07-双缓冲framebuffer的实现
- 格式:doc
- 大小:31.50 KB
- 文档页数:3
如何实现双缓冲双缓冲即在内存中创建一个与屏幕绘图区域一致的对象,先将图形绘制到内存中的这个对象上,再一次性将这个对象上的图形拷贝到屏幕上,这样能大大加快绘图的速度。
双缓冲实现过程如下:1、在内存中创建与画布一致的缓冲区2、在缓冲区画图3、将缓冲区位图拷贝到当前画布上4、释放内存缓冲区(1)在内存中创建与画布一致的缓冲区CDC dc;//这是窗口的DC,假设已加载好CDC MemDC; //创建内存中的一个临时dc- MemDC, MemDC用来向窗口绘图的“草稿”//随后建立与屏幕显示兼容的内存显示设备MemDC.CreateCompatibleDC(&dc); //这时还不能绘图,因为没有地方画 ^_^//创建的临时空白bitmap作为“画布”,至于位图的大小,可以用窗口的大小CBitmap MemBitmap;MemBitmap.CreateCompatibleBitmap(&dc,nWidth,nHeight);//只有选入了位图的内存显示设备才有地方绘图,画到指定的位图上CBitmap *pOldBit=MemDC.SelectObject(&MemBitmap); //将上面创建的临时“画布”MemBitmap与MemDC连接,注意此处的MemBitmap为一个空白临时画布,可以在这个空白画布上自绘图,也可以在这个画布上加载图片//先用背景色将位图清除干净,这里我用的是白色作为背景//你也可以用自己应该用的颜色MemDC.FillSolidRect(0,0,nWidth,nHeight,RGB(255,255,255));(2)在缓冲区画图MemDC.MoveTo(……);MemDC.LineTo(……);(2)'在第(2)步中,如果不是自绘图,而是加载一个位图,则需要再定义一个临时dc- MemDC2,用来将位图加载到上面建立的空白画布MemDC中CBitmap p1;//这是要画的位图,假设已加载好CDC MemDC2;MemDC2.CreateCompatibleDC(&dc);MemDC2.SelectObject(&p1);// MemDC2与图片链接//在这里,p1保存的是要加载到临时空白画布上的图片,MemDC2是与p1链接的dc(3)将缓冲区位图拷贝到当前画布(屏幕)上dc.BitBlt(0,0,nWidth,nHeight,&MemDC,0,0,SRCCOPY);(3)’如果是位图的话首先,将与MemDC2链接的位图p1拷贝到临时空白画布MemDC中MemDC.BitBlt(x,y,width,height,& MemDC2,0,0,SRCCOPY); //向草稿绘制第一张图片,x,y,width,height请自行设置其次,将草稿绘制到屏幕上dc.BitBlt(0,0,width,height,&MemDC,0,0,SRCCOPY);(4)释放内存缓冲区//绘图完成后的清理MemBitmap.DeleteObject();MemDC.DeleteDC();MemDC2.DeleteDC();下面是一个不使用和使用双缓存的例子使用双缓存//CPoint ptCenter;//CRect rect, ellipseRect;//GetClientRect(&rect); //获得窗口客户区的大小//ptCenter = rect.CenterPoint(); //获得矩形的中心点,目的是为了确定后面同心圆图像的圆心//CDC dcMem; // 创建用于缓冲作图的内存DC对象dcMem//CBitmap bmp; // 创建内存中存放临时图像的位图对象bmp//dcMem.CreateCompatibleDC(pDC); // 依附窗口DC(窗口对象为pDC),创建兼容内存DC(就是创建一个内存DC,所有图形先画在这上面)//bmp.CreateCompatibleBitmap(&dcMem, rect.Width(), rect.Height());// 在兼容内存DC上,创建兼容位图//dcMem.SelectObject(&bmp); // 将位图选入内存DC//dcMem.FillSolidRect(rect, pDC->GetBkColor());// 按照原有背景色填充客户区,否则会成为黑色,同时也使内存DC的背景色保持一致//// 绘图操作//for (int i = 60; i > 0; --i)//{// ellipseRect.SetRect(ptCenter, ptCenter);// ellipseRect.InflateRect(i * 5, i * 5);// dcMem.Ellipse(ellipseRect); // 