛⎭⎪⎫1,32到F 1,F 2的距离之和等于4,写出椭圆C 的方程和焦点坐标; (2)设点P 是(1)中所得椭圆上的动点,求线段F 1P 的中点的轨迹方程.解:(1)由椭圆上点A 到F 1,F 2的距离之和是4,得2a =4,即a =2.又点A ⎝ ⎛⎭⎪⎫1,32在椭圆上,因此14+⎝ ⎛⎭⎪⎫322b 2=1,得b 2=3,于是c 2=a 2-b 2=1,所以椭圆C 的方程为x 24+y 23=1,焦点坐标为F 1(-1,0),F 2(1,0).(2)设椭圆C 上的动点P 的坐标为(2cos θ,3sin θ),线段F 1P 的中点坐标为(x ,y ),则x =2cos θ-12,y =3sin θ+02,所以x +12=cos θ,2y 3=sin θ.消去θ,得⎝ ⎛⎭⎪⎫x +122+4y23=1即为线段F 1P 中点的轨迹方程.[例3] 已知椭圆4+y 2=1上任一点M (除短轴端点外)与短轴两端点B 1,B 2的连线分别交x 轴于P ,Q 两点,求证:|OP |·|OQ |为定值.[思路点拨] 利用参数方程,设出点M 的坐标,并由此得到直线MB 1,MB 2的方程,从而得到P ,Q 两点坐标,求出|OP |,|OQ |,再求|OP |·|OQ |的值.[证明] 设M (2cos φ,sin φ),φ为参数,因为B 1(0,-1),B 2(0,1),则MB 1的方程为y +1=sin φ+12cos φ·x ,令y =0,则x =2cos φsin φ+1,即|OP |=⎪⎪⎪⎪⎪⎪2cos φ1+sin φ.MB 2的方程为y -1=sin φ-12cos φx ,令y =0,则x =2cos φ1-sin φ.∴|OQ |=⎪⎪⎪⎪⎪⎪2cos φ1-sin φ.∴|OP |·|OQ |=⎪⎪⎪⎪⎪⎪2cos φ1+sin φ·⎪⎪⎪⎪⎪⎪2cos φ1-sin φ=4.即|OP |·|OQ |=4为定值.利用参数方程证明定值(或恒成立)问题,首先是用参数把要证明的定值(或恒成立的式子)表示出来,然后利用条件消去参数,得到一个与参数无关的定值即可.4.求证:椭圆⎩⎪⎨⎪⎧x =a cos θ,y =b sin θ(a >b >0,0≤θ≤2π)上一点M 与其左焦点F 的距离的最大值为a +c (其中c 2=a 2-b 2).证明:M ,F 的坐标分别为(a cos θ,b sin θ),(-c,0). |MF |2=(a cos θ+c )2+(b sin θ)2=a 2cos 2θ+2ac cos θ+c 2+b 2-b 2cos 2θ =c 2cos 2θ+2ac cos θ+a 2=(a +c cos θ)2.∴当cos θ=1时,|MF |2最大,|MF |最大,最大值为a +c .一、选择题1.椭圆⎩⎪⎨⎪⎧x =a cos θ,y =b sin θ(θ为参数),若θ∈[0,2π],则椭圆上的点(-a,0)对应的θ=( )A .πB.π2C .2πD.32π 解析:选A ∵在点(-a,0)中,x =-a ,∴-a =a cos θ,∴cos θ=-1,∴θ=π.2.参数方程⎩⎪⎨⎪⎧x =2cos θ,y =sin θ(θ为参数)和极坐标方程ρ=-6cos θ所表示的图形分别是( )A .圆和直线B .直线和直线C .椭圆和直线D .椭圆和圆解析:选D 对于参数方程⎩⎪⎨⎪⎧x =2cos θ,y =sin θ(θ为参数),利用同角三角函数关系消去θ化为普通方程为x 24+y 2=1,表示椭圆.ρ=-6cos θ两边同乘ρ, 得ρ2=-6ρcos θ, 化为普通方程为x 2+y 2=-6x , 即(x +3)2+y 2=9.表示以(-3,0)为圆心,3为半径的圆.3.椭圆⎩⎪⎨⎪⎧x =4cos θ,y =3sin θ(θ为参数)的左焦点的坐标是( )A .(-7,0)B .(0,7)C .(-5,0)D .(-4,0)解析:选A 根据题意,椭圆的参数方程⎩⎪⎨⎪⎧x =4cos θ,y =3sin θ(θ为参数)化成普通方程为x 216+y 29=1,其中a =4,b =3,则c =16-9=7, 所以椭圆的左焦点坐标为(-7,0).4.两条曲线的参数方程分别是⎩⎪⎨⎪⎧x =cos 2θ-1,y =1+sin 2θ(θ为参数)和⎩⎪⎨⎪⎧x =3cos t ,y =2sin t (t为参数),则其交点个数为( )A .0B .1C .0或1D .2解析:选B 由⎩⎪⎨⎪⎧x =cos 2θ-1,y =1+sin 2θ,得x +y -1=0(-1≤x ≤0, 1≤y ≤2),由⎩⎪⎨⎪⎧x =3cos t ,y =2sin t得x 29+y 24=1.如图所示,可知两曲线交点有1个.二、填空题5.椭圆⎩⎪⎨⎪⎧x =5cos θ,y =4sin θ(θ为参数)的离心率为________.解析:由椭圆方程为x 225+y 216=1,可知a =5,b =4,∴c =a 2-b 2=3,∴e =c a =35.答案:356.已知P 为曲线C :⎩⎪⎨⎪⎧x =3cos θ,y =4sin θ(θ为参数,0≤θ≤π)上一点,O 为坐标原点,若直线OP 的倾斜角为π4,则点P 的坐标为________.解析:曲线C 的普通方程为y 216+x 29=1(0≤y ≤4),易知直线OP 的斜率为1,其方程为y =x ,联立⎩⎪⎨⎪⎧y =x ,y 216+x29=1,消去y ,得x 2=16×925,故x =125⎝ ⎛⎭⎪⎫x =-125舍去,故y =125, 所以点P 的坐标为⎝ ⎛⎭⎪⎫125,125. 答案:⎝⎛⎭⎪⎫125,1257.已知椭圆的参数方程为⎩⎪⎨⎪⎧x =2cos φ,y =4sin φ(φ为参数),点M 在椭圆上,对应的参数φ=π3,点O 为原点,则直线OM 的斜率为________.解析:当φ=π3时,⎩⎪⎨⎪⎧x =2cos π3=1,y =4sin π3=23,故点M 的坐标为(1,23).所以直线OM 的斜率为2 3.答案:2 3 三、解答题8.已知两曲线的参数方程分别为⎩⎨⎧x =5cos θ,y =sin θ(0≤θ<π)和⎩⎪⎨⎪⎧x =54t 2,y =t(t∈R),求它们的交点坐标.解:将⎩⎨⎧x =5cos θy =sin θ(0≤θ<π)化为普通方程得:x 25+y 2=1(0≤y ≤1,x ≠-5),将x =54t 2,y =t 代入得,516t 4+t 2-1=0,解得t 2=45,∴t =255,x =54t 2=54×45=1,∴两曲线的交点坐标为⎝⎛⎭⎪⎫1,255.9.已知椭圆的参数方程为⎩⎪⎨⎪⎧x =3cos θ,y =2sin θ(θ为参数),求椭圆上一点P 到直线⎩⎪⎨⎪⎧x =2-3t ,y =2+2t (t 为参数)的最短距离.解:设点P (3cos θ,2sin θ),直线⎩⎪⎨⎪⎧x =2-3t ,y =2+2t 可化为2x +3y -10=0,点P 到直线的距离d =|6cos θ+6sin θ-10|13=⎪⎪⎪⎪⎪⎪62sin ⎝ ⎛⎭⎪⎫θ+π4-1013.因为sin ⎝⎛⎭⎪⎫θ+π4∈[-1,1],所以d ∈⎣⎢⎡⎦⎥⎤10-6213,10+6213,所以点P 到直线的最短距离d min =10-6213. 10.椭圆x 2a 2+y 2b2=1(a >b >0)与x 轴正半轴交于点A ,若这个椭圆上总存在点P ,使OP⊥AP (O 为原点),求离心率e 的取值范围.解:设椭圆的参数方程是⎩⎪⎨⎪⎧x =a cos θ,y =b sin θ(θ为参数)(a >b >0),则椭圆上的点P (a cos θ,b sin θ),A (a,0).∵OP ⊥AP ,∴b sin θa cos θ·b sin θa cos θ-a=-1,即(a 2-b 2)cos 2θ-a 2cos θ+b 2=0. 解得cos θ=b 2a 2-b 2或cos θ=1(舍去).∵a >b ,-1≤cos θ≤1,∴0<b 2a 2-b 2≤1.把b 2=a 2-c 2代入得0<a 2-c 2c2≤1.即0<1e 2-1≤1,解得22≤e <1.故椭圆的离心率e 的取值范围为⎣⎢⎡⎭⎪⎫22,1.。
第二节参数方程1.曲线的参数方程在平面直角坐标系中,如果曲线上任意一点的坐标x ,y 都是某个变数t 的函数⎩⎪⎨⎪⎧x =f (t ),y =g (t ),并且对于t 的每一个允许值,由这个方程组所确定的点M (x ,y )都在这条曲线上,那么这个方程组就叫做这条曲线的参数方程,联系变数x ,y 的变数t 叫做参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程F (x ,y )=0叫做普通方程. 2.参数方程和普通方程的互化(1)参数方程化普通方程:利用两个方程相加、减、乘、除或者代入法消去参数. (2)普通方程化参数方程:如果x =f (t ),把它代入普通方程,求出另一个变数与参数的关系y =g (t ),则得曲线的参数方程⎩⎪⎨⎪⎧x =f (t ),y =g (t ).参数方程与普通方程互化的注意点(1)在参数方程与普通方程的互化中,一定要注意变量的范围以及转化的等价性. (2)普通方程化为参数方程,参数方程的形式不唯一,即如果选用的参数不同,那么所求得的曲线的参数方程的形式也不同.3.直线、圆与椭圆的普通方程和参数方程轨迹 普通方程 参数方程直线y -y 0=tan α(x -x 0)⎝⎛⎭⎫α≠π2,点斜式⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数) 圆(x -a )2+(y -b )2=r 2 ⎩⎪⎨⎪⎧ x =a +r cos θ,y =b +r sin θ(θ为参数) 椭圆 x 2a 2+y 2b 2=1(a >b >0) ⎩⎪⎨⎪⎧x =a cos φ,y =b sin φ(φ为参数) [熟记常用结论]经过点P (x 0,y 0),倾斜角为α的直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).若A ,B 为直线l 上的两点,其对应的参数分别为t 1,t 2,线段AB 的中点为M ,点M 所对应的参数为t 0,则以下结论在解题中经常用到:(1)t 0=t 1+t 22; (2)|PM |=|t 0|=⎪⎪⎪⎪t 1+t 22; (3)|AB |=|t 2-t 1|; (4)|PA |·|PB |=|t 1·t 2|.