2018高考北师版(文科)数学一轮复习讲义:第5章 第2节 等差数列
- 格式:doc
- 大小:276.00 KB
- 文档页数:9
2018高考数学一轮复习第5章数列第2节等差数列课时分层训练文北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018高考数学一轮复习第5章数列第2节等差数列课时分层训练文北师大版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018高考数学一轮复习第5章数列第2节等差数列课时分层训练文北师大版的全部内容。
课时分层训练(二十八) 等差数列A组基础达标(建议用时:30分钟)一、选择题1.在等差数列{a n}中,a1=0,公差d≠0,若a m=a1+a2+…+a9,则m的值为()A.37 B.36C.20 D.19A[a m=a1+a2+…+a9=9a1+9×82d=36d=a37。
]2.(2017·深圳二次调研)在等差数列{a n}中,若前10项的和S10=60,且a7=7,则a4=( )A.4 B.-4C.5 D.-5C[法一:由题意得错误!解得错误!∴a4=a1+3d=5。
法二:由等差数列的性质有a1+a10=a7+a4,∵S10=错误!=60,∴a1+a10=12.又∵a7=7,∴a4=5.]3.(2017·福州质检)已知数列{a n}是等差数列,且a7-2a4=6,a3=2,则公差d=( )【导学号:66482245】A.2错误!B.4C.8 D.16B[法一:由题意得a3=2,a7-2a4=a3+4d-2(a3+d)=6,解得d=4,故选B.法二:由题意得错误!解得错误!故选B.]4.等差数列{a n}中,已知a5>0,a4+a7<0,则{a n}的前n项和S n的最大值为()【导学号:66482246】A.S7B.S6C.S5D.S4C[∵错误!∴错误!∴S n的最大值为S5.]5.(2017·湖北七市4月联考)在我国古代著名的数学专著《九章算术》里有一段叙述:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增十三里;驽马初日行九十七里,日减半里;良马先至齐,复还迎驽马,二马相逢,问:几日相逢?( ) A.9日B.8日C.16日D.12日A[根据题意,显然良马每日行程构成一个首项a1=103,公差d1=13的等差数列,前n 天共跑的里程为S=na1+错误!d1=103n+错误!n(n-1)=6.5n2+96.5n;驽马每日行程也构成一个首项b1=97,公差d2=-0.5的等差数列,前n天共跑的里程为S=nb1+错误!d2=97n-错误! n(n-1)=-0.25n2+97.25n。
第二节 等差数列及其前n 项和[考纲传真] 1.理解等差数列的概念.2.掌握等差数列的通项公式与前n 项和公式.3.能在具体的问题情境中识别数列的等差关系,并能用等差数列的有关知识解决相应的问题.4.了解等差数列与一次函数的关系.1.等差数列(1)定义:如果一个数列从第2项起,每一项与前一项的差都等于同一个常数,那么这个数列就叫作等差数列.用符号表示为a n +1-a n =d (n∈N +,d 为常数).(2)等差中项:如果在a 与b 中间插入一个数A ,使a ,A ,b 成等差数列,那么A 叫作a 与b 的等差中项,即A =a +b2.(3)等差数列的通项公式:a n =a 1+(n -1)d ,可推广为a n =a m +(n -m ) d . (4)等差数列的前n 项和公式:S n =n a 1+a n2=na 1+n n -12d .2.等差数列的通项公式及前n 项和公式与函数的关系(1)a n =a 1+(n -1)d 可化为a n =dn +a 1-d 的形式.当d ≠0时,a n 是关于n 的一次函数;当d >0时,数列为递增数列;当d <0时,数列为递减数列.(2)数列{a n }是等差数列,且公差不为0⇔S n =An 2+Bn (A ,B 为常数). [常用结论] 等差数列的性质(1)项的性质:①在等差数列{a n }中,a m -a n =(m -n )d ⇔a m -a nm -n=d (m ≠n ),其几何意义是点(n ,a n ),(m ,a m )所在直线的斜率等于等差数列的公差.②若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N +),则a k +a l =a m +a n . (2)和的性质:在等差数列{a n }中,S n 为其前n 项和,则 ①S 2n =n (a 1+a 2n )=…=n (a n +a n +1). ②S 2n -1=(2n -1)a n .[基础自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)若一个数列从第2项起每一项与它的前一项的差都是常数,则这个数列是等差数列.( )(2)数列{a n }为等差数列的充要条件是对任意n ∈N *,都有2a n +1=a n +a n +2. ( )(3)数列{a n }为等差数列的充要条件是其通项公式为n 的一次函数.( ) (4)等差数列的前n 项和公式是常数项为0的二次函数.( ) [答案] (1)× (2)√ (3)× (4)×2.等差数列{a n }中,a 4+a 8=10,a 10=6,则公差d 等于( ) A.14 B .12 C .2 D .-12 A [∵a 4+a 8=2a 6=10,∴a 6=5, 又a 10=6,∴公差d =a 10-a 610-6=6-54=14.故选A.]3.(教材改编)设数列{a n }是等差数列,其前n 项和为S n ,若a 6=2且S 5=30,则S 8等于( )A .31B .32C .33D .34 B [设数列{a n }的公差为d , 法一:由S 5=5a 3=30得a 3=6, 又a 6=2,∴S 8=8a 1+a 82=8a 3+a 62=86+22=32. 法二:由⎩⎪⎨⎪⎧a 1+5d =2,5a 1+5×42d =30,得⎩⎪⎨⎪⎧a 1=263,d =-43.∴S 8=8a 1+8×72d =8×263-28×43=32.]4.在等差数列{a n }中,a 1=7,公差为d ,前n 项和为S n ,当且仅当n =8时S n 取得最大值,则d 的取值X 围为________.⎝ ⎛⎭⎪⎫-1,-78 [由题意可知⎩⎪⎨⎪⎧a 8>0,a 9<0.即⎩⎪⎨⎪⎧7+7d >0,7+8d <0解得-1<d <-78.]5.(教材改编)在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=450,则a 2+a 8=________. 180[∵{a n }为等差数列,∴a 3+a 4+a 5+a 6+a 7=5a 5=450,∴a 5=90,∴a 2+a 8=2a 5=180.]