在内存DC上绘图,做同心圆图像//}//pDC->BitBlt(0, 0, rect.Width(), rect.Height(),// &dcMem, 0, 0, SRCCOPY); // 将内存DC上的图像复制到前台pDC,即实际屏幕对象pDC//dcMem.DeleteDC(); // 删除内存DC//bmp.DeleteObject(); // 删除内存位图不使用双缓存CPoint ptCenter;CRect rect,ellipseRect;GetClientRect(&rect);ptCenter = rect.CenterPoint();for(int i=60;i>0;i--){ellipseRect.SetRect(ptCenter,ptCenter);ellipseRect.InflateRect(i*5,i*5);pDC->Ellipse(ellipseRect);}下面的例子是加载两幅图片CBitmap p1,p2;//这是要画的位图,假设已加载好CDC dc;//这是窗口的DC,假设已加载好//创建两个临时dc,dc1为向窗口绘图的“草稿”,dc2为与源位图连接的dc(实际上dc2也可以用别的方法代替,这只是我的癖好)CDC dc1,dc2;dc1.CreateCompatibleDC(&DC);dc2.CreateCompatibleDC(&DC);//创建一个临时bitmap作为“画布”,与dc1连接CBitmap bm;CBitmap *Oldbm1,Oldbm2bm.CreateCompatibleBitmap(pDC,width,height); //长度宽度设置成与绘图面积一样大dc1.SelectObject(&bm);dc2.SelectObject(&p1);//dc2与第一张图片链接dc1.BitBlt(x,y, width,height,&dc2,0,0,SRCCOPY); //向草稿绘制第一张图片,x,y,width,height请自行设置dc2.SelectObject(&p2);//dc2与第一张图片链接dc1.BitBlt(x,y, width,height,&dc2,0,0,SRCCOPY); //向草稿绘制第二张图片//将草稿转移至窗口dc.BitBlt(0,0, width,height,&dc1,0,0,SRCCOPY);//清理工作...。
双buffer与单buffer在嵌⼊式平台Linux,主要通过framebuffer来显⽰UI。
FrameBuffer实际上就是嵌⼊式系统中专门为GPU所保留的⼀块连续的物理内存,LED 通过专门的总线从framebuffer读取数据,显⽰到屏幕上。
根据系统中framebuffer的数量,可以分成单buffer和双buffer两种。
先来说说单buffer:CPU往framebuffer上写,LED从framebuffer读,这是两个同时进⾏的过程,需要在时间上配合,否则会出现问题。
如果CPU往framebuffer上写的速度>LED从framebuffer读的速度,那么就有可能出现LED在⼀⾏⼀⾏的读取前⼀屏数据的时候,CPU却已经刷新了整屏,从⽽导致显⽰混乱。
这⾥要注意,LED从framebuffer读的速度并不等于屏幕的刷新频率,如果刷新频率为60hz,那么很有可能LED花了3个ms去读,剩余的时间都在等待。
应该说CPU往framebuffer写的速度>LED从framebuffer读的速度还是很困难的。
如果CPU往framebuffer写的速度太慢,也会出现屏幕闪烁的问题。
⽐如说要画⼀幅图,CPU⾸先将其填充为⽩⾊,这时LED刷新,屏幕显⽰为⽩⾊,之后开始画完其他内容,屏幕正常显⽰。
这时给⽤户的感觉就是屏幕⼀闪。
这就要求CPU尽快的画完⼀屏,尽量保证写⼀屏不要跨越LED刷新周期。
因此,在单framebuffer的时代,为了防⽌屏幕出现闪烁,我们⼀般是在内存中开辟⼀块与framebuffer同样⼤⼩的内容,将屏幕的内容都写好,然后再执⾏⼀次内存拷贝。
从⽽使写framebuffer的时间尽可能的短。
但这种机制有问题,我以屏幕分辩率为320*240为例。
⼀块framebuffer的⼤⼩为:320*240*4=0.3072M。
也就是说,我要先在内存中填写0.3M的内存,然后再把这块内存拷贝到framebuffer中。
一、概述Framebuffer(帧缓冲)是计算机图形学中的重要概念,它指的是将图形数据存储在内存中的一块缓冲区,用于在显示设备上显示图像。
而FPGA(Field Programmable Gate Array)则是一种灵活可编程的逻辑芯片,能够根据需求进行重构,可用于实现各种硬件系统。
本文将探讨如何利用FPGA实现framebuffer的原理。