[小题查验基础]一、判断题(对的打“√”,错的打“×”)(1)参数方程⎩⎪⎨⎪⎧x =f (t ),y =g (t )中的x ,y 都是参数t 的函数.( )(2)过M 0(x 0,y 0),倾斜角为α⎝⎛⎭⎫α≠π2的直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).参数t 的几何意义表示:直线l 上以定点M 0为起点,任一点M (x ,y )为终点的有向线段M 0M 的数量.( )(3)方程⎩⎪⎨⎪⎧x =2cos θ,y =1+2sin θ(θ为参数)表示以点(0,1)为圆心,以2为半径的圆.( )(4)已知椭圆的参数方程⎩⎪⎨⎪⎧x =2cos t ,y =4sin t (t 为参数),点M 在椭圆上,对应参数t =π3,点O为原点,则直线OM 的斜率为 3.( )答案:(1)√ (2)√ (3)√ (4)× 二、选填题1.曲线⎩⎪⎨⎪⎧x =-1+cos θ,y =2+sin θ(θ为参数)的对称中心( )A.在直线y =2x 上B.在直线y =-2x 上C.在直线y =x -1上D.在直线y =x +1上解析:选B 由⎩⎪⎨⎪⎧ x =-1+cos θ,y =2+sin θ,得⎩⎪⎨⎪⎧cos θ=x +1,sin θ=y -2.所以(x +1)2+(y -2)2=1.曲线是以(-1,2)为圆心,1为半径的圆,所以对称中心为(-1,2),在直线y =-2x 上.2.若直线l :⎩⎪⎨⎪⎧x =2t ,y =1-4t (t 为参数)与曲线C :⎩⎨⎧x =5cos θ,y =m +5sin θ(θ为参数)相切,则实数m 的值为( )A.-4或6B.-6或4C.-1或9D.-9或1解析:选A 由⎩⎪⎨⎪⎧x =2t ,y =1-4t (t 为参数),得直线l :2x +y -1=0,由⎩⎨⎧x =5cos θ,y =m +5sin θ(θ为参数),得曲线C :x 2+(y -m )2=5,因为直线l 与曲线C 相切,所以圆心到直线的距离等于半径,即|m -1|22+12=5,解得m =-4或m =6.故选A.3.在平面直角坐标系中,若曲线C 的参数方程为⎩⎨⎧x =2+22t ,y =1+22t (t 为参数),则其普通方程为____________.解析:依题意,消去参数可得x -2=y -1,即x -y -1=0. 答案:x -y -1=04.已知两曲线的参数方程分别为⎩⎨⎧x =5cos θ,y =sin θ(0≤θ<π)和⎩⎪⎨⎪⎧x =54t 2,y =t(t ∈R ),则它们的交点坐标为________.解析:消去参数θ得普通方程为x 25+y 2=1(0≤y ≤1),表示椭圆的一部分.消去参数t 得普通方程为y 2=45x ,表示抛物线,联立两方程,可知两曲线有一个交点,解得交点坐标为⎝⎛⎭⎫1,255.答案:⎝⎛⎭⎫1,255 5.曲线C 的参数方程为⎩⎪⎨⎪⎧x =sin θ,y =cos 2θ+1(θ为参数),则曲线C 的普通方程为____________.解析:由⎩⎪⎨⎪⎧x =sin θ,y =cos 2θ+1(θ为参数)消去参数θ,得y =2-2x 2(-1≤x ≤1).答案:y =2-2x 2(-1≤x ≤1)考点一 参数方程与普通方程的互化 [基础自学过关][题组练透]1.已知直线l 的参数方程为⎩⎪⎨⎪⎧ x =a -2t ,y =-4t (t 为参数),圆C 的参数方程为⎩⎪⎨⎪⎧x =4cos θ,y =4sin θ(θ为参数).(1)求直线l 和圆C 的普通方程;(2)若直线l 与圆C 有公共点,求实数a 的取值范围. 解:(1)直线l 的普通方程为2x -y -2a =0, 圆C 的普通方程为x 2+y 2=16. (2)因为直线l 与圆C 有公共点,故圆C 的圆心到直线l 的距离d =|-2a |5≤4,解得-25≤a ≤2 5.即实数a 的取值范围为[-25,2 5 ].2.在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =-8+t ,y =t2(t 为参数),曲线C 的参数方程为⎩⎨⎧x =2s 2,y =22s(s 为参数),设P 为曲线C 上的动点,求点P 到直线l 的距离的最小值.解:直线l 的普通方程为x -2y +8=0. 因为点P 在曲线C 上,设P (2s 2,22s ), 从而点P 到直线l 的距离d =|2s 2-42s +8|12+(-2)2=2(s -2)2+45,当s =2时,d min =455. 因此当点P 的坐标为(4,4)时,曲线C 上的点P 到直线l 的距离取到最小值455.[名师微点]将参数方程化为普通方程消参的3种方法(1)利用解方程的技巧求出参数的表达式,然后代入消去参数. (2)利用三角恒等式消去参数.(3)根据参数方程本身的结构特征,灵活的选用一些方法从整体上消去参数.[提醒] 将参数方程化为普通方程时,要注意防止变量x 和y 取值范围的扩大或缩小,必须根据参数的取值范围,确定函数f (t )和g (t )的值域,即x 和y 的取值范围.考点二 参数方程的应用 [师生共研过关][典例精析](2018·全国卷Ⅲ)在平面直角坐标系xOy 中,⊙O 的参数方程为⎩⎪⎨⎪⎧x =cos θ,y =sin θ(θ为参数),过点(0,-2)且倾斜角为α的直线l 与⊙O 交于A ,B 两点.(1)求α的取值范围;(2)求AB 中点P 的轨迹的参数方程. [解] (1)⊙O 的直角坐标方程为x 2+y 2=1. 当α=π2时,l 与⊙O 交于两点.当α≠π2时,记tan α=k ,则l 的方程为y =kx - 2.l 与⊙O 交于两点需满足21+k 2<1, 解得k <-1或k >1, 即α∈⎝⎛⎭⎫π2,3π4或α∈⎝⎛⎭⎫π4,π2. 综上,α的取值范围是⎝⎛⎭⎫π4,3π4.(2)l 的参数方程为⎩⎨⎧x =t cos α,y =-2+t sin α⎝⎛⎭⎫t 为参数,π4<α<3π4.设A ,B ,P 对应的参数分别为t A ,t B ,t P ,则t P =t A +t B2,且t A ,t B 满足t 2-22t sin α+1=0.于是t A +t B =22sin α,t P =2sin α.又点P 的坐标(x ,y )满足⎩⎨⎧x =t P cos α,y =-2+t P sin α,所以点P 的轨迹的参数方程是⎩⎨⎧x =22sin 2α,y =-22-22cos 2α⎝⎛⎭⎫α为参数,π4<α<3π4.[解题技法]一般地,如果题目中涉及圆、椭圆上的动点或求最值范围问题时可考虑用参数方程,设曲线上点的坐标,将问题转化为三角恒等变换问题解决,使解题过程简单明了.[过关训练]已知曲线C :x 24+y 29=1,直线l :⎩⎪⎨⎪⎧x =2+t ,y =2-2t (t 为参数).(1)写出曲线C 的参数方程,直线l 的普通方程;(2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求|PA |的最大值与最小值.解:(1)曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =3sin θ(θ为参数).直线l 的普通方程为2x +y -6=0.(2)曲线C 上任意一点P (2cos θ,3sin θ)到l 的距离为 d =55|4cos θ+3sin θ-6|. 则|PA |=d sin 30°=255|5sin(θ+α)-6|,其中α为锐角,且tan α=43.当sin(θ+α)=-1时,|PA |取得最大值,最大值为2255.当sin(θ+α)=1时,|PA |取得最小值,最小值为255.考点三 参数方程与极坐标方程的综合应用 [师生共研过关][典例精析](2019·柳州模拟)在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =3cos α,y =2sin α(α为参数),以原点为极点,x 轴的正半轴为极轴,建立极坐标系,曲线D 的极坐标方程为ρ=4sin ⎝⎛⎭⎫θ-π6. (1)求曲线C 的极坐标方程以及曲线D 的直角坐标方程;(2)若过点A ⎝⎛⎭⎫22,π4(极坐标)且倾斜角为π3的直线l 与曲线C 交于M ,N 两点,弦MN 的中点为P ,求|AP ||AM |·|AN |的值.[解] (1)由题意可得曲线C 的普通方程为x 29+y 24=1,将⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ代入曲线C 的普通方程可得,曲线C 的极坐标方程为ρ2cos 2θ9+ρ2sin 2 θ4=1,即ρ2=364+5sin 2θ.因为曲线D 的极坐标方程为ρ=4sin ⎝⎛⎭⎫θ-π6, 所以ρ2=4ρsin ⎝⎛⎭⎫θ-π6=4ρ⎝⎛⎭⎫32sin θ-12cos θ, 又ρ2=x 2+y 2,x =ρcos θ,y =ρsin θ, 所以x 2+y 2=23y -2x ,所以曲线C 的极坐标方程为ρ2=364+5sin 2θ,曲线D 的直角坐标方程为x 2+y 2+2x -23y =0.(2)由点A ⎝⎛⎭⎫22,π4,得⎩⎨⎧x =22cos π4=2,y =22sin π4=2,所以A (2,2).因为直线l 过点A (2,2)且倾斜角为π3,所以直线l 的参数方程为⎩⎨⎧x =2+t cos π3,y =2+t sin π3(t 为参数),代入x 29+y 24=1可得,314t 2+(8+183)t +16=0, 设M ,N 对应的参数分别为t 1,t 2, 则t 1+t 2=-32+72331,t 1t 2=6431,所以|AP ||AM |·|AN |=⎪⎪⎪⎪t 1+t 22|t 1t 2|=4+9316.[解题技法]参数方程与极坐标方程综合问题的解题策略(1)涉及参数方程和极坐标方程的综合题,求解的一般方法是分别化为普通方程和直角坐标方程后求解.当然,还要结合题目本身特点,确定选择何种方程.(2)数形结合的应用,即充分利用参数方程中参数的几何意义,或者利用ρ和θ的几何意义,直接求解,能达到化繁为简的解题目的.[过关训练](2018·合肥质检)在平面直角坐标系xOy 中,以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为ρ=22cos ⎝⎛⎭⎫π4-θ. (1)求曲线C 的直角坐标方程;(2)已知直线l 过点 P (1,0)且与曲线C 交于A ,B 两点,若|PA |+|PB |=5,求直线l 的倾斜角α.