等差数列基本量的运算1.若等差数列{a n }的前5项和S 5=25,且a 2=3,则a 7=( ) A .12 B .13 C .14 D .15B [由题意得S 5=5a 1+a 52=5a 3=25,a 3=5,公差d =a 3-a 2=2,a 7=a 2+5d =3+5×2=13.故选B .]2.已知在等差数列{a n }中,a 1=20,a n =54,S n =3 700,则数列的公差d ,项数n 分别为( )A .d =0.34,n =100B .d =0.34,n =99C .d =3499,n =100D .d =3499,n =99C [由⎩⎪⎨⎪⎧a n =a 1+n -1d ,S n =na 1+n n -1d2,得⎩⎪⎨⎪⎧54=20+n -1d ,3 700=20n +n n -1d 2,解得⎩⎪⎨⎪⎧d =3499,n =100.故选C.]3.(2018·某某二模)已知等差数列{a n }满足a 3+a 5=14,a 2a 6=33,则a 1a 7=( ) A .33 B .16 C .13 D .12C [由⎩⎪⎨⎪⎧a 3+a 5=14,a 2·a 6=33,得⎩⎪⎨⎪⎧a 1+3d =7,a 1+d a 1+5d =33,解得⎩⎪⎨⎪⎧a 1=1,d =2,或⎩⎪⎨⎪⎧a 1=13,d =-2.当a 1=1,d =2时,a 7=1+6×2=13,∴a 1a 7=13; 当a 1=13,d =-2时,a 7=13+6×(-2)=1,∴a 1a 7=13. 综上可知a 1a 7=13.故选C.]4.(2018·某某一模)我国古代数学名著《九章算术·均输》中记载了这样一个问题:“今有五人分五钱,令上二人所得与下三人等,问各得几何?”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列,问五人各得多少钱?”(“钱”是古代一种重量单位).这个问题中,等差数列的通项公式为( )A .-16n +76(n ∈N *,n ≤5)B .16n +32(n ∈N *,n ≤5) C.16n +76(n ∈N *,n ≤5) D .-16n +32(n ∈N *,n ≤5)D [由题意可设五人所得依次对应等差数列中的a 1,a 2,a 3,a 4,a 5,公差为d ,则⎩⎪⎨⎪⎧S 5=5,a 1+a 2=a 3+a 4+a 5,∴⎩⎪⎨⎪⎧5a 1+5×42d =5,2a 1+d =3a 1+9d ,∴⎩⎪⎨⎪⎧a 1=43,d =-16,∴通项公式为a n =43+(n -1)×⎝ ⎛⎭⎪⎫-16=32-16n (n ∈N *,n ≤5),故选D .][规律方法] 解决等差数列运算问题的思想方法(1)方程思想:等差数列的基本量为首项a 1和公差d ,通常利用已知条件及通项公式或前n 项和公式列方程(组)求解,等差数列中包含a 1,d ,n ,a n ,S n 五个量,可“知三求二”.(2)整体思想:当所给条件只有一个时,可将已知和所求都用a 1,d 表示,寻求两者间的联系,整体代换即可求解.(3)利用性质:运用等差数列性质可以化繁为简、优化解题过程. 等差数列的判定与证明【例1】 数列{a n }满足a n +1=a n2a n +1,a 1=1. (1)证明:数列⎩⎨⎧⎭⎬⎫1a n 是等差数列;(2)求数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和S n ,并证明1S 1+1S 2+…+1S n >nn +1.[解] (1)证明:∵a n +1=a n2a n +1, ∴1a n +1=2a n +1a n ,化简得1a n +1=2+1a n,即1a n +1-1a n=2,故数列⎩⎨⎧⎭⎬⎫1a n 是以1为首项,2为公差的等差数列.(2)由(1)知1a n=2n -1,所以S n =n 1+2n -12=n 2.证明:1S 1+1S 2+…+1S n =112+122+…+1n 2>11×2+12×3+…+1n n +1=⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1=n n +1. [规律方法] 等差数列的四个判定方法(1)定义法:证明对任意正整数n 都有a n +1-a n 等于同一个常数. (2)等差中项法:证明对任意正整数n 都有2a n +1=a n +a n +2.(3)通项公式法:得出a n =pn +q 后,再根据定义判定数列{a n }为等差数列. (4)前n 项和公式法:得出S n =An 2+Bn 后,再使用定义法证明数列{a n }为等差数列.已知数列{a n }满足a 1=1,且na n +1-(n +1)a n =2n 2+2n .(1)求a 2,a 3;(2)证明数列⎩⎨⎧⎭⎬⎫a n n 是等差数列,并求{a n }的通项公式.[解] (1)由已知,得a 2-2a 1=4, 则a 2=2a 1+4,又a 1=1,所以a 2=6. 由2a 3-3a 2=12,得2a 3=12+3a 2,所以a 3=15.(2)由已知na n +1-(n +1)a n =2n (n +1), 得na n +1-n +1a n n n +1=2,即a n +1n +1-a nn=2,所以数列⎩⎨⎧⎭⎬⎫a n n 是首项a 11=1,公差d =2的等差数列.则a n n=1+2(n -1)=2n -1,所以a n =2n 2-n . 等差数列的性质及应用【例2】 (1)设数列{a n },{b n }都是等差数列,且a 1=25,b 1=75,a 2+b 2=100,则a 37+b 37等于( )A .0B .37C .100D .-37(2)(2019·某某模拟)等差数列{a n }中,a 1+3a 8+a 15=120,则2a 9-a 10的值是( ) A .20 B .22 C .24 D .8(3)设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9等于( ) A .63 B .45 C .36 D .27(1)C (2)C (3)B [(1)设{a n },{b n }的公差分别为d 1,d 2,则(a n +1+b n +1)-(a n +b n )=(a n +1-a n )+(b n +1-b n )=d 1+d 2,所以{a n +b n }为等差数列.又a 1+b 1=a 2+b 2=100,所以{a n +b n }为常数列,所以a 37+b 37=100.(2)因为a 1+3a 8+a 15=5a 8=120,所以a 8=24,所以2a 9-a 10=a 10+a 8-a 10=a 8=24. (3)由{a n }是等差数列,得S 3,S 6-S 3,S 9-S 6为等差数列. 