二、framebuffer原理1. 存储结构在FPGA中实现framebuffer需要考虑如何存储图像数据。
通常情况下,可以使用双缓冲区来存储图像数据,这样可以在显示图像的同时对后台进行图像数据的更新。
每个像素点的颜色数据通常以RGB格式进行存储,而在FPGA中可以使用BRAM(Block RAM)来实现图像数据的存储。
2. 显示控制FPGA需要实现显示控制器来控制图像数据的输出。
显示控制器需要对时序进行精确的控制,将图像数据按照固定的频率输出到显示设备上。
需要考虑显示设备的分辨率和刷新率,确保输出的图像在显示设备上能够正确显示。
3. 数据传输当图像数据需要从主机系统传输到FPGA中时,需要考虑数据传输的速率和稳定性。
可以使用串行通信接口如MIPI或者并行接口如LVDS等方式来进行数据传输。
三、FPGA实现framebuffer的优势1. 灵活性FPGA是一种可编程的逻辑芯片,能够根据需求进行灵活的重构。
利用FPGA实现framebuffer可以根据具体的应用需求进行定制化设计,以满足不同的图像处理需求。
2. 高性能FPGA拥有并行处理能力强的优势,能够快速处理大规模的图像数据。
通过合理的设计,能够在FPGA上实现高性能的图像处理和显示。
3. 低功耗和传统的图像处理芯片相比,FPGA在处理同等任务时具有较低的功耗。
利用FPGA实现framebuffer可以在保证性能的同时降低能耗。
四、FPGA实现framebuffer的应用1. 嵌入式图像处理利用FPGA实现framebuffer可以用于嵌入式图像处理系统中,如医疗影像设备、工业检测设备等,能够实现实时的图像采集、处理和显示。
framebuffer 编程(原创实用版)目录1.framebuffer 概述2.framebuffer 编程的基本原理3.framebuffer 编程的步骤4.framebuffer 编程的实例5.framebuffer 编程的优缺点正文【1.framebuffer 概述】Framebuffer(帧缓冲区),也被称为显存,是计算机图形学中的一种存储设备,主要用于暂时存储显卡生成的图像。
Framebuffer 是一个高分辨率的缓冲区,可以存储屏幕上的所有像素。
它主要用于将计算机生成的二维图像转换为显示器可以识别的信号,以便在屏幕上显示。
【2.framebuffer 编程的基本原理】Framebuffer 编程的基本原理是通过编程控制显卡的帧缓冲区,从而实现对图像的控制。
它主要包括以下几个步骤:1.配置 framebuffer:设置 framebuffer 的属性,如宽度、高度、颜色深度等。
2.将图像数据写入 framebuffer:通过显卡的命令将图像数据写入framebuffer。
3.提交 framebuffer:将 framebuffer 中的数据提交给显卡,开始渲染。
【3.framebuffer 编程的步骤】Framebuffer 编程的基本步骤如下:1.初始化 framebuffer:首先,需要初始化 framebuffer,包括分配内存、设置属性等。
2.绑定 framebuffer:将 framebuffer 绑定到特定的渲染管线。
3.写入图像数据:通过显卡的命令将图像数据写入 framebuffer。
4.提交 framebuffer:将 framebuffer 中的数据提交给显卡,开始渲染。
5.释放 framebuffer:渲染完成后,需要释放 framebuffer。
【4.framebuffer 编程的实例】以下是一个简单的 framebuffer 编程实例:```c#include <GL/glut.h>void display() {glClear(GL_COLOR_BUFFER_BIT); // 清除颜色缓冲区glLoadIdentity(); // 重置变换矩阵glOrtho(0, glutGet(GL_WIDTH), glutGet(GL_HEIGHT), 0, -1, 1); // 设置透视投影矩阵glBegin(GL_QUADS); // 开始绘制四边形glColor3f(1.0, 0.0, 0.0); // 设置颜色为红色glVertex2f(-0.5, -0.5); // 绘制左下角glVertex2f(0.5, -0.5); // 绘制右上角glVertex2f(0.5, 0.5); // 绘制右上角glVertex2f(-0.5, 0.5); // 绘制左上角glEnd(); // 结束绘制glFlush(); // 提交绘制结果}int main(int argc, char** argv) {glutInit(&argc, argv);glutCreateWindow("Framebuffer Programming");glutDisplayFunc(display);glutMainLoop();return 0;}```【5.framebuffer 编程的优缺点】Framebuffer 编程的优点:1.灵活性:framebuffer 编程可以实现对图像的精确控制,包括颜色、亮度、对比度等。