解:(1)由ρ=22cos ⎝⎛⎭⎫π4-θ=2(cos θ+sin θ)⇒ρ2=2(ρcos θ+ρsin θ)⇒x 2+y 2=2x +2y ⇒(x -1)2+(y -1)2=2,故曲线C 的直角坐标方程为(x -1)2+(y -1)2=2.(2)由条件可设直线l 的参数方程为⎩⎪⎨⎪⎧x =1+t cos α,y =t sin α(t 为参数),代入圆的方程,有t 2-2t sin α-1=0,设点A ,B 对应的参数分别为t 1,t 2,则t 1+t 2=2sin α, t 1t 2=-1,|PA |+|PB |=|AB |=|t 1-t 2|=(t 1+t 2)2-4t 1t 2=4sin 2α+4=5,解得sin α=12或sin α=-12(舍去),故α=π6或5π6.[课时跟踪检测]1.设直线l 的参数方程为⎩⎪⎨⎪⎧x =3+t cos α,y =4+t sin α(t 为参数,α为倾斜角),圆C 的参数方程为⎩⎪⎨⎪⎧x =1+2cos θ,y =-1+2sin θ(θ为参数). (1)若直线l 经过圆C 的圆心,求直线l 的斜率;(2)若直线l 与圆C 交于两个不同的点,求直线l 的斜率的取值范围. 解:(1)由已知得直线l 经过的定点是P (3,4),而圆C 的圆心是C (1,-1), 所以,当直线l 经过圆C 的圆心时,直线l 的斜率k =52.(2)由圆C 的参数方程⎩⎪⎨⎪⎧x =1+2cos θ,y =-1+2sin θ(θ为参数),得圆C 的圆心是C (1,-1),半径为2.由直线l 的参数方程⎩⎪⎨⎪⎧x =3+t cos α,y =4+t sin α(t 为参数,α为倾斜角),得直线l 的普通方程为y -4=k (x -3)(斜率存在), 即kx -y +4-3k =0.当直线l 与圆C 交于两个不同的点时,圆心到直线的距离小于圆的半径, 即|5-2k |k 2+1<2,解得k >2120.即直线l 的斜率的取值范围为⎝⎛⎭⎫2120,+∞. 2.(2018·全国卷Ⅱ)在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =4sin θ(θ为参数),直线l 的参数方程为⎩⎪⎨⎪⎧x =1+t cos α,y =2+t sin α(t 为参数).(1)求C 和l 的直角坐标方程;(2)若曲线C 截直线l 所得线段的中点坐标为(1,2),求l 的斜率.解:(1)曲线C 的直角坐标方程为x 24+y 216=1.当cos α≠0时,l 的直角坐标方程为y =tanα·x +2-tan α;当cos α=0时,l 的直角坐标方程为x =1.(2)将l 的参数方程代入C 的直角坐标方程,整理得关于t 的方程(1+3cos 2α)t 2+4(2cos α+sin α)t -8=0.①因为曲线C 截直线l 所得线段的中点(1,2)在C 内, 所以①有两个解,设为t 1,t 2,则t 1+t 2=0. 又由①得t 1+t 2=-4(2cos α+sin α)1+3cos 2α,故2cos α+sin α=0,于是直线l 的斜率k =tan α=-2.3.(2019·沈阳模拟)在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧x =-2+22t ,y =22t(t为参数).以坐标原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρsin 2θ=2a cos θ(a >0).(1)求曲线C 的直角坐标方程,直线l 的普通方程;(2)设直线l 与曲线C 交于M ,N 两点,点P (-2,0),若|PM |,|MN |,|PN |成等比数列,求实数a 的值.解:(1)由ρsin 2θ=2a cos θ(a >0)两边同乘以ρ得, 曲线C 的直角坐标方程为y 2=2ax (a >0).由直线l 的参数方程为⎩⎨⎧x =-2+22t ,y =22t(t 为参数),消去t ,得直线l 的普通方程为x -y +2=0.(2)将⎩⎨⎧x =-2+22t ,y =22t代入y 2=2ax ,得t 2-22at +8a =0,由Δ>0得a >4,设M ,N 对应的参数分别为t 1,t 2,则t 1+t 2=22a ,t 1t 2=8a , ∵|PM |,|MN |,|PN |成等比数列,∴|t 1-t 2|2=|t 1t 2|,∴(22a )2-4×8a =8a ,∴a =5.4.(2019·青岛调研)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =3cos α,y =sin α(α为参数).以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρsin ⎝⎛⎭⎫θ+π4=2 2. (1)写出C 1的普通方程和C 2的直角坐标方程;(2)设点P 在C 1上,点Q 在C 2上,求|P Q |的最小值及此时P 的直角坐标. 解:(1)C 1的普通方程为x 23+y 2=1,C 2的直角坐标方程为x +y -4=0.(2)由题意,可设点P 的直角坐标为(3cos α,sin α).因为C 2是直线,所以|P Q |的最小值即为P 到C 2的距离d (α)的最小值,d (α)=|3cos α+sin α-4|2=2⎪⎪⎪⎪sin ⎝⎛⎭⎫α+π3-2. 当且仅当α=2k π+π6(k ∈Z)时,d (α)取得最小值,最小值为2,此时P 的直角坐标为⎝⎛⎭⎫32,12. 5.(2018·辽宁五校联合体模拟)在平面直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =1+cos α,y =sin α(α为参数).在以O 为极点,x 轴的正半轴为极轴的极坐标系中,曲线C 2的极坐标方程为ρcos 2θ=sin θ.(1)求C 1的普通方程和C 2的直角坐标方程;(2)若射线l :y =kx (x ≥0)分别交C 1,C 2于A ,B 两点(A ,B 异于原点),当k ∈(1,3]时,求|OA |·|OB |的取值范围.解:(1)由⎩⎪⎨⎪⎧x =1+cos α,y =sin α,可得(x -1)2+y 2=cos 2α+sin 2α=1,即C 1的普通方程为(x -1)2+y 2=1.方程ρcos 2θ=sin θ可化为ρ2cos 2θ=ρsin θ (*),将⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ代入(*)式,可得x 2=y , 所以C 2的直角坐标方程为x 2=y . (2)因为A ,B 异于原点,所以联立⎩⎪⎨⎪⎧(x -1)2+y 2=1,y =kx ,可得A ⎝⎛⎭⎫2k 2+1,2k k 2+1;联立⎩⎪⎨⎪⎧y =kx ,y =x 2,可得B (k ,k 2). 故|OA |·|OB |=1+k 2·2k 2+1·1+k 2·|k |=2|k |.又k ∈(1,3],所以|OA |·|OB |∈(2,23].6.(2019·惠州调研)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =2-35t ,y =-2+45t (t 为参数).以坐标原点为极点,以x 轴正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρcos θ=tan θ.(1)求曲线C 1的普通方程与曲线C 2的直角坐标方程;(2)若C 1与C 2交于A ,B 两点,点P 的极坐标为⎝⎛⎭⎫22,-π4,求1|PA |+1|PB |的值. 解:(1)由曲线C 1的参数方程消去参数t 可得,曲线C 1的普通方程为4x +3y -2=0. 由x =ρcos θ,y =ρsin θ可得,曲线C 2的直角坐标方程为y =x 2.(2)由点P 的极坐标为⎝⎛⎭⎫22,-π4,可得点P 的直角坐标为(2,-2),∴点P 在曲线C 1上.将曲线C 1的参数方程⎩⎨⎧x =2-35t ,y =-2+45t (t 为参数)代入y =x 2,得9t 2-80t +150=0,设t 1,t 2是点A ,B 对应的参数, 则t 1+t 2=809,t 1t 2=503>0.∴1|PA |+1|PB |=|PA |+|PB ||PA |·|PB |=|t 1+t 2||t 1t 2|=815. 7.在平面直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,点A 的极坐标为⎝⎛⎭⎫2,π4,直线l 的极坐标方程为ρcos ⎝⎛⎭⎫θ-π4=a ,且l 过点A ,曲线C 1的参数方程为⎩⎨⎧x =2cos α,y =3sin α(α为参数).(1)求曲线C 1上的点到直线l 的距离的最大值;(2)过点B (-1,1)且与直线l 平行的直线l 1与曲线C 1交于M ,N 两点,求|BM |·|BN |的值. 解:(1)由直线l 过点A ,得2cos ⎝⎛⎭⎫π4-π4=a ,故a =2,则易得直线l 的直角坐标方程为x +y -2=0.由点到直线的距离公式,得曲线C 1上的点到直线l 的距离d =|2cos α+3sin α-2|2=|7sin (α+φ)-2|2,⎝⎛⎭⎫其中tan φ=233,∴d max =7+22=14+222.即曲线C 1上的点到直线l 的距离的最大值为14+222. (2)由(1)知直线l 的倾斜角为3π4, 则直线l 1的参数方程为⎩⎨⎧x =-1+t cos 3π4,y =1+t sin 3π4(t 为参数).易知曲线C 1的普通方程为x 24+y 23=1.把直线l 1的参数方程代入曲线C 1的普通方程, 得72t 2+72t -5=0, 设M ,N 对应的参数分别为t 1,t 2,则t 1t 2=-107, 根据参数t 的几何意义可知|BM |·|BN |=|t 1t 2|=107. 8.(2019·郑州模拟)在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧x =3-32t ,y =m +12t (t为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,圆C 的极坐标方程为ρ=8cos ⎝⎛⎭⎫θ-π6,直线l 与圆C 交于A ,B 两点. (1)若OA ⊥OB ,求直线l 的普通方程;(2)设P (3,1)是直线l 上的点,若|AB |=λ|PC |,求λ的值.解:(1)消去参数t ,得直线l 的普通方程为x +3y =3+3m ,将圆C 的极坐标方程ρ=8cos ⎝⎛⎭⎫θ-π6的两边同时乘ρ, 得ρ2=43ρcos θ+4ρsin θ,则圆C 的直角坐标方程为(x -23)2+(y -2)2=16,所以圆C 的圆心C (23,2),半径为4,且经过原点O ,数形结合得,若OA ⊥OB ,则直线l 经过圆心C ,即23+3×2=3+3m ,解得m =3, 即直线l 的普通方程为x +3y -43=0. (2)由P (3,1)是直线l 上的点,得m =1,此时直线l 的参数方程为⎩⎨⎧x =3-32t ,y =1+12t (t 为参数),代入到圆C 的方程(x -23)2+(y -2)2=16中,得t 2+2t -12=0,设A ,B 两点对应的参数分别为t 1,t 2, 则t 1+t 2=-2,t 1t 2=-12,所以|AB |=|t 1-t 2|=(t 1+t 2)2-4t 1t 2=4+48=213, 又|PC |=2,|AB |=λ|PC |,所以λ=13.。