即2(S 6-S 3)=S 3+(S 9-S 6), 得到S 9-S 6=2S 6-3S 3=45.][规律方法] 等差数列的常用性质和结论(1)在等差数列{a n }中,若m +n =p +q =2k (m ,n ,p ,q ,k ∈N *),则a m +a n =a p +a q =2a k . (2)在等差数列{a n }中,数列S m ,S 2m -S m ,S 3m -S 2m 也成等差数列.(1)已知等差数列{a n }的前n 项和为S n ,若m >1,且a m -1+a m +1-a 2m -1=0,S 2m -1=39,则m 等于( )A .39B .20C .19D .10(2)设等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若对任意的n ∈N *,都有S n T n =2n -34n -3,则a 2b 3+b 13+a 14b 5+b 11的值为( ) A.2945 B .1329 C.919 D .1930(1)B (2)C [(1)数列{a n }为等差数列,则a m -1+a m +1=2a m ,则a m -1+a m +1-a 2m -1=0可化为2a m -a 2m -1=0,解得a m =1.又S 2m -1=(2m -1)a m =39,则m =20.故选B .(2)由题意可知b 3+b 13=b 5+b 11=b 1+b 15=2b 8, ∴a 2b 3+b 13+a 14b 5+b 11=a 2+a 142b 8=a 8b 8=S 15T 15=2×15-34×15-3=2757=919.故选C.] 等差数列前n 项和的最值问题【例3】 在等差数列{a n }中,已知a 1=20,前n 项和为S n ,且S 10=S 15,求当n 取何值时,S n 取得最大值,并求出它的最大值.[解] ∵a 1=20,S 10=S 15,∴10×20+10×92d =15×20+15×142d ,∴d =-53.法一:由a n =20+(n -1)×⎝ ⎛⎭⎪⎫-53=-53n +653, 得a 13=0.即当n ≤12时,a n >0, 当n ≥14时,a n <0.∴当n =12或n =13时,S n 取得最大值,且最大值为S 12=S 13=12×20+12×112×⎝ ⎛⎭⎪⎫-53=130.法二:S n =20n +n n -12·⎝ ⎛⎭⎪⎫-53=-56n 2+1256n=-56⎝ ⎛⎭⎪⎫n -2522+3 12524.∵n ∈N *,∴当n =12或n =13时,S n 有最大值,且最大值为S 12=S 13=130. 法三:由S 10=S 15,得a 11+a 12+a 13+a 14+a 15=0. ∴5a 13=0,即a 13=0.∴当n =12或n =13时,S n 有最大值,且最大值为S 12=S 13=130. [规律方法] 求等差数列前n 项和S n 最值的两种方法(1)函数法:利用等差数列前n 项和的函数表达式S n =an 2+bn ,通过配方或借助图像求二次函数最值的方法求解.(2)邻项变号法.①当a 1>0,d <0时,满足⎩⎪⎨⎪⎧ a m ≥0,a m +1≤0的项数m 使得S n 取得最大值为S m ;②当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值为S m .易错警示:易忽视n ∈N +.(1)设数列{a n }是公差d <0的等差数列,S n 为其前n 项和,若S 6=5a 1+10d ,则S n 取最大值时,n 的值为( )A .5B .6C .5或6D .11(2)已知等差数列{a n }的首项a 1=20,公差d =-2,则前n 项和S n 的最大值为________. (1)C (2)110 [(1)由题意得S 6=6a 1+15d =5a 1+10d ,化简得a 1=-5d ,所以a 6=0,故当n =5或6时,S n 最大.(2)因为等差数列{a n }的首项a 1=20,公差d =-2,S n =na 1+n n -12d =20n -n n -12×2=-n 2+21n =-⎝⎛⎭⎪⎫n -2122+⎝ ⎛⎭⎪⎫2122,又因为n ∈N *,所以n =10或n =11时,S n 取得最大值,最大值为110.]1.(2018·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.若3S 3=S 2+S 4,a 1=2,则a 5=( )A .-12B .-10C .10D .12B [设等差数列{a n }的公差为d ,∵3S 3=S 2+S 4,∴3⎝ ⎛⎭⎪⎫3a 1+3×22d =2a 1+d +4a 1+4×32d ,解得d =-32a 1,∵a 1=2,∴d =-3,∴a 5=a 1+4d =2+4×(-3)=-10.故选B .]2.(2017·全国卷Ⅲ)等差数列{a n }的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{a n }前6项的和为( )A .-24B .-3C .3D .8 A [由已知条件可得a 1=1,d ≠0,由a 23=a 2a 6可得(1+2d )2=(1+d )(1+5d ),解得d =-2.所以S 6=6×1+6×5×-22=-24.故选A.]3.(2016·全国卷Ⅰ)已知等差数列{a n }前9项的和为27,a 10=8,则a 100=( ) A .100 B .99 C .98 D .97C [∵{a n }是等差数列,设其公差为d , ∴S 9=9a 5=27,∴a 5=3. 又∵a 10=8,∴⎩⎪⎨⎪⎧a 1+4d =3,a 1+9d =8,∴⎩⎪⎨⎪⎧a 1=-1,d =1.∴a 100=a 1+99d =-1+99×1=98.故选C.]4.(2018·全国卷Ⅱ)记S n 为等差数列{a n }的前n 项和,已知a 1=-7,S 3=-15.(1)求{a n }的通项公式; (2)求S n ,并求S n 的最小值.[解] (1)设{a n }的公差为d ,由题意得3a 1+3d =-15. 由a 1=-7得d =2.所以{a n }的通项公式为a n =2n -9. (2)由(1)得S n =n 2-8n =(n -4)2-16.所以当n =4时,S n 取得最小值,最小值为-16.。