Linux FrameBuffer双缓冲区原理是:所有画图操作将它们画图的结果保存在一块系统内存区域中,这块区域通常被称作“后缓冲区(backbuffer)”,当所有的绘图操作结束之后,将整块区域复制到显示内存中,这个复制操作通常要跟显示器的光栈束同步,以避免撕裂。
FrameBuffer是出现在2.2.xx内核当中的一种驱动程序接口。
Linux是工作在保护模式下,所以用户态进程是无法象DOS那样使用显卡BIOS里提供的中断调用来实现直接写屏,Linux 抽象出FrameBuffer这个设备来供用户态进程实现直接写屏。
但FrameBuffer本身不具备任何运算数据的能力,中间不会对数据做处理,所有显示任务都有CPU完成,因此CPU负担很重。
双缓存之前在做小游戏时经常会遇到画面出现闪烁的情况,相信很多朋友在学习VC的路上都做过类似Windows画图的程序,在设计橡皮线时候也会遇到闪烁。
究其原因,是贴图的方法欠妥造成的。
在此将介绍一下如何使用缓存方法来消除烦人的闪烁现象。
游戏中的画面动作原理就是按照预先设定的帧频(如20帧/秒),将游戏中的背景及子画面全部按照各自的坐标进行重绘。
当按键或操作使得子画面坐标改变,一帧一帧的重绘累加出来的效果就是子画面的移动。
最常使人想到的方法就是在游戏窗体上直接进行绘制:按照先画背景图然后子画面(移动的物体)的顺序直接将图片绘制在窗体上,这样就会产生恼人的闪烁。
就好象在一部电影里每隔一帧插入一个空白图像,即使电影播放速度够快也一样会看到明显的闪烁。
经过查阅资料,发现使用一种缓存的方法能够有效消除闪烁。
关键点就是不直接在窗体上作画,而是首先将背景图、子画面...等等所有这一帧要画的东西全部画在内存中定义好的一个空白Bmp图像上,再将已经画好的这一帧图像从内存中转移到屏幕上。
如此,画面不再闪烁!请看下面的例子:可以受键盘控制的UFO。
(片段)***************************前言***************************************************为了方便Bitmap操作,假定我先有一个类名为Bitmap,定义如下:(不用深究此类,粗略看,只注意Draw函数)class Bitmap{protected:HBITMAP m_hBitmap;int m_iWidth, m_iHeight;void Free();public:// Constructor(s)/DestructorBitmap();Bitmap(HDC hDC, LPTSTR szFileName);Bitmap(HDC hDC, UINT uiResID, HINSTANCE hInstance);Bitmap(HDC hDC, int iWidth, int iHeight, COLORREF crColor = RGB(0, 0, 0));virtual ~Bitmap();// General MethodsBOOL Create(HDC hDC, LPTSTR szFileName);BOOL Create(HDC hDC, UINT uiResID, HINSTANCE hInstance);BOOL Create(HDC hDC, int iWidth, int iHeight, COLORREF crColor); void Draw(HDC hDC, int x, int y, BOOL bTrans = FALSE, COLORREF crTransColor = RGB(255, 0, 255));int GetWidth() { return m_iWidth; };int GetHeight() { return m_iHeight; };};//注意其中的Draw函数,其实就是封装了BitBlt() 与TransparentBlt()函数void Bitmap::Draw(HDC hDC, int x, int y, BOOL bTrans, COLORREF crTransColor){if (m_hBitmap != NULL){// 创建要贴图像的缓存。
framebuffer的配置方法在console模式(也就上文本显示,也是text模式),说直接一点,就是全屏是黑色的,象DOS那样的界面的,在桌面环境下,按CTRL+ALT+F2 或者F3 等,就进入console模式了。
就是完全文本命令操作的那种非图形桌面环境。