第2讲 参数方程1.参数方程和普通方程的互化(1)曲线的参数方程和普通方程是曲线方程的不同形式,一般地,可以通过消去参数,从参数方程得到普通方程.(2)如果知道变数x ,y 中的一个与参数t 的关系,例如x =f (t ),把它代入普通方程,求出另一个变数与参数的关系y =g (t ),那么⎩⎪⎨⎪⎧x =f (t ),y =g (t )就是曲线的参数方程,在参数方程与普通方程的互化中,必须使x ,y 的取值范围保持一致.2.直线、圆和圆锥曲线的参数方程导师提醒1.关注直线参数方程的三个应用及一个易错点 (1)三个应用:已知直线l 经过点M 0(x 0,y 0),倾斜角为α,点M (x ,y )为l 上任意一点,则直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).①若M 1,M 2是直线l 上的两个点,对应的参数分别为t 1,t 2,则|M 0M 1→| |M 0M 2→|=|t 1t 2|,|M 1M 2→|=|t 2-t 1|=(t 2+t 1)2-4t 1t 2;②若线段M 1M 2的中点为M 3,点M 1,M 2,M 3对应的参数分别为t 1,t 2,t 3,则t 3=t 1+t 22;③若直线l 上的线段M 1M 2的中点为M 0(x 0,y 0),则t 1+t 2=0,t 1t 2<0.(2)一个易错点:在使用直线参数方程的几何意义时,要注意参数前面的系数应该是该直线倾斜角的正余弦值.否则参数不具备该几何含义.2.掌握圆的参数方程的两种应用(1)解决与圆上的动点有关的距离取值范围以及最大值和最小值问题,通常可以转化为点与圆、直线与圆的位置关系.(2)求距离的问题,通过设圆的参数方程,就转化为求三角函数的值域问题.判断正误(正确的打“√”,错误的打“×”)(1)参数方程⎩⎪⎨⎪⎧x =f (t ),y =g (t )中的x ,y 都是参数t 的函数.( )(2)过M 0(x 0,y 0),倾斜角为α⎝⎛⎭⎫α≠π2的直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).参数t 的几何意义表示:直线l 上以定点M 0为起点,任一点M (x ,y )为终点的有向线段M 0M 的数量.( )(3)方程⎩⎪⎨⎪⎧x =2cos θ,y =1+2sin θ(θ为参数)表示以点(0,1)为圆心,以2为半径的圆.( )(4)已知椭圆的参数方程⎩⎪⎨⎪⎧x =2cos t ,y =4sin t(t 为参数),点M 在椭圆上,对应参数t =π3,点O为原点,则直线OM 的斜率为 3.( )答案:(1)√ (2)√ (3)√ (4)×曲线⎩⎪⎨⎪⎧x =-1+cos θ,y =2+sin θ(θ为参数)的对称中心( )A .在直线y =2x 上B .在直线y =-2x 上C .在直线y =x -1上D .在直线y =x +1上解析:选B.由⎩⎪⎨⎪⎧x =-1+cos θ,y =2+sin θ,得⎩⎪⎨⎪⎧cos θ=x +1,sin θ=y -2.所以(x +1)2+(y -2)2=1.曲线是以(-1,2)为圆心,1为半径的圆,所以对称中心为(-1,2),在直线y =-2x 上.在平面直角坐标系xOy 中,若直线l :⎩⎪⎨⎪⎧x =t ,y =t -a (t 为参数)过椭圆C :⎩⎪⎨⎪⎧x =3cos φ,y =2sin φ(φ为参数)的右顶点,则常数a 的值为________.解析:直线l 的普通方程为x -y -a =0, 椭圆C 的普通方程为x 29+y 24=1,所以椭圆C 的右顶点坐标为(3,0),若直线l 过点(3,0), 则3-a =0, 所以a =3. 答案:3椭圆C 的参数方程为⎩⎪⎨⎪⎧x =5cos φ,y =3sin φ(φ为参数),过左焦点F 1的直线l 与C 相交于A ,B 两点,则|AB |min =________.解析:由⎩⎪⎨⎪⎧x =5cos φ,y =3sin φ(φ为参数)得,x 225+y 29=1,当AB ⊥x 轴时,|AB |有最小值. 所以|AB |min =2×95=185.答案:185如图,以过原点的直线的倾斜角θ为参数,则圆x 2+y 2-x =0的参数方程为________.解析:圆的半径为12,记圆心为C ⎝⎛⎭⎫12,0,连接CP ,则∠PCx =2θ,故x P =12+12cos 2θ=cos 2θ,y P =12sin 2θ=sin θcos θ(θ为参数).所以圆的参数方程为⎩⎪⎨⎪⎧x =cos 2θ,y =sin θcos θ(θ为参数).答案:⎩⎪⎨⎪⎧x =cos 2θ,y =sin θcos θ(θ为参数)参数方程与普通方程的互化(自主练透) 1.将下列参数方程化为普通方程.(1)⎩⎨⎧x =1t ,y =1t t 2-1(t 为参数);(2)⎩⎪⎨⎪⎧x =2+sin 2θ,y =-1+cos 2θ(θ为参数). 解:(1)由t 2-1≥0⇒t ≥1或t ≤-1⇒0<x ≤1或-1≤x <0.由⎩⎨⎧x =1t①,y =1tt 2-1②,①式代入②式得x 2+y 2=1.其中⎩⎨⎧0<x ≤1,0≤y <1或⎩⎪⎨⎪⎧-1≤x <0,-1<y ≤0.(2)由x =2+sin 2θ,0≤sin 2θ≤1 ⇒2≤2+sin 2θ≤3⇒2≤x ≤3,⎩⎪⎨⎪⎧x =2+sin 2θ,y =-1+cos 2θ⇒⎩⎪⎨⎪⎧x -2=sin 2θ,y =-1+1-2sin 2θ⇒⎩⎪⎨⎪⎧x -2=sin 2θy =-2sin 2θ⇒2x +y -4=0(2≤x ≤3).2.已知曲线C 1:⎩⎪⎨⎪⎧x =-4+cos t ,y =3+sin t (t 为参数),曲线C 2:⎩⎪⎨⎪⎧x =8cos θ,y =3sin θ(θ为参数).化C 1,C 2的方程为普通方程,并说明它们分别表示什么曲线.解:曲线C 1:(x +4)2+(y -3)2=1,曲线C 2:x 264+y 29=1,曲线C 1是以(-4,3)为圆心,1为半径的圆;曲线C 2是中心为坐标原点,焦点在x 轴上,长半轴长是8,短半轴长是3的椭圆.3.在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧x =-5+22t ,y =5+22t (t 为参数),以O为极点,x 轴的正半轴为极轴,取相同的单位长度建立极坐标系,曲线C 的极坐标方程为ρ=4cos θ.(1)求曲线C 的直角坐标方程及直线l 的普通方程;(2)将曲线C 上的所有点的横坐标缩短为原来的12,再将所得到的曲线向左平移1个单位长度,得到曲线C 1,求曲线C 1上的点到直线l 的距离的最小值.解:(1)曲线C 的直角坐标方程为x 2+y 2=4x ,即(x -2)2+y 2=4. 直线l 的普通方程为x -y +25=0.(2)将曲线C 上的所有点的横坐标缩短为原来的12,得(2x -2)2+y 2=4,即(x -1)2+y 24=1, 再将所得曲线向左平移1个单位长度, 得曲线C 1:x 2+y 24=1,则曲线C 1的参数方程为⎩⎪⎨⎪⎧x =cos θ,y =2sin θ(θ为参数).设曲线C 1上任一点P (cos θ,2sin θ), 则点P 到直线l 的距离 d =|cos θ-2sin θ+25|2=|25-5sin (θ+φ)|2≥102⎝⎛⎭⎫其中tan φ=-12, 所以点P 到直线l 的距离的最小值为102.将参数方程化为普通方程的方法(1)将参数方程化为普通方程,需要根据参数方程的结构特征,选取适当的消参方法.常见的消参方法有:代入消参法、加减消参法、平方消参法等.对于含三角函数的参数方程,常利用同角三角函数关系式消参,如sin 2θ+cos 2θ=1等.(2)将参数方程化为普通方程时,要注意两种方程的等价性,不要增解.参数方程的应用(师生共研)(2018·高考全国卷Ⅱ)在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θy =4sin θ(θ为参数),直线l 的参数方程为⎩⎪⎨⎪⎧x =1+t cos αy =2+t sin α(t 为参数).(1)求C 和l 的直角坐标方程;(2)若曲线C 截直线l 所得线段的中点坐标为(1,2),求l 的斜率. 【解】 (1)曲线C 的直角坐标方程为x 24+y 216=1.当cos α≠0时,l 的直角坐标方程为y =tan α·x +2-tan α, 当cos α=0时,l 的直角坐标方程为x =1.(2)将l 的参数方程代入C 的直角坐标方程,整理得关于t 的方程(1+3cos 2α)t 2+4(2cos α+sin α)t -8=0. ①因为曲线C 截直线l 所得线段的中点(1,2)在C 内, 所以①有两个解,设为t 1,t 2, 则t 1+t 2=0.又由①得t 1+t 2=-4(2cos α+sin α)1+3cos 2α,故2cos α+sin α=0,于是直线l 的斜率k =tan α=-2.