第1讲 等差数列、等比数列等差、等比数列的基本运算 共研典例 类题通法 1.等差数列的通项公式及前n 项和公式a n =a 1+(n -1)d ;S n =n (a 1+a n )2=na 1+n (n -1)2d .2.等比数列的通项公式及前n 项和公式 a n =a 1qn -1(q ≠0);S n =a 1(1-q n )1-q =a 1-a n q1-q(q ≠1).(2016·高考全国卷乙)已知{a n }是公差为3的等差数列,数列{b n }满足b 1=1,b 2=13,a n b n +1+b n +1=nb n . (1)求{a n }的通项公式; (2)求{b n }的前n 项和.【解】 (1)由已知,a 1b 2+b 2=b 1,b 1=1,b 2=13,得a 1=2.所以数列{a n }是首项为2,公差为3的等差数列, 通项公式为a n =3n -1.(2)由(1)和a n b n +1+b n +1=nb n ,得b n +1=b n 3,因此数列{b n }是首项为1,公比为13的等比数列.记{b n }的前n 项和为S n ,则S n =1-⎝⎛⎭⎫13n1-13=32-12×3n -1.关于等差(等比)数列的基本运算,一般通过其通项公式和前n 项和公式构造关于a 1和d (或q )的方程或方程组解决,如果在求解过程中能够灵活运用等差(等比)数列的性质,不仅可以快速获解,而且有助于加深对等差(等比)数列问题的认识.[题组通关]1.(2016·昆明两区七校调研)在等比数列{a n }中,S n 是它的前n 项和,若q =2,且a 2与2a 4的等差中项为18,则S 5=( )A .62B .-62C .32D .-32A [解析] 依题意得a 2+2a 4=36,又q =2,则2a 1+16a 1=36,解得a 1=2,因此S 5=2×(1-25)1-2=62,选A.2.(2016·武汉调研)若等比数列{a n }的各项均为正数,a 1+2a 2=3,a 23=4a 2a 6,则a 4=( )A.38B.245C.316D.916C [解析] 由题意,得⎩⎪⎨⎪⎧a 1+2a 1q =3(a 1q 2)2=4a 1q ·a 1q5,解得⎩⎨⎧a 1=32q =12,所以a 4=a 1q 3=32×⎝⎛⎭⎫123=316,故选C.3.已知等差数列{a n }的公差不为零,其前n 项和为S n ,a 22=S 3,且S 1,S 2,S 4成等比数列.(1)求数列{a n }的通项公式a n ;(2)记T n =a 1+a 5+a 9+…+a 4n -3,求T n .[解] (1)设数列{a n }的公差为d ,由a 22=S 3得3a 2=a 22,故a 2=0或a 2=3. 由S 1,S 2,S 4成等比数列得S 22=S 1S 4.又S 1=a 2-d ,S 2=2a 2-d ,S 4=4a 2+2d , 故(2a 2-d )2=(a 2-d )(4a 2+2d ).若a 2=0,则d 2=-2d 2,解得d =0,不符合题意.若a 2=3,则(6-d )2=(3-d )(12+2d ),解得d =2或d =0(不符合题意,舍去). 因此数列{a n }的通项公式为a n =a 2+(n -2)d =2n -1. (2)由(1)知a 4n -3=8n -7,故数列{a 4n -3}是首项为1,公差为8的等差数列. 从而T n =n 2()a 1+a 4n -3=n2(8n -6)=4n 2-3n .等差、等比数列的判定与证明 共研典例 类题通法 1.证明数列{a n }是等差数列的两种基本方法 (1)利用定义,证明a n +1-a n (n ∈N *)为一常数; (2)利用等差中项,即证明2a n =a n -1+a n +1(n ≥2). 2.证明数列{a n }是等比数列的两种基本方法 (1)利用定义,证明a n +1a n (n ∈N *)为一常数;(2)利用等比中项,即证明a 2n =a n -1a n +1(n ≥2).(2016·高考全国卷丙)已知数列{a n }的前n 项和S n =1+λa n ,其中λ≠0. (1)证明{a n }是等比数列,并求其通项公式; (2)若S 5=3132,求λ.【解】 (1)由题意得a 1=S 1=1+λa 1,故λ≠1,a 1=11-λ,a 1≠0. 由S n =1+λa n ,S n +1=1+λa n +1得a n +1=λa n +1-λa n , 即a n +1(λ-1)=λa n .由a 1≠0,λ≠0且λ≠1得a n ≠0, 所以a n +1a n=λλ-1.因此{a n }是首项为11-λ,公比为λλ-1的等比数列,于是a n =11-λ⎝ ⎛⎭⎪⎫λλ-1n -1.(2)由(1)得S n =1-⎝ ⎛⎭⎪⎫λλ-1n.由S 5=3132得1-⎝⎛⎭⎪⎫λλ-15=3132,即⎝ ⎛⎭⎪⎫λλ-15=132. 解得λ=-1.(1)判断一个数列是等差(比)数列,也可以利用通项公式及前n 项和公式,但不能作为证明方法.(2)a 2n =a n -1a n +1(n ≥2)是数列{a n }为等比数列的必要不充分条件,判断时还要看各项是否为零.[题组通关]1.(2016·高考浙江卷)如图,点列{A n },{B n }分别在某锐角的两边上,且|A n A n +1|=|A n +1A n+2|,A n ≠A n +2,n ∈N *,|B n B n +1|=|B n +1B n +2|,B n ≠B n +2,n ∈N *(P ≠Q 表示点P 与Q 不重合).若d n =|A n B n |,S n 为△A n B n B n +1的面积,则( )A .{S n }是等差数列B .{S 2n }是等差数列C .{d n }是等差数列D .{d 2n }是等差数列A [解析] 由题意,过点A 1,A 2,A 3,…,A n ,A n +1,…分别作直线B 1B n +1的垂线,高分别记为h 1,h 2,h 3,…,h n ,h n +1,…,根据平行线的性质,得h 1,h 2,h 3,…,h n ,h n+1,…成等差数列,又S n =12×|B n B n +1|×h n ,|B n B n +1|为定值,所以{S n }是等差数列.故选A.2.(2016·合肥第一次教学质检)在数列{a n }中,a 1=12,a n +1=n +12na n ,n ∈N *.(1)求证:数列⎩⎨⎧⎭⎬⎫a n n 为等比数列;(2)求数列{a n }的通项公式.[解] (1)证明:由a n +1=n +12n a n 知a n +1n +1=12·a nn,所以⎩⎨⎧⎭⎬⎫a n n 是以12为首项,12为公比的等比数列.(2)由(1)知⎩⎨⎧⎭⎬⎫a n n 是首项为12,公比为12的等比数列,所以a n n =⎝⎛⎭⎫12n ,所以a n =n2n.等差、等比数列的性质 共研典例 类题通法n n 10100S 90=24,则S 100=________.(2)(2016·高考全国卷乙)设等比数列{a n }满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为________.【解析】 (1)依题意,S 10,S 20-S 10,S 30-S 20,…,S 100-S 90依次成等差数列,设该等差数列的公差为d .又S 10=16,S 100-S 90=24,因此S 100-S 90=24=16+(10-1)d =16+9d ,解得d =89,因此S 100=10S 10+10×92d =10×16+10×92×89=200.