用 framebuffer 驱动及配置,主要是能让text模式下找到更适合的观感。
一、让console 模式下分辨率起作用的主要配置文件是 lilo.conf 或者 grub.conf , lilo.conf 是lilo系统引导管理器的配置文件,如果您用这个来引导系统,就要配置 lilo.conf文件;grub.conf 是另一个系统引导管理器grub的配置文件。
这两个系统引导管理器,其作用是一样的,只是实现的方法不太一样。
这两个管理器不能同时使用。
二、framebuffer console的参数如下,主要是分辨率;# Colours 640x480 800x600 1024x768 1280x1024 16 00x1200# --------+---------------------------------------------# 256 | 769 771 773 775 796# 32,768 | 784 787 790 793 797# 65,536 | 785 788 791 794 798# 16.8M | 786 789 792 795 799如果看不懂上面的这个,就看下面的这个,对照着看吧# Normal VGA console# vga = normal# VESA framebuffer console @ 1024x768x64k# vga=791# VESA framebuffer console @ 1024x768x32k# vga=790# VESA framebuffer console @ 1024x768x256# vga=773# VESA framebuffer console @ 800x600x64k# vga=788# VESA framebuffer console @ 800x600x32k# vga=787# VESA framebuffer console @ 800x600x256# vga=771# VESA framebuffer console @ 640x480x64k# vga=785# VESA framebuffer console @ 640x480x32k# vga=784# VESA framebuffer console @ 640x480x256# vga=769三、配置[对于大多数Linux发行版,如果您是用系统自带的内核,内核是支持framebuffer 驱动的。
uClinux的framebuffer简介如何配置framebuffer面的内容主要是关于framebuffer 的一些知识,主要是根据我们实际开发过程中的一些体会,其中难免错漏之处,欢迎指正。
什么是framebuffer 设备framebuffer 是一种能够提取图形的硬件设备,是用户进入图形界面很好的接口。
有了framebuffer,用户的应用程序不需要对底层的驱动的深入了解就能够做出很好的图形。
对于用户而言,它和/dev 下面的其他设备没有什么区别,用户可以把framebuffer 看成一块内存,既可以向这块内存中写入数据,也可以从这块内存中读取数据。
第一个被注册的framebuffer 的minor 等于0,第二个被注册的framebuffer的minor 等于1,以此类推。
framebuffer 内部结构数据结构:framebuffer 设备很大程度上依靠了下面四个数据结构。
这三个结构在fb.h 中声明。
Struct fb_var_screeninfoStruct fb_fix_screeninfoStruct fb_info第一个结构是用来描述图形卡的特性的。
通常是被用户设置的。
第二个结构定义了图形卡的硬件特性,是不能改变的,用户选定了哪一个图形卡,那么它的硬件特性也就定下来了。
第三个结构定义了当前图形卡framebuffer 设备的独立状态,一个图形卡可能有两个framebuffer,在这种情况下,就需要两个fb_info 结构。
这个结构是唯一在内核空间可见的。
设计自己的framebuffer 设备驱动用户首先需要添加下面的代码到fbmem.cstatic struct {const char *name;int (*init)(void);int (*setup)(char*);} fb_drivers[] __initdata = {#ifdef CONFIG_FB_YOURCARD{ "driver_name", xxxfb_init, xxxfb_setup },#endif其次在xxfb.c 中根据自己的需要重新分配显存大小。
framebuffer设备原理FrameBuffer是一种用于图形显示的设备,它作为计算机系统中的一个重要组成部分,用于控制显示器显示图像。