(1)解决与圆、圆锥曲线的参数方程有关的综合问题时,要注意普通方程与参数方程的互化公式,主要是通过互化解决与圆、圆锥曲线上与动点有关的问题,如最值、范围等.(2)根据直线的参数方程的标准式中t 的几何意义,有如下常用结论:过定点M 0的直线与圆锥曲线相交,交点为M 1,M 2,所对应的参数分别为t 1,t 2. ①弦长l =|t 1-t 2|;②弦M 1M 2的中点⇒t 1+t 2=0;③|M 0M 1||M 0M 2|=|t 1t 2|.1.已知曲线C :x 24+y 29=1,直线l :⎩⎪⎨⎪⎧x =2+t ,y =2-2t (t 为参数).(1)写出曲线C 的参数方程,直线l 的普通方程;(2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求|P A |的最大值与最小值.解:(1)曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =3sin θ(θ为参数).直线l 的普通方程为2x +y -6=0.(2)曲线C 上任意一点P (2cos θ,3sin θ)到l 的距离为d =55|4cos θ+3sin θ-6|. 则|P A |=dsin 30°=255|5sin(θ+α)-6|,其中α为锐角,且tan α=43.当sin(θ+α)=-1时,|P A |取得最大值,最大值为2255.当sin(θ+α)=1时,|P A |取得最小值,最小值为255.2.在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =3cos θ,y =sin θ(θ为参数),直线l 的参数方程为⎩⎪⎨⎪⎧x =a +4t ,y =1-t (t 为参数).(1)若a =-1,求C 与l 的交点坐标; (2)若C 上的点到l 距离的最大值为17,求a . 解:(1)曲线C 的普通方程为x 29+y 2=1.当a =-1时,直线l 的普通方程为x +4y -3=0.由⎩⎪⎨⎪⎧x +4y -3=0,x 29+y 2=1解得⎩⎪⎨⎪⎧x =3,y =0或⎩⎨⎧x =-2125,y =2425.从而C 与l 的交点坐标为(3,0),⎝⎛⎭⎫-2125,2425. (2)直线l 的普通方程为x +4y -a -4=0,故C 上的点(3cos θ,sin θ)到l 的距离为d =|3cos θ+4sin θ-a -4|17.当a ≥-4时,d 的最大值为a +917.由题设得a +917=17,所以a =8;当a <-4时,d 的最大值为-a +117, 由题设得-a +117=17,所以a =-16.综上,a =8或a =-16.参数方程与极坐标方程的综合应用(师生共研)(2019·高考全国卷Ⅰ)在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =1-t 21+t 2,y =4t1+t2(t为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为2ρcos θ+3ρsin θ+11=0.(1)求C 和l 的直角坐标方程; (2)求C 上的点到l 距离的最小值. 【解】 (1)因为-1<1-t 21+t 2≤1,且x 2+⎝⎛⎭⎫y 22=⎝ ⎛⎭⎪⎫1-t 21+t 22+4t 2(1+t 2)2=1, 所以C 的直角坐标方程为x 2+y 24=1(x ≠-1).l 的直角坐标方程为2x +3y +11=0.(2)由(1)可设C 的参数方程为⎩⎪⎨⎪⎧x =cos α,y =2sin α(α为参数,-π<α<π).C 上的点到l 的距离为|2cos α+23sin α+11|7=4cos ⎝ ⎛⎭⎪⎫α-π3+117.当α=-2π3时,4cos ⎝ ⎛⎭⎪⎫α-π3+11取得最小值7,故C 上的点到l距离的最小值为7.(1)涉及参数方程和极坐标方程的综合题,求解的一般方法是分别化为普通方程和直角坐标方程后求解.当然,还要结合题目本身特点,确定选择何种方程.(2)数形结合的应用,即充分利用参数方程中参数的几何意义,或者利用ρ和θ的几何意义,直接求解,能达到化繁为简的解题目的.1.(2019·长沙模拟)平面直角坐标系xOy 中,直线l 的参数方程是⎩⎨⎧x =3+t cosπ4,y =t sin π4(t为参数),以x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程是ρ2cos 2θ4+ρ2sin 2θ=1.(1)求曲线C 的直角坐标方程;(2)求直线l 与曲线C 相交所得的弦AB 的长.解:(1)因为x =ρcos θ,y =ρsin θ,所以曲线C 的直角坐标方程是x 24+y 2=1.(2)将⎩⎪⎨⎪⎧x =3+t cos π4,y =t sin π4代入x 24+y 2=1得,52t 2+6t -1=0,Δ=(6)2-4×52×(-1)=16>0.设方程的两根是t 1,t 2,则t 1+t 2=-265,t 1t 2=-25,所以|AB |=|t 1-t 2|=(t 1+t 2)2-4t 1t 2=⎝⎛⎭⎫-2652-4×⎝⎛⎭⎫-25=6425=85.2.(2019·西安模拟)在平面直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =2t -1,y =-4t -2(t 为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=21-cos θ.(1)求曲线C 2的直角坐标方程;(2)设M 1是曲线C 1上的点,M 2是曲线C 2上的点,求|M 1M 2|的最小值. 解:(1)因为ρ=21-cos θ,所以ρ-ρcos θ=2, 即ρ=ρcos θ+2.因为x =ρcos θ,ρ2=x 2+y 2,所以x 2+y 2=(x +2)2,化简得y 2-4x -4=0. 所以曲线C 2的直角坐标方程为y 2-4x -4=0.(2)因为⎩⎪⎨⎪⎧x =2t -1,y =-4t -2,所以2x +y +4=0.所以曲线C 1的普通方程为2x +y +4=0.因为M 1是曲线C 1上的点,M 2是曲线C 2上的点,所以|M 1M 2|的最小值等于点M 2到直线2x +y +4=0的距离的最小值. 不妨设M 2(r 2-1,2r ),点M 2到直线2x +y +4=0的距离为d ,则d =2|r 2+r +1|5=2[(r +12)2+34]5≥325=3510,当且仅当r =-12时取等号.所以|M 1M 2|的最小值为3510.[基础题组练]1.在直角坐标系xOy 中,直线l 1的参数方程为⎩⎪⎨⎪⎧x =2+t ,y =kt (t 为参数),直线l 2的参数方程为⎩⎪⎨⎪⎧x =-2+m ,y =m k (m 为参数).设l 1与l 2的交点为P ,当k 变化时,P 的轨迹为曲线C .(1)写出C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设l 3:ρ(cos θ+sin θ)-2=0,M 为l 3与C 的交点,求M 的极径.解:(1)消去参数t 得l 1的普通方程l 1:y =k (x -2);消去参数m 得l 2的普通方程l 2:y =1k(x +2). 设P (x ,y ),由题设得⎩⎪⎨⎪⎧y =k (x -2),y =1k (x +2).消去k 得x 2-y 2=4(y ≠0).所以C 的普通方程为x 2-y 2=4(y ≠0).(2)C 的极坐标方程为ρ2(cos 2θ-sin 2θ)=4(0<θ<2π,θ≠π).联立⎩⎪⎨⎪⎧ρ2(cos 2θ-sin 2θ)=4,ρ(cos θ+sin θ)-2=0得cos θ-sin θ=2(cos θ+sin θ). 故tan θ=-13,从而cos 2θ=910,sin 2θ=110,代入ρ2(cos 2θ-sin 2θ)=4得ρ2=5,所以交点M 的极径为 5.2.(2018·高考全国卷Ⅲ)在平面直角坐标系xOy 中,⊙O 的参数方程为⎩⎪⎨⎪⎧x =cos θy =sin θ(θ为参数),过点(0,-2)且倾斜角为α的直线l 与⊙O 交于A ,B 两点.(1)求α的取值范围;(2)求AB 中点P 的轨迹的参数方程. 解:(1)⊙O 的直角坐标方程为x 2+y 2=1. 当α=π2时,l 与⊙O 交于两点.当α≠π2时,记tan α=k ,则l 的方程为y =kx - 2.l 与⊙O 交于两点当且仅当⎪⎪⎪⎪⎪⎪21+k 2<1,解得k <-1或k >1,即α∈⎝ ⎛⎭⎪⎫π4,π2或α∈⎝ ⎛⎭⎪⎫π2,3π4.综上,α的取值范围是⎝ ⎛⎭⎪⎫π4,3π4.(2)l 的参数方程为⎩⎪⎨⎪⎧x =t cos α,y =-2+t sin α(t 为参数,π4<α<3π4).设A ,B ,P 对应的参数分别为t A ,t B ,t P ,则t P =t A +t B2,且t A ,t B 满足t 2-22t sin α+1=0.于是t A +t B =22sin α,t P =2sin α.又点P 的坐标(x ,y )满足⎩⎪⎨⎪⎧x =t P cos α,y =-2+t P sin α,所以点P 的轨迹的参数方程是⎩⎨⎧x =22sin 2α,y =-22-22cos 2α(α为参数,π4<α<3π4). 3.在平面直角坐标系xOy 中,以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为ρ=22cos ⎝⎛⎭⎫π4-θ.(1)求曲线C 的直角坐标方程;(2)已知直线l 过点P (1,0)且与曲线C 交于A ,B 两点,若|P A |+|PB |=5,求直线l 的倾斜角α.解:(1)由ρ=22cos ⎝ ⎛⎭⎪⎫π4-θ=2(cos θ+sin θ)⇒ρ2=2(ρcos θ+ρsin θ)⇒x 2+y 2=2x +2y ⇒(x -1)2+(y -1)2=2.故曲线C 的直角坐标方程为(x -1)2+(y -1)2=2.(2)由条件可设直线l 的参数方程为⎩⎪⎨⎪⎧x =1+t cos α,y =t sin α(t 为参数),代入圆的方程,有t 2-2t sin α-1=0,设点A ,B 对应的参数分别为t 1,t 2,则t 1+t 2=2sin α,t 1t 2=-1,|P A |+|PB |=|AB |=|t 1-t 2|=(t 1+t 2)2-4t 1t 2=4sin 2α+4=5,解得sin α=12或sin α=-12(舍去),故α=π6或5π6.4.