(2)设{a n }的公比为q ,由a 1+a 3=10,a 2+a 4=5得a 1=8,q =12,则a 2=4,a 3=2,a 4=1,a 5=12,所以a 1a 2…a n ≤a 1a 2a 3a 4=64.【答案】 (1)200 (2)64(1)解决此类问题的关键是抓住项与项之间的关系及项的序号之间的关系,从这些特点入手选择恰当的性质进行求解.(2)本例(2)利用了函数思想,数列是特殊函数,在求解数列的一些问题中,经常用到函数的性质,如周期性、单调性.[题组通关]1.(2016·郑州第一次质量预测)正项等比数列{a n }中的a 1、a 4 031是函数f (x )=13x 3-4x 2+6x -3的极值点,则log 6a 2 016=( )A .1B .2 C. 2D .-1A [解析] 因为f ′(x )=x 2-8x +6,且a 1、a 4 031是方程x 2-8x +6=0的两根,所以a 1·a 4031=a 22 016=6,即a 2 016=6,所以log 6a 2 016=1,故选A.2.(2016·云南第一次统一检测)在数列{a n }中,a 1=12,a 2=13,a n a n +2=1,则a 2 016+a 2 017=( )A.56 B.73 C.72D .5C [解析] 依题意,a 1=12,a 2=13,a 3=2,a 4=3,a 5=12,a 6=13,…,数列{a n }是周期为4的数列,所以a 2 016+a 2 017=a 4+a 1=72.3.设公差为d 的等差数列{a n }的前n 项和为S n ,若a 1=1,-217<d <-19,则当S n 取最大值时n 的值为________.[解析] 因为等差数列{a n }的公差d 为负值,所以{a n }是递减数列.又a 1=1,所以由a n=a 1+(n -1)d >0得n <d -a 1d ,即n <1-1d ,因为-217<d <-19,所以192<1-1d <10,所以n ≤9,即当n ≤9时,a n >0,当n ≥10时,a n <0.所以当S n 取得最大值时n 的值为9.[答案] 9课时作业1.(2016·重庆第一次适应性测试)在数列{a n }中,a n +1-a n =2,a 2=5,则{a n }的前4项和为( )A .9B .22C .24D .32C [解析] 依题意得,数列{a n }是公差为2的等差数列,a 1=a 2-2=3,因此数列{a n }的前4项和等于4×3+4×32×2=24,选C.2.在等比数列{a n }中,a 1=27,a 4=a 3a 5,则公比q =( ) A.181B.127C.19D.13D [解析] 由等比数列的性质得:a 3a 5=a 24=a 4, 因为a 4≠0,所以a 4=1, 又a 4a 1=q 3=127, 所以q =13.3.(2016·海口调研测试)设S n 为等比数列{a n }的前n 项和,a 2-8a 5=0,则S 8S 4的值为( )A.12B.1716 C .2D .17B [解析] 设{a n }的公比为q ,依题意得a 5a 2=18=q 3,因此q =12.注意到a 5+a 6+a 7+a 8=q 4(a 1+a 2+a 3+a 4),即有S 8-S 4=q 4S 4,因此S 8=(q 4+1)S 4,S 8S 4=q 4+1=1716,选B.4.一个项数为偶数的等比数列{a n },全部各项之和为偶数项之和的4倍,前3项之积为64,则a 1=( )A .11B .12C .13D .14B [解析] 设数列{a n }的公比为q ,全部奇数项、偶数项之和分别记为S 奇、S 偶,由题意知,S 奇+S 偶=4S 偶,即S 奇=3S 偶.因为数列{a n }的项数为偶数,所以q =S 偶S 奇=13.又a 1·(a 1q )(a 1q 2)=64.所以a 31q 3=64,故a 1=12.5.设等比数列{a n }的前n 项和为S n ,若8a 2+a 5=0,则下列式子中数值不能确定的是( )A.a 5a 3 B.S 5S 3 C.a n +1a nD.S n +1S nD [解析] 由8a 2+a 5=0,得a 5a 2=-8,设数列{a n }的公比为q ,则q 3=-8,所以q =-2,所以a 5a 3=q 2=4,a n +1a n =q =-2,S 5S 3=1-(-2)51-(-2)3=113,而S n +1S n=1-(-2)n +11-(-2)n 的数值不能确定.故选D.6.(2016·合肥第二次质检)已知等比数列{a n }的前n 项和为S n ,若a 2=12,a 3·a 5=4,则下列说法正确的是( )A .{a n }是单调递减数列B .{S n }是单调递减数列C .{a 2n }是单调递减数列D .{S 2n }是单调递减数列C [解析] 由于{a n }是等比数列,则a 3a 5=a 24=4,又a 2=12,则a 4>0,a 4=2,q 2=16,当q =-66时,{a n }和{S n }不具有单调性,选项A 和B 错误;a 2n =a 2q 2n -2=12×⎝⎛⎭⎫16n -1单调递减,选项C 正确;当q =-66时,{S 2n }不具有单调性,选项D 错误. 7.(2015·高考全国卷Ⅰ)在数列{a n }中,a 1=2,a n +1=2a n ,S n 为{a n }的前n 项和.若S n=126,则n =________.[解析] 因为 a 1=2,a n +1=2a n ,所以数列{a n }是首项为2,公比为2的等比数列. 又因为 S n =126,所以2(1-2n )1-2=126,所以n =6.[答案] 68.已知数列{a n }的前n 项和为S n ,a 1=-1,S n =2a n +n (n ∈N *),则a n =________. [解析] 因为S n =2a n +n ,① 所以S n +1=2a n +1+n +1,②②-①,可得a n +1=2a n -1,即a n +1-1=2(a n -1),又因为a 1=-1,所以数列{a n -1}是以-2为首项,2为公比的等比数列,所以a n -1=(-2)·2n -1=-2n ,所以a n =1-2n . [答案] 1-2n9.已知数列{a n }满足a n +2=a n +1-a n ,且a 1=2,a 2=3,则a 2 016的值为________. [解析] 由题意得,a 3=a 2-a 1=1,a 4=a 3-a 2=-2,a 5=a 4-a 3=-3,a 6=a 5-a 4=-1,a 7=a 6-a 5=2,a 8=a 7-a 6=3,…,所以数列{a n }是周期为6的周期数列,而2 016=6×336,所以a 2 016=a 6=-1.[答案] -110.