在现代计算机体系结构中,FrameBuffer被广泛应用于图像处理、计算机游戏和图形用户界面等领域。
FrameBuffer设备原理涉及到了显示器、图像数据存储和显示控制等多个方面。
让我们逐步来了解FrameBuffer设备的原理。
首先,我们需要了解FrameBuffer是什么。
FrameBuffer实际上是指一块内存区域,用于存储和管理图像数据。
这块内存被分割成一系列的单元,每个单元都对应屏幕上的一个像素点。
每个像素点的颜色信息都会被存储在FrameBuffer中。
FrameBuffer设备通过显示控制器来控制图像在显示器上的显示。
显示控制器连接着FrameBuffer设备和显示器,负责将FrameBuffer中的图像数据转换成电子信号发送给显示器。
实际上,显示控制器将FrameBuffer中的二进制图像数据转换为模拟信号,通过显示器上的像素点来显示图像。
在显示控制器中,最关键的部分是时序控制电路。
时序控制电路负责生成与显示器参数匹配的时钟信号,以确保每个像素点按照正确的时间顺序接收到正确的图像数据。
时序控制电路还会根据显示器的分辨率和刷新率等参数来确定显示图像的频率。
为了保证图像的质量和平滑度,FrameBuffer设备通常会具备高的色彩深度,即每个像素点可以表示的颜色种类数量。
常见的色彩深度有16位、24位和32位。
高色彩深度可以更精确地表示颜色,使得图像更加真实和细腻。
当用户在计算机上进行图形操作时,如打开应用程序、拖动窗口或者播放视频,操作系统会将相应的图像数据传输到FrameBuffer设备中。
操作系统通过设备驱动程序来控制FrameBuffer设备。
设备驱动程序是连接操作系统和硬件设备的桥梁,它将图像数据传输到FrameBuffer,并通知显示控制器开始显示图像。
Android图形系统的分析与移植--七、双缓冲framebuffer的实
现
1 实现原理
在基本的FrameBuffer已经实现的基础上,需要实现的是与Android原本模拟器所使用的goldfish FrameBuffer之间的区别。
比较一下不难发现,从以下及方面着手:
1. 修改初始化FrameBuffer信息;
2. 分配FrameBuffer内存
3. 实现双缓冲操作函数
下面简单介绍一下实现过程。
2 初始化FrameBuffer信息
FrameBuffer信息主要保存在fb_info这个数据结构中,修改如下:
struct fb_info*fbinfo;
...
fbinfo->fix.ypanstep = 1;
fbinfo->var.yres_virtual = gm->lcd.yres * 2;
fbinfo->fix.smem_len = (gm->lcd.xres*gm->lcd.yres *gm->lcd.bpp / 8) * 2;
3 分配FrameBuffer内存
内存大小控制主要mvfb_info这个数据结构中,修改如下:
struct mvfb_info*fbi;
...
fbi->map_size= PAGE_ALIGN(fbi->fb->fix.smem_len + PAGE_SIZE);
fbi->map_cpu =dma_alloc_writecombine(fbi->dev, fbi->map_size,
&fbi->map_dma, GFP_KERNEL);
4 实现双缓冲操作函数fb_pan_display
首先,实现双缓冲操作函数:
static intmvfb_pan_display(struct fb_var_screeninfo *var, struct fb_info *fb)
{
...
}
FrameBuffer所有的操作函数都保存在fb_ops数据结构中,所以,将上述操作函数添加到此数据结构中:
static structfb_ops mvfb_ops = {
.owner =THIS_MODULE,
.fb_check_var = mvfb_check_var,
.fb_set_par = mvfb_set_par,
.fb_setcolreg = mvfb_setcolreg,
.fb_blank = mvfb_blank,
.fb_pan_display = mvfb_pan_display,
.fb_fillrect = cfb_fillrect,
.fb_copyarea = cfb_copyarea,
.fb_imageblit = cfb_imageblit,
.fb_mmap = mvfb_mmap,
};
经过以上四步,双缓冲FrameBuffer就可以移植成功了,当然,上述只是简单地描述了一下移植的步骤,具体细节没有展开。
/louiswangbing/article/details/6606849。