(2019·合肥质检)在直角坐标系中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =3cos α,y =2sin α(α为参数),以原点为极点,x 轴的正半轴为极轴,建立极坐标系,曲线D 的极坐标方程为ρ=4sin ⎝⎛⎭⎫θ-π6.(1)写出曲线C 的极坐标方程以及曲线D 的直角坐标方程;(2)若过点A ⎝⎛⎭⎫22,π4(极坐标)且倾斜角为π3的直线l 与曲线C 交于M ,N 两点,弦MN的中点为P ,求|AP ||AM |·|AN |的值.解:(1)由题意可得曲线C 的普通方程为x 29+y 24=1,将⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ代入曲线C 的普通方程可得,曲线C 的极坐标方程为ρ2cos 2θ9+ρ2sin 2θ4=1.因为曲线D 的极坐标方程为ρ=4sin ⎝ ⎛⎭⎪⎫θ-π6,所以ρ2=4ρsin ⎝ ⎛⎭⎪⎫θ-π6=4ρ⎝⎛⎭⎫32sin θ-12cos θ,又ρ2=x 2+y 2,x =ρcos θ,y =ρsin θ, 所以x 2+y 2=23y -2x , 所以曲线C 的极坐标方程为ρ2cos 2θ9+ρ2sin 2θ4=1;曲线D 的直角坐标方程为x 2+y 2+2x-23y =0.(2)点A ⎝⎛⎭⎪⎫22,π4,则⎩⎪⎨⎪⎧x =22cos π4=2,y =22sin π4=2,所以A (2,2).因为直线l 过点A (2,2)且倾斜角为π3,所以直线l 的参数方程为⎩⎪⎨⎪⎧x =2+t cos π3,y =2+t sin π3(t 为参数),代入x 29+y 24=1可得,314t 2+(8+183)t +16=0,设M ,N 对应的参数分别为t 1,t 2,由一元二次方程根与系数的关系得,t 1+t 2=-32+72331,t 1t 2=6431,所以|AP ||AM |·|AN |=⎪⎪⎪⎪⎪⎪t 1+t 22|t 1t 2|=4+9316.[综合题组练]1.(2019·沈阳模拟)在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧x =2+12t ,y =2+32t(t 为参数).在以坐标原点O 为极点,x 轴的正半轴为极轴的极坐标系中,曲线C 的极坐标方程为ρsin 2θ+4sin θ=ρ.(1)写出直线l 的普通方程和曲线C 的直角坐标方程;(2)已知点M 在直角坐标系中的坐标为(2,2),若直线l 与曲线C 相交于不同的两点A ,B ,求|MA |·|MB |的值.解:(1)由⎩⎨⎧x =2+12t ,y =2+32t消去参数t 可得y =3(x -2)+2,所以直线l 的普通方程为3x -y +2-23=0. 因为ρsin 2θ+4sin θ=ρ,所以ρ2sin 2θ+4ρsin θ=ρ2. 因为ρsin θ=y ,ρ2=x 2+y 2, 所以曲线C 的直角坐标方程为x 2=4y .(2)将⎩⎨⎧x =2+12t ,y =2+32t代入抛物线方程x 2=4y 中,可得(2+12t )2=4(2+32t ),即t 2+(8-83)t-16=0.因为Δ>0,且点M 在直线l 上,所以此方程的两个实数根为直线l 与曲线C 的交点A ,B 对应的参数t 1,t 2,所以t 1t 2=-16,所以|MA |·|MB |=|t 1t 2|=16.2.在直角坐标系xOy 中,以O 为极点,x 轴的非负半轴为极轴建立极坐标系,已知曲线C :ρsin 2θ=2a cos θ(a >0),直线l :⎩⎨⎧x =-2+22t ,y =22t(t 为参数).(1)求曲线C 的直角坐标方程,直线l 的普通方程;(2)设直线l 与曲线C 交于M ,N 两点,点P (-2,0),若|PM |,|MN |,|PN |成等比数列,求实数a 的值.解:(1)由ρsin 2θ=2a cos θ(a >0)两边同乘以ρ得,曲线C :y 2=2ax ,由直线l :⎩⎨⎧x =-2+22t ,y =22t(t 为参数),消去t ,得直线l :x -y +2=0. (2)将⎩⎨⎧x =-2+22t ,y =22t代入y 2=2ax 得,t 2-22at +8a =0,由Δ>0得a >4,设M ⎝⎛⎭⎫-2+22t 1,22t 1,N (-2+22t 2,22t 2),则t 1+t 2=22a ,t 1t 2=8a ,因为|PM |,|MN |,|PN |成等比数列,所以|t 1-t 2|2=|t 1t 2|,所以(22a )2-4×8a =8a ,所以a =5.3.(综合型)在平面直角坐标系xOy 中,圆C 的参数方程为⎩⎨⎧x =-5+2cos ty =3+2sin t(t 为参数),在以原点O 为极点,x 轴的非负半轴为极轴建立的极坐标系中,直线l 的极坐标方程为ρcos(θ+π4)=- 2. (1)求圆C 的普通方程和直线l 的直角坐标方程;(2)设直线l 与x 轴,y 轴分别交于A ,B 两点,点P 是圆C 上任意一点,求A ,B 两点的极坐标和△P AB 面积的最小值.解:(1)由⎩⎪⎨⎪⎧x =-5+2cos ty =3+2sin t ,消去参数t ,得(x +5)2+(y -3)2=2,所以圆C 的普通方程为(x +5)2+(y -3)2=2. 由ρcos (θ+π4)=-2,得ρcos θ-ρsin θ=-2,所以直线l 的直角坐标方程为x -y +2=0.(2)直线l 与x 轴,y 轴的交点分别为A (-2,0),B (0,2),化为极坐标为A (2,π),B ⎝ ⎛⎭⎪⎫2,π2,设点P 的坐标为(-5+2cos t ,3+2sin t ),则点P 到直线l 的距离为d =|-5+2cos t -3-2sin t +2|2=|-6+2cos (t +π4)|2.所以d min =42=22,又|AB |=2 2. 所以△P AB 面积的最小值是S =12×22×22=4.。
2.圆的参数方程圆的参数方程(1)在t 时刻,圆周上某点M 转过的角度是θ,点M 的坐标是(x ,y ),那么θ=ωt (ω为角速度).设|OM |=r ,那么由三角函数定义,有cos ωt =xr ,sin ωt =y r,即圆心在原点O ,半径为r 的圆的参数方程为⎩⎪⎨⎪⎧x =r cos ωt ,y =r sin ωt(t 为参数).其中参数t 的物理意义是:质点做匀速圆周运动的时刻.(2)若取θ为参数,因为θ=ωt ,于是圆心在原点O ,半径为r 的圆的参数方程为⎩⎪⎨⎪⎧x =r cos θ,y =r sin θ(θ为参数).其中参数θ的几何意义是:OM 0(M 0为t =0时的位置)绕点O 逆时针旋转到OM 的位置时,OM 0转过的角度.(3)若圆心在点M 0(x 0,y 0),半径为R ,则圆的参数方程为⎩⎪⎨⎪⎧x =x 0+R cos θ,y =y 0+R sin θ(0≤θ<2π).圆(数方程.根据圆的特点,结合参数方程概念求解. 如图所示,设圆心为O ′,连接O ′M , ∵O ′为圆心, ∴∠MO ′x =2φ.∴⎩⎪⎨⎪⎧x =r +r cos 2φ,y =r sin 2φ.(φ为参数)(1)确定圆的参数方程,必须根据题目所给条件,否则,就会出现错误,如本题容易把参数方程写成⎩⎪⎨⎪⎧x =r +r cos φ,y =r sin φ.(φ为参数)(2)由于选取的参数不同,圆有不同的参数方程.1.已知圆的方程为x 2+y 2=2x ,写出它的参数方程. 解:x 2+y 2=2x 的标准方程为(x -1)2+y 2=1, 设x -1=cos θ,y =sin θ,则参数方程为⎩⎪⎨⎪⎧x =1+cos θ,y =sin θ(θ为参数,0≤θ<2π).2.已知点P (2,0),点Q 是圆⎩⎪⎨⎪⎧x =cos θ,y =sin θ上一动点,求PQ 中点的轨迹方程,并说明轨迹是什么曲线.解:设中点M (x ,y ).则 ⎩⎪⎨⎪⎧x =2+cos θ2,y =0+sin θ2,即⎩⎪⎨⎪⎧x =1+12cos θ,y =12sin θ(θ为参数).这就是所求的轨迹方程.它是以(1,0)为圆心,以12为半径的圆.若 (x -1)2+(y +2)2=4表示圆,可考虑利用圆的参数方程将求2x +y 的最值转化为求三角函数最值问题.令x -1=2cos θ,y +2=2sin θ,则有x =2cos θ+1,y =2sin θ-2,故2x +y =4cos θ+2+2sin θ-2. =4cos θ+2sin θ=25sin(θ+φ). ∴-25≤2x +y ≤2 5.即2x +y 的最大值为25,最小值为-2 5.圆的参数方程突出了工具性作用,应用时,把圆上的点的坐标设为参数方程形式,将问题转化为三角函数问题,利用三角函数知识解决问题.3.求原点到曲线C :⎩⎪⎨⎪⎧x =3+2sin θ,y =-2+2cos θ(θ为参数)的最短距离.解:原点到曲线C 的距离为:x -0 2+ y -0 2= 3+2sin θ 2+ -2+2cos θ 2=17+4 3s in θ-2cos θ =17+413⎝⎛⎭⎪⎫313sin θ-213cos θ= 17+413sin θ+φ≥17-413= 13-2 2=13-2. ∴原点到曲线C 的最短距离为13-2.4.已知圆C :⎩⎪⎨⎪⎧ x =cos θ,y =-1+sin θ(θ为参数)与直线x +y +a =0有公共点,求实数a的取值范围.解:法一:∵⎩⎪⎨⎪⎧x =cos θ,y =-1+sin θ消去θ,得x 2+(y +1)2=1,∴圆C 的圆心为(0,-1),半径为1. ∴圆心到直线的距离d =|0-1+a |2≤1.解得1-2≤a ≤1+2,即a 的取值范围是. 法二:将圆C 的方程代入直线方程,得 cos θ-1+sin θ+a =0,即a =1-(sin θ+cos θ)=1-2sin ⎝ ⎛⎭⎪⎫θ+π4. ∵-1≤sin ⎝⎛⎭⎪⎫θ+π4≤1,∴1-2≤a ≤1+2,即a 的取值范围是.课时跟踪检测(八)一、选择题1.圆的参数方程为:⎩⎪⎨⎪⎧x =2+2cos θ,y =2sin θ(θ为参数).则圆的圆心坐标为( )A .(0,2)B .(0,-2)C .(-2,0)D .