在等差数列{a n }中,a 1=-2 014,其前n 项和为S n ,S 2 0152 015-S 1010=2 005,则S 2 016的值等于________.[解析] 法一:设等差数列{a n }的公差为d ,在等差数列{a n }中,因为S n =na 1+n (n -1)2d ,S n n =a 1+(n -1)d 2,由S 2 0152 015-S 1010=2 005,得⎣⎡⎦⎤-2 014+(2 015-1)d 2-⎣⎡⎦⎤-2 014+(10-1)d 2=2 005,化简得2 0052d =2 005,所以d =2,所以S 2 016=2 016×(-2014)+2 016×2 0152×2=2 016.法二:设等差数列{a n }的公差为d ,在等差数列{a n }中,S n =na 1+n (n -1)2d ,S nn=a 1+(n -1)d 2,即数列⎩⎨⎧⎭⎬⎫S n n 是首项为a 1=-2 014,公差为d 2的等差数列.因为S 2 0152 015-S 1010=2 005,所以(2 015-10)d 2=2 005,d 2=1,所以S 2 0162 016=a 1+(2 016-1)×1=-2 014+2 015=1,所以S 2 016=2 016.[答案] 2 01611.(2016·兰州诊断考试)在公差不为零的等差数列{a n }中,a 1=1,a 2、a 4、a 8成等比数列.(1)求数列{a n }的通项公式;(2)设b n =2a n ,T n =b 1+b 2+…+b n ,求T n .[解] (1)设等差数列{a n }的公差为d ,则依题意有⎩⎪⎨⎪⎧a 1=1(a 1+3d )2=(a 1+d )(a 1+7d ),解得d =1或d =0(舍去), 所以a n =a 1+(n -1)d =n . (2)由(1)得a n =n , 所以b n =2n , 所以b n +1b n=2,所以{b n }是首项为2,公比为2的等比数列,所以T n =2(1-2n )1-2=2n +1-2.12.设数列{a n }的前n 项积为T n ,且T n +2a n =2(n ∈N *).(1)求证:数列⎩⎨⎧⎭⎬⎫1T n 是等差数列;(2)设b n =(1-a n )(1-a n +1),求数列{b n }的通项公式.[解] (1)证明:因为T n +2a n =2,所以当n =1时,T 1+2a 1=2,所以T 1=23,即1T 1=32.又当n ≥2时,T n =2-2×T nT n -1,得T n ·T n -1=2T n -1-2T n , 所以1T n -1T n -1=12,所以数列⎩⎨⎧⎭⎬⎫1T n 是以32为首项,12为公差的等差数列.(2)由(1)知,数列⎩⎨⎧⎭⎬⎫1T n 为等差数列,所以1T n =32+12(n -1)=n +22,所以a n =2-T n 2=n +1n +2.所以b n =(1-a n )(1-a n +1)=1(n +2)(n +3).13.(2016·贵州适应性考试)设数列{a n }的前n 项和为S n ,且2S n =3a n -1(n ∈N *). (1)求a 1,a 2及数列{a n }的通项公式;(2)已知数列{b n }满足b n =log 3a 2n ,求{b n }的前n 项和T n . [解] (1)根据已知,2S 1=2a 1=3a 1-1,解得a 1=1. 2S 2=2(1+a 2)=3a 2-1,解得a 2=3. 因为2S n =3a n -1,①所以2S n -1=3a n -1-1(n ≥2).②①-②,有2a n =3a n -3a n -1,即a n =3a n -1(n ≥2). 于是,{a n }是首项为1,公比为3的等比数列,{a n }的通项公式为a n =1·3n -1=3n -1.(2)由已知,b n =log 332n -1=2n -1,所以{b n }是首项为1,公差为2的等差数列.于是{b n }的前n 项和T n =n ·1+n ·(n -1)2·2=n 2. 14.若数列{b n }对于n ∈N *,都有b n +2-b n =d (常数),则称数列{b n }是公差为d 的准等差数列,如数列{c n },若c n =⎩⎪⎨⎪⎧4n -1,n 为奇数,4n -9,n 为偶数,则数列{c n }是公差为8的准等差数列.设数列{a n }满足a 1=a ,对于n ∈N *,都有a n +a n +1=2n .(1)求证:{a n }为准等差数列;(2)求{a n }的通项公式及前20项和S 20.[解] (1)证明:因为a n +1+a n =2n , ①所以a n +2+a n +1=2n +2. ②由②-①得a n +2-a n =2(n ∈N *),所以{a n }是公差为2的准等差数列.(2)已知a 1=a ,a n +1+a n =2n (n ∈N *),所以a 1+a 2=2,即a 2=2-a .所以由(1)可知a 1,a 3,a 5,…,成以a 为首项,2为公差的等差数列,a 2,a 4,a 6,…,成以2-a 为首项,2为公差的等差数列.所以当n 为偶数时,a n =2-a +⎝⎛⎭⎫n 2-1×2=n -a ,当n 为奇数时,a n =a +⎝ ⎛⎭⎪⎫n +12-1×2=n +a -1, 所以a n =⎩⎪⎨⎪⎧n +a -1,n 为奇数,n -a ,n 为偶数.S 20=a 1+a 2+…+a 19+a 20=(a 1+a 2)+(a 3+a 4)+…+(a 19+a 20)=2×1+2×3+…+2×19=2×(1+19)×102=200.。
第五章数列[深研高考·备考导航] 为教师备课、授课提供丰富教学资源 [五年考情][重点关注]1.从近五年全国卷高考试题来看:数列一般有两道客观题或一道解答题,其中解答题与解三角形交替考查,中低档难度.2.从知识上看:主要考查等差数列、等比数列、a n与S n的关系、递推公式以及数列求和,注重数列与函数、方程、不等式的交汇命题.3.从能力上看:突出对函数与方程、转化与化归、分类讨论等数学思想的考查,加大对探究、创新能力的考查力度.[导学心语]1.重视等差、等比数列的复习,正确理解等差、等比数列的概念,掌握等差、等比数列的通项公式、前n项和公式,灵活运用公式进行等差、等比数列基本量的计算.2.重视a n与S n关系、递推关系的理解与应用,加强由S n求a n,由递推关系求通项,由递推关系证明等差、等比数列的练习.3.数列是特殊的函数,要善于用函数的性质,解决与数列有关的最值问题,等差(比)数列中共涉及五个量a1,a n,S n,d(q),n,“知三求二”,体现了方程思想的应用.一般数列求和,首先要考虑是否能转化为等差(比)数列求和,再考虑错位相减、倒序相加、裂项相消、分组法等求和方法.重视发散思维、创新思维,有意识地培养创新能力.第一节数列的概念与简单表示法[考纲传真] 1.