(2,0) 解析:选D 将⎩⎪⎨⎪⎧x =2+2cos θ,y =2sin θ化为(x -2)2+y 2=4,其圆心坐标为(2,0).2.直线:x +y =1与曲线⎩⎪⎨⎪⎧x =2cos θ,y =2sin θ(θ为参数)的公共点有( )A .0个B .1个C .2个D .3个解析:选C 将⎩⎪⎨⎪⎧x =2cos θ,y =2sin θ化为x 2+y 2=4,它表示以(0,0)为圆心,2为半径的圆,由于12=22<2=r , 故直线与圆相交,有两个公共点.3.直线:3x -4y -9=0与圆:⎩⎪⎨⎪⎧x =2cos θ,y =2sin θ(θ为参数)的位置关系是( )A .相切B .相离C .直线过圆心D .相交但直线不过圆心 解析:选D 圆心坐标为(0,0),半径为2,显然直线不过圆心, 又圆心到直线距离d =95<2,故选D.4.P (x ,y )是曲线⎩⎪⎨⎪⎧x =2+cos α,y =sin α(α为参数)上任意一点,则(x -5)2+(y +4)2的最大值为( )A .36B .6C .26D .25解析:选A 设P (2+cos α,sin α),代入,得 (2+cos α-5)2+(sin α+4)2=25+sin 2α+cos 2α-6cos α+8sin α =26+10sin(α-φ). ∴最大值为36. 二、填空题5.参数方程⎩⎪⎨⎪⎧x =3cos φ+4sin φ,y =4cos φ-3sin φ(φ为参数)表示的图形是________.解析:x 2+y 2=(3cos φ+4sin φ)2+(4cos φ-3sin φ)2=25.∴表示圆. 答案:圆6.已知圆C的参数方程为⎩⎪⎨⎪⎧x =cos α,y =1+sin α(α为参数),以原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为ρcos θ=1,则直线l 与圆C 的交点的直角坐标为________.解析:由极坐标系与直角坐标系互化关系可知,直线l 的直角坐标方程为x =1. 由圆C 的参数方程可得x 2+(y -1)2=1, 由⎩⎪⎨⎪⎧x =1,x 2+ y -1 2=1得直线l 与圆C 的交点坐标为(1,1). 答案:(1,1)7.(广东高考)已知曲线C 的极坐标方程为 ρ=2cos θ.以极点为原点,极轴为x 轴的正半轴建立直角坐标系,则曲线C 的参数方程为________.解析:由极坐标方程与直角坐标方程互化公式可得,曲线C 的直角坐标方程为(x -1)2+y 2=1,故曲线C 对应的参数方程可写为⎩⎪⎨⎪⎧x =1+cos θ,y =sin θ(θ为参数).答案:⎩⎪⎨⎪⎧x =1+cos θ,y =sin θ(θ为参数)三、解答题8.P 是以原点为圆心,半径r =2的圆上的任意一点,Q (6,0),M 是PQ 中点. (1)画图并写出⊙O 的参数方程;(2)当点P 在圆上运动时,求点M 的轨迹的参数方程.解:(1)如图所示,⊙O 的参数方程⎩⎪⎨⎪⎧x =2cos θ,y =2sin θ(θ为参数).(2)设M (x ,y ),P (2cos θ,2sin θ), ∵Q (6,0),∴M 的参数方程为⎩⎪⎨⎪⎧x =6+2cos θ2,y =2sin θ2,即⎩⎪⎨⎪⎧x =3+cos θ,y =sin θ(θ为参数).9.设点M (x ,y )在圆x 2+y 2=1上移动,求点Q (x (x +y ),y (x +y ))的轨迹. 解:设M (cos θ,sin θ)(0≤θ<2π),点Q (x 1,y 1),则⎩⎪⎨⎪⎧x 1=cos θ cos θ+sin θ =cos 2θ+cos θsin θ,y 1=sin θ cos θ+sin θ =sin θcos θ+sin 2θ,∴⎩⎪⎨⎪⎧x 1+y 1=1+sin 2θ,x 1y 1=12sin 2θ+12sin 22θ.将sin 2θ=x 1+y 1-1代入另一个方程, 整理,得⎝⎛⎭⎪⎫x 1-122+⎝ ⎛⎭⎪⎫y 1-122=12.∴所求轨迹是以⎝ ⎛⎭⎪⎫12,12为圆心,以22为半径的圆.10.已知直线C 1:⎩⎪⎨⎪⎧x =1+t cos α,y =t sin α(t 为参数),圆C 2:⎩⎪⎨⎪⎧x =cos θ,y =sin θ(θ为参数).(1)当α=π3时,求C 1与C 2的交点坐标;(2)过坐标原点O 作C 1的垂线,垂足为A ,P 为OA 的中点.当α变化时,求P 点轨迹的参数方程,并指出它是什么曲线.解:(1)当α=π3时,C 1的普通方程为y =3(x -1),C 2的普通方程为x 2+y 2=1.联立方程组⎩⎨⎧y =3 x -1 ,x 2+y 2=1,解得C 1与C 2的交点坐标为(1,0),⎝ ⎛⎭⎪⎫12,-32.(2)C 1的普通方程为x sin α-y cos α-sin α=0.A 点坐标为(sin 2α,-cos αsin α),故当α变化时,P 点轨迹的参数方程为⎩⎪⎨⎪⎧x =12sin 2α,y =-12sin αcos α(α为参数).P 点轨迹的普通方程为⎝⎛⎭⎪⎫x -142+y 2=116.故P 点轨迹是圆心为⎝⎛⎭⎪⎫14,0,半径为14的圆.。
课题:参数方程的概念知识与能力:1、弄清曲线参数方程的概念2、能选取适当的参数,求简单曲线的参数方程过程与方法:会解决简单证明问题培养学生的逻辑推理能力和思维能力情感、态度、价值观:通过学生的参与过程,培养他们手脑并用、多思勤练的良好学习习惯和勇于探索、锲而不舍的治学精神.教学重点:曲线参数方程的定义及方法教学难点:曲线参数方程的定义及方法教学流程与教学内容:一、新课引入:设炝弹发射角为α,发射初速度为o v ,怎样求弹道曲线的方程(空气阻力不计)?二、讲授新课:1、参数方程的定义:一般地,在取定的坐标中,如果曲线C 上任一点P 的坐标x 和y 都可以表示为某个变量t 的函数:⎩⎨⎧==)()(t g y t f x 反过来,对于t 的每个允许值,由函数式:⎩⎨⎧==)()(t g y t f x 所确定的点),(y x P 都在曲线C 上,那么方程⎩⎨⎧==)()(t g y t f x 叫做曲线C 的参数方程,变量t 是参变数,简称参数.2、关于参数几点说明:(1) 参数方程中参数可以是有物理意义,几何意义,也可以没有明显意义.(2) 同一曲线选取的参数不同,曲线的参数方程形式也不一样.(3) 在实际问题中要确定参数的取值范围.3、参数方程的意义:参数方程是曲线点的位置的另一种表示形式,它借助于中间变量把曲线上的动点的两个坐标间接地联系起来,参数方程与变通方程同等地描述,了解曲线,参数方程实际上是一个方程组,其中x ,y 分别为曲线上点M 的横坐标和纵坐标.4、参数方程求法(1)建立直角坐标系,设曲线上任一点P 坐标为),(y x(2)选取适当的参数(3)根据已知条件和图形的几何性质,物理意义,建立点P 坐标与参数的函数式(4)证明这个参数方程就是所由于的曲线的方程5、关于参数方程中参数的选取选取参数的原则是曲线上任一点坐标当参数的关系比较明显关系相对简单. 与运动有关的问题选取时间t 做参数与旋转的有关问题选取角θ做参数或选取有向线段的数量、长度、直线的倾斜斜角、斜率等.二、 典型例题: (学生尝试先做,A 层帮助C 层理解)例1.设炮弹发射角为α,发射速度为0v ,(1)求子弹弹道典线的参数方程(不计空气阻力)(2)若s m V o /100=,6πα=,当炮弹发出2秒时, ① 求炮弹高度② 求出炮弹的射程例2. 课本上22页 例1三、课后作业。
第二讲 参数方程一、曲线的参数方程第2课时 圆的参数方程A 级 基础巩固一、选择题1.已知圆P :⎩⎪⎨⎪⎧x =1+10cos θ,y =-3+10sin θ(θ为参数),则圆心P 及半径r 分别是( )A .P (1,3),r =10B .P (1,3),r =10C .P (1,-3),r =10D .P (1,-3),r =102.圆x 2+(y +1)2=2的参数方程为( )A.⎩⎪⎨⎪⎧x =2cos θ,y =1+2sin θ(θ为参数) B.⎩⎪⎨⎪⎧x =2cos θ,y =1+2sin θ(θ为参数) C.⎩⎪⎨⎪⎧x =2cos θ,y =-1+2sin θ(θ为参数) D.⎩⎪⎨⎪⎧x =2cos θ,y =-1+2sin θ(θ为参数) 3.已知圆O 的参数方程是⎩⎪⎨⎪⎧x =2+4cos θ,y =-3+4sin θ(0≤θ<2π),圆上点A 的坐标是(4,-33),则参数θ=( )A.7π6B.4π3C.11π6D.5π34.若x ,y 满足x 2+y 2=1,则x +3y 的最大值为( )A .1B .2C .3D .45.直线:3x -4y -9=0与圆:⎩⎪⎨⎪⎧x =2cos θ,y =2sin θ(θ为参数)的位置关系是( )A .相切B .相离C .直线过圆心D .相交但直线不过圆心二、填空题6.设y =tx (t 为参数),则圆x 2+y 2-4y =0的参数方程是________.7.已知曲线方程⎩⎪⎨⎪⎧x =1+cos θ,y =sin θ(θ为参数),则该曲线上的点与定点(-1,-2)的距离的最小值为________.8.曲线C :⎩⎪⎨⎪⎧x =cos θ,y =-1+sin θ(θ为参数)的普通方程为__________.如果曲线C 与直线x +y +a =0有公共点,那么a 的取值范围是________.三、解答题9.已知P (x ,y )是圆x 2+y 2-2y =0上的动点.(1)求2x +y 的取值范围;(2)若x +y +c ≥0恒成立,求实数c 的取值范围.10.在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为ρ=2cos θ,θ∈⎣⎢⎡⎦⎥⎤0,π2. (1)求C 的参数方程;(2)设点D 在C 上,C 在D 处的切线与直线l :y =3x +2垂直,根据(1)中你得到的参数方程,确定D 的坐标.B 级 能力提升1.P (x ,y )是曲线⎩⎪⎨⎪⎧x =2+cos α,y =sin α(α为参数)上任意一点,则(x -5)2+(y +4)2的最大值为( )A .36B .6C .26D .252.已知圆C :⎩⎪⎨⎪⎧x =-3+2sin θ,y =2cos θ(θ∈[0,2π),θ为参数)与x 轴交于A ,B 两点,则|AB |=________.3.已知曲线C 的极坐标方程为ρ=2cos θ.以极点为原点,极轴为x 轴的正半轴建立直角坐标系,则曲线C 的参数方程为________.。