了解数列的概念和几种简单的表示方法(列表、图像、通项公式).2.了解数列是自变量为正整数的一类函数.1.数列的定义按照一定次序排列着的一列数叫作数列,数列中的每一个数叫作这个数列的项. 2.数列的分类3.数列的表示法数列有三种表示法,它们分别是列表法、图像法和解析法. 4.数列的通项公式如果数列{a n }的第n 项a n 与 n 之间的函数关系可以用一个式子表示成a n =f (n ),那么这个式子就叫作这个数列的通项公式.5.若一个数列首项确定,其余各项用a n 与a n -1的关系式表示(如a n =2a n -1+1,n ≥2且n ∈N *),则这个关系式称为数列的递推公式.6.a n 与S n 的关系若数列{a n }的前n 项和为S n ,通项为a n ,则a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)所有数列的第n 项都能使用公式表达.( )(2)根据数列的前几项归纳出数列的通项公式可能不止一个.( )(3)如果数列{a n }的前n 项和为S n ,则对任意n ∈N *,都有a n +1=S n +1-S n .( ) (4)若已知数列{a n }的递推公式为a n +1=12a n -1,且a 2=1,则可以写出数列{a n }的任何一项.( )[答案] (1)× (2)√ (3)√ (4)√2.设数列{a n }的前n 项和S n =n 2,则a 8的值为( ) A .15 B .16 C .49D .64A [当n =8时,a 8=S 8-S 7=82-72=15.]3.把1,3,6,10,15,21,…这些数叫作三角形数,这是因为以这些数目的点可以排成一个正三角形(如图511).图511则第7个三角形数是( ) A .27 B .28 C .29D .30B [由题图可知,第7个三角形数是1+2+3+4+5+6+7=28.] 4.(教材改编)数列1,23,35,47,59,…的一个通项公式a n 是__________.【导学号:66482230】n 2n -1 [由已知得,数列可写成11,23,35,…,故通项为n 2n -1.] 5.(2014·全国卷Ⅱ)数列{a n }满足a n +1=11-a n ,a 8=2,则a 1=__________.12 [由a n +1=11-a n ,得a n =1-1a n +1, ∵a 8=2,∴a 7=1-12=12,a 6=1-1a 7=-1,a 5=1-1a 6=2,…,∴{a n }是以3为周期的数列,∴a 1=a 7=12.]写出下面各数列的一个通项公式:(1)3,5,7,9,…; (2)12,34,78,1516,3132,…; (3)-1,7,-13,19,…; (4)3,33,333,3 333,….[解] (1)各项减去1后为正偶数,所以a n =2n +1. 3分 (2)每一项的分子比分母少1,而分母组成数列21,22,23,24,…, 所以a n =2n-12n . 6分(3)数列中各项的符号可通过(-1)n表示,从第2项起,每一项的绝对值总比它的前一项的绝对值大6.故通项公式为a n =(-1)n(6n -5). 9分(4)将数列各项改写为93,993,9993,9 9993,…,分母都是3,而分子分别是10-1,102-1,103-1,104-1,…,所以a n =13(10n-1). 12分[规律方法] 1.求数列通项时,要抓住以下几个特征: (1)分式中分子、分母的特征; (2)相邻项的变化特征;(3)拆项后变化的部分和不变的部分的特征; (4)各项符号特征等,并对此进行归纳、化归、联想.2.若关系不明显时,应将部分项作适当的变形,统一成相同的形式,让规律凸现出来.对于正负符号变化,可用(-1)n或(-1)n +1来调整,可代入验证归纳的正确性.[变式训练1] (1)数列0,23,45,67,…的一个通项公式为( )A .a n =n -1n +1(n ∈N *) B .a n =n -12n +1(n ∈N *)C .a n =n -2n -1(n ∈N *)D .a n =2n 2n +1(n ∈N *)(2)数列{a n }的前4项是32,1,710,917,则这个数列的一个通项公式是a n =__________.【导学号:66482231】(1)C (2)2n +1n 2+1[(1)注意到分子0,2,4,6都是偶数,对照选项排除即可.(2)数列{a n }的前4项可变形为2×1+112+1,2×2+122+1,2×3+132+1,2×4+142+1,故a n =2n +1n 2+1.]已知下面数列{a n }的前n 项和S n ,求{a n }的通项公式:(1)S n =2n 2-3n ; (2)S n =3n+b .【导学号:66482232】[解] (1)a 1=S 1=2-3=-1,当n ≥2时,a n =S n -S n -1=(2n 2-3n )-[2(n -1)2-3(n -1)]=4n -5,3分 由于a 1也适合此等式,∴a n =4n -5. 5分 (2)a 1=S 1=3+b ,当n ≥2时,a n =S n -S n -1=(3n+b )-(3n -1+b )=2·3n -1. 7分当b =-1时,a 1适合此等式.当b ≠-1时,a 1不适合此等式. 10分 ∴当b =-1时,a n =2·3n -1;当b ≠-1时,a n =⎩⎪⎨⎪⎧3+b ,n =1,2·3n -1,n ≥2.12分[规律方法] 由S n 求a n 的步骤 (1)先利用a 1=S 1求出a 1;(2)用n -1替换S n 中的n 得到一个新的关系,利用a n =S n -S n -1(n ≥2)便可求出当n ≥2时a n 的表达式;(3)对n =1时的结果进行检验,看是否符合n ≥2时a n 的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应写成分段函数的形式.易错警示:利用a n =S n -S n -1求通项时,应注意n ≥2这一前提条件,易忽视验证n =1致误.[变式训练2] (2017·石家庄质检(二))已知数列{a n }的前n 项和为S n ,若S n =2a n -4(n ∈N *),则a n =( )A .2n +1B .2nC .2n -1D .2n -2A [由S n =2a n -4可得S n -1=2a n -1-4(n ≥2),两式相减可得a n =2a n -2a n -1(n ≥2),即a n =2a n -1(n ≥2).又a 1=2a 1-4,a 1=4,所以数列{a n }是以4为首项,2为公比的等比数列,则a n =4×2n -1=2n +1,故选A.]根据下列条件,确定数列{a n }的通项公式:(1)a 1=2,a n +1=a n +3n +2; (2)a 1=1,a n +1=2na n ; (3)a 1=1,a n +1=3a n +2.