2.圆的参数方程圆的参数方程(1)在t 时刻,圆周上某点M 转过的角度是θ,点M 的坐标是(x ,y ),那么θ=ωt (ω为角速度).设|OM |=r ,那么由三角函数定义,有cos ωt =xr ,sin ωt =y r,即圆心在原点O ,半径为r 的圆的参数方程为⎩⎪⎨⎪⎧x =r cos ωt ,y =r sin ωt(t 为参数).其中参数t 的物理意义是:质点做匀速圆周运动的时刻.(2)若取θ为参数,因为θ=ωt ,于是圆心在原点O ,半径为r 的圆的参数方程为⎩⎪⎨⎪⎧x =r cos θ,y =r sin θ(θ为参数).其中参数θ的几何意义是:OM 0(M 0为t =0时的位置)绕点O 逆时针旋转到OM 的位置时,OM 0转过的角度.(3)若圆心在点M 0(x 0,y 0),半径为R ,则圆的参数方程为⎩⎪⎨⎪⎧x =x 0+R cos θy =y 0+R sin θ(0≤θ<2π).[例1] (1)在y 轴左侧的半圆(不包括y 轴上的点); (2)在第四象限的圆弧.[解] (1)由题意,圆心在原点,半径为r的圆的参数方程为⎩⎪⎨⎪⎧x =r cos θ,y =r sin θ(θ∈[0,2π)),在y 轴左侧半圆上点的横坐标小于零,即x =r cos θ<0,所以有π2<θ<3π2,故其参数方程为⎩⎪⎨⎪⎧x =r cos θ,y =r sin θ⎝ ⎛⎭⎪⎫θ∈⎝ ⎛⎭⎪⎫π2,3π2.(2)由题意,得⎩⎪⎨⎪⎧x =r cos θ>0,y =r sin θ<0,解得3π2<θ<2π.故在第四象限的圆弧的参数方程为⎩⎪⎨⎪⎧x =r cos θ,y =r sin θ⎝ ⎛⎭⎪⎫θ∈⎝ ⎛⎭⎪⎫3π2,2π.(1)确定圆的参数方程,必须仔细阅读题目所给条件,否则,就会出现错误,如本题易忽视θ的范围而致误.(2)由于选取的参数不同,圆有不同的参数方程.1.已知圆的方程为x 2+y 2=2x ,写出它的参数方程. 解:x 2+y 2=2x 的标准方程为(x -1)2+y 2=1, 设x -1=cos θ,y =sin θ,则参数方程为⎩⎪⎨⎪⎧x =1+cos θ,y =sin θ(0≤θ<2π).2.已知点P (2,0),点Q 是圆⎩⎪⎨⎪⎧x =cos θ,y =sin θ上一动点,求PQ 中点的轨迹方程,并说明轨迹是什么曲线.解:设中点M (x ,y ).则⎩⎪⎨⎪⎧x =2+cos θ2,y =0+sin θ2,即⎩⎪⎨⎪⎧x =1+12cos θ,y =12sin θ,(θ为参数)这就是所求的轨迹方程.它是以(1,0)为圆心,12为半径的圆.[例2] 若x ,[思路点拨] (x -1)2+(y +2)2=4表示圆,可考虑利用圆的参数方程将求2x +y 的最值转化为求三角函数最值问题.[解] 令x -1=2cos θ,y +2=2sin θ, 则有x =2cos θ+1,y =2sin θ-2,故2x +y =4cos θ+2+2sin θ-2=4cos θ+2sin θ=25sin(θ+φ), ∴-25≤2x +y ≤25,即2x +y 的最大值为25,最小值为-2 5.圆的参数方程突出了工具性作用,应用时,把圆上的点的坐标设为参数方程形式,将问题转化为三角函数问题,利用三角函数知识解决问题.3.已知圆C ⎩⎪⎨⎪⎧x =cos θ,y =-1+sin θ与直线x +y +a =0有公共点,求实数a 的取值范围.解:将圆C 的方程代入直线方程,得 cos θ-1+sin θ+a =0,即a =1-(sin θ+cos θ)=1-2sin ⎝ ⎛⎭⎪⎫θ+π4.∵-1≤sin ⎝ ⎛⎭⎪⎫θ+π4≤1,∴1-2≤a ≤1+ 2.故实数a 的取值范围为[1-2,1+2].一、选择题1.已知圆的参数方程为⎩⎪⎨⎪⎧x =2+2cos θ,y =2sin θ(θ为参数),则圆的圆心坐标为( )A .(0,2)B .(0,-2)C .(-2,0)D .(2,0)解析:选D 将⎩⎪⎨⎪⎧x =2+2cos θ,y =2sin θ化为(x -2)2+y 2=4,其圆心坐标为(2,0).2.已知圆的参数方程为⎩⎨⎧x =-1+2cos θ,y =2sin θ(θ为参数),则圆心到直线y =x +3的距离为( )A .1 B. 2 C .2D .2 2解析:选B 圆的参数方程⎩⎨⎧x =-1+2cos θ,y =2sin θ(θ为参数)化成普通方程为(x +1)2+y 2=2,圆心(-1,0)到直线y =x +3的距离d =|-1+3|2=2,故选B. 3.若直线y =ax +b 经过第二、三、四象限,则圆⎩⎪⎨⎪⎧x =a +r cos θ,y =b +r sin θ(θ为参数)的圆心在( )A .第四象限B .第三象限C .第二象限D .第一象限解析:选B 根据题意,若直线y =ax +b 经过第二、三、四象限,则有a <0,b <0.圆的参数方程为⎩⎪⎨⎪⎧x =a +r cos θ,y =b +r sin θ(θ为参数),圆心坐标为(a ,b ),又由a <0,b <0,得该圆的圆心在第三象限,故选B.4.P (x ,y )是曲线⎩⎪⎨⎪⎧x =2+cos α,y =sin α(α为参数)上任意一点,则(x -5)2+(y +4)2的最大值为( )A .36B .6C .26D .25解析:选A 设P (2+cos α,sin α),代入得, (2+cos α-5)2+(sin α+4)2=25+sin 2α+cos 2α-6cos α+8sin α=26+10sin(α-φ)⎝ ⎛⎭⎪⎫其中tan φ=34,所以其最大值为36.二、填空题5.x =1与圆x 2+y 2=4的交点坐标是________. 解析:圆x 2+y 2=4的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =2sin θ(θ为参数)令2cos θ=1,得cos θ=12,∴sin θ=±32.∴交点坐标为(1,3)和(1,-3). 答案:(1,3),(1,-3)6.曲线⎩⎪⎨⎪⎧x =cos θ,y =1+sin θ(θ为参数)与直线x +y -1=0相交于A ,B 两点,则|AB |=________.解析:根据题意,曲线⎩⎪⎨⎪⎧x =cos θ,y =1+sin θ(θ为参数)的普通方程为x 2+(y -1)2=1,表示圆心坐标为(0,1),半径r =1的圆,而直线的方程为x +y -1=0,易知圆心在直线上, 则AB 为圆的直径,故|AB |=2r =2. 答案:27.在平面直角坐标系中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系.已知直线l 的极坐标方程为ρsin ⎝ ⎛⎭⎪⎫θ+π6=1,圆C 的参数方程为⎩⎨⎧x =2+2cos θ,y =-3+2sin θ(θ为参数),则直线l 与圆C 相交所得的弦长为________.解析:直线l 的极坐标方程为ρsin ⎝ ⎛⎭⎪⎫θ+π6=1, 展开可得32ρsin θ+12ρcos θ=1,化为直角坐标方程为x +3y -2=0,圆C 的参数方程⎩⎨⎧x =2+2cos θ,y =-3+2sin θ(θ为参数)化为普通方程为(x -2)2+(y +3)2=4,可得圆心坐标为(2,-3),半径r =2. 圆心C 到直线l 的距离d =|2-3-2|12+(3)2=32. ∴直线l 与圆C 相交所得弦长=2r 2-d 2=2 4-⎝ ⎛⎭⎪⎫322=7.答案:7 三、解答题8.将参数方程⎩⎪⎨⎪⎧x =1+4cos t ,y =-2+4sin t (t 为参数,0≤t ≤π)化为普通方程,并说明方程表示的曲线.解:因为0≤t ≤π,所以-3≤x ≤5,-2≤y ≤2.因为⎩⎪⎨⎪⎧x =1+4cos t ,y =-2+4sin t ,所以(x -1)2+(y +2)2=16cos 2t +16sin 2t =16,所以曲线的普通方程为(x -1)2+(y +2)2=16(-3≤x ≤5,-2≤y ≤2).它表示的曲线是以点(1,-2)为圆心,4为半径的上半圆.9.在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为ρ=2cos θ,θ∈⎣⎢⎡⎦⎥⎤0,π2.(1)求C 的参数方程;(2)设点D 在C 上,C 在D 处的切线与直线l :y =3x +2垂直,根据(1)中你得到的参数方程,确定D 的坐标.解:(1)C 的普通方程为(x -1)2+y 2=1(0≤y ≤1).可得C 的参数方程为⎩⎪⎨⎪⎧x =1+cos t ,y =sin t (t 为参数,0≤t ≤π).(2)设D (1+cos t ,sin t ).由(1)知C 是以G (1,0)为圆心,1为半径的上半圆.因为C 在点D 处的切线与l 垂直,所以直线GD 与l 的斜率相同,tan t =3,t =π3.故D 的直角坐标为⎝ ⎛⎭⎪⎫1+cos π3,sin π3,即⎝ ⎛⎭⎪⎫32,32.10.在极坐标系中,已知三点O (0,0),A ⎝ ⎛⎭⎪⎫2,π2,B ⎝ ⎛⎭⎪⎫22,π4.(1)求经过点O ,A ,B 的圆C 1的极坐标方程;(2)以极点为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系,圆C 2的参数方程为⎩⎪⎨⎪⎧x =-1+a cos θ,y =-1+a sin θ(θ是参数),若圆C 1与圆C 2外切,求实数a 的值.解:(1)O (0,0),A ⎝ ⎛⎭⎪⎫2,π2,B ⎝ ⎛⎭⎪⎫22,π4对应的直角坐标分别为O (0,0),A (0,2),B (2,2),则过点O ,A ,B 的圆的普通方程为x 2+y 2-2x -2y =0,将⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ代入可求得经过点O ,A ,B 的圆C 1的极坐标方程为ρ=22cos ⎝⎛⎭⎪⎫θ-π4.(2)圆C 2:⎩⎪⎨⎪⎧x =-1+a cos θ,y =-1+a sin θ(θ是参数)对应的普通方程为(x +1)2+(y +1)2=a 2,圆心为(-1,-1),半径为|a |,由(1)知圆C 1的圆心为(1,1),半径为2,所以当圆C 1与圆C 2外切时,有2+|a |=(-1-1)2+(-1-1)2,解得a =± 2.。