【导学号:66482233】[解] (1)∵a n +1-a n =3n +2, ∴a n -a n -1=3n -1(n ≥2),∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1 =n n +2(n ≥2).当n =1时,a 1=12×(3×1+1)=2符合公式,∴a n =32n 2+n2. 4分(2)∵a n +1=2na n ,∴a n a n -1=2n -1(n ≥2), ∴a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1 =2n -1·2n -2·…·2·1=21+2+3+…+(n -1)=2n n -2.又a 1=1适合上式,故a n =2n n -2. 8分(3)∵a n +1=3a n +2,∴a n +1+1=3(a n +1), 又a 1=1,∴a 1+1=2,故数列{a n +1}是首项为2,公比为3的等比数列, ∴a n +1=2·3n -1,因此a n =2·3n -1-1. 12分[规律方法] 1.已知a 1,且a n -a n -1=f (n ),可用“累加法”求a n ;已知a 1(a 1≠0),且a na n -1=f (n ),可用“累乘法”求a n . 2.已知a 1,且a n +1=qa n +b ,则a n +1+k =q (a n +k )(其中k 可由待定系数法确定),可转化为{a n +k }为等比数列.易错警示:本题(1),(2)中常见的错误是忽视验证a 1是否适合所求式,(3)中常见错误是忽视判定首项是否为零.[变式训练3] (2016·全国卷Ⅲ)已知各项都为正数的数列{a n }满足a 1=1,a 2n -(2a n +1-1)a n -2a n +1=0.(1)求a 2,a 3; (2)求{a n }的通项公式.[解] (1)由题意可得a 2=12,a 3=14. 4分(2)由a 2n -(2a n +1-1)a n -2a n +1=0得 2a n +1(a n +1)=a n (a n +1). 7分 因为{a n }的各项都为正数,所以a n +1a n =12. 9分 故{a n }是首项为1,公比为12的等比数列,因此a n =12n -1. 12分[思想与方法]1.数列是一种特殊的函数,因此,在研究数列问题时,既要注意函数方法的普遍性,又要考虑数列方法的特殊性.2.a n =⎩⎪⎨⎪⎧S n n =,S n -S n -1n3.由递推关系求数列的通项的基本思想是转化,常用的方法是: (1)a n +1-a n =f (n )型,采用叠加法. (2)a n +1a n=f (n )型,采用叠乘法. (3)a n +1=pa n +q (p ≠0,p ≠1)型,转化为等比数列解决. [易错与防范]1.数列是按一定“次序”排列的一列数,一个数列不仅与构成它的“数”有关,而且还与这些“数”的排列次序有关.2.易混项与项数是两个不同的概念,数列的项是指数列中某一确定的数,而项数是指数列的项对应的位置序号.3.在利用数列的前n 项和求通项时,往往容易忽视先求出a 1,而是直接把数列的通项公式写成a n =S n -S n -1的形式,但它只适用于n ≥2的情形.。
第二节 等差数列
[考纲传真] 1.理解等差数列的概念.2.掌握等差数列的通项公式与前n 项和公式.3.能在具体的问题情境中识别数列的等差关系,并能用有关知识解决相应的问题.4.了解等差数列与一次函数的关系.
1.等差数列的有关概念
(1)定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫作等差数列.用符号表示为a n +1-a n =d (n ∈N *,d 为常数). (2)等差中项:数列a ,A ,b 成等差数列的充要条件是A =a +b 2,其中A 叫
作a ,b 的等差中项.
2.等差数列的有关公式
(1)通项公式:a n =a 1+(n -1)d .
(2)前n 项和公式:S n =na 1+n (n -1)d 2=n (a 1+a n )2
. 3.等差数列的常用性质 (1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).
(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n . (3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d .
(4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列.
(5)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.
1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)
(1)若一个数列从第2项起每一项与它的前一项的差都是常数,则这个数列是等差数列.( )
(2)数列{a n }为等差数列的充要条件是对任意n ∈N *,都有2a n +1=a n +a n +2.( )
(3)等差数列{a n }的单调性是由公差d 决定的.( )
(4)数列{a n }为等差数列的充要条件是其通项公式为n 的一次函数.( )
[答案] (1)× (2)√ (3)√ (4)×
2.等差数列{a n }的前n 项和为S n ,且S 3=6,a 3=0,则公差d 等于( )
A .-1
B .1
C .2
D .-2
D [依题意得S 3=3a 2=6,即a 2=2,故d =a 3-a 2=-2,故选D.]
3.(2015·全国卷Ⅱ)设S n 是等差数列{a n }的前n 项和,若a 1+a 3+a 5=3,则S 5=( )
A .5
B .7
C .9
D .11
A [a 1+a 3+a 5=3a 3=3⇒a 3=1,S 5=5(a 1+a 5)2
=5a 3=5.] 4.(2016·全国卷Ⅰ)已知等差数列{a n }前9项的和为27,a 10=8,则a 100=
( )
A .100
B .99
C .98
D .97
C [法一:∵{a n }是等差数列,设其公差为d ,
∴S 9=92(a 1+a 9)=9a 5=27,∴a 5=3.
又∵a 10=8,∴⎩⎨⎧ a 1+4d =3,a 1+9d =8,∴⎩⎨⎧ a 1=-1,d =1.
∴a 100=a 1+99d =-1+99×1=98.故选C.
法二:∵{a n }是等差数列,
∴S 9=92(a 1+a 9)=9a 5=27,∴a 5=3.
在等差数列{a n }中,a 5,a 10,a 15,…,a 100成等差数列,且公差d ′=a 10-a 5=8-3=5.
故a 100=a 5+(20-1)×5=98.故选C.]。