新人教版九年级数学上学期期末复习知识点填空(最佳、最优、最全、最有效)
- 格式:doc
- 大小:941.00 KB
- 文档页数:5
新人教版九年级上册数学知识点归纳第二十一章一元二次方程21.1 一元二次方程在一个等式中,只含有一个未知数,且未知数的最高次数是2次的整式方程叫做一元二次方程。
一元二次方程有四个特点:(1)只含有一个未知数;(2)且未知数次数最高次数是2;(3)是整式方程.要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理.如果能整理为 ax2+bx+c=0(a≠0)的形式,则这个方程就为一元二次方程.(4)将方程化为一般形式:ax2+bx+c=0时,应满足(a≠0)21.2 降次——解一元二次方程解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。
一元二次方程有四种解法:1、直接开平方法:用直接开平方法解形如(x-m)2=n (n≥0)的方程,其解为x= .直接开平方法就是平方的逆运算.通常用根号表示其运算结果.2、配方法通过配成完全平方式的方法,得到一元二次方程的根的方法。
这种解一元二次方程的方法称为配方法,配方的依据是完全平方公式。
1.转化:将此一元二次方程化为ax2+bx+c=0的形式(即一元二次方程的一般形式)2.系数化1:将二次项系数化为13.移项:将常数项移到等号右侧4.配方:等号左右两边同时加上一次项系数一半的平方5.变形:将等号左边的代数式写成完全平方形式6.开方:左右同时开平方7.求解:整理即可得到原方程的根3、公式法公式法:把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac≥0时,把各项系数a, b, c的值代入求根公式x=(b2-4ac≥0)就可得到方程的根。
求根公式是。
因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根。
这种解一元二次方程的方法叫做因式分解法。
21.3 实际问题与一元二次方程列一元二次方程解应用题是列一元一次方程解应用题的继续和发展从列方程解应用题的方法来讲,列出一元二次方程解应用题与列出一元一次方程解应用题是非常相似的,由于一元一次方程未知数是一次,因此这类问题大部分都可通过算术方法来解决.如果未知数出现二次,用算术方法就很困难了,正由于未知数是二次的,所以可以用一元二次方程解决有关面积问题,经过两次增长的平均增长率问题,数学问题中涉及积的一些问题,经营决策问题等等.第二十二章 二次函数22.1二次函数及其图像二次函数(quadratic function )是指未知数的最高次数为二次的多项式函数。
提高数学成绩的“五条途径”1、按部就班数学是环环相扣的一门学科,哪一个环节脱节都会影响整个学习的进程。
所以,平时学习不应贪快,要一章一章过关,不要轻易留下自己不明白或者理解不深刻的问题。
2、强调理解概念、定理、公式要在理解的基础上记忆。
每新学一个定理,尝试先不看答案,做一次例题,看是否能正确运用新定理;若不行,则对照答案,加深对定理的理解。
3、基本训练学习数学是不能缺少训练的,平时多做一些难度适中的练习,当然莫要陷入死钻难题的误区,要熟悉高考的题型,训练要做到有的放矢。
4、重视平时考试出现的错误。
定一个错题本,专门搜集自己的错题,这些往往就是自己的薄弱之处。
复习时,这个错题本也就成了宝贵的复习资料。
5、重视课本习题训练。
数学的学习有一个循序渐进的过程,妄想一步登天是不现实的。
熟记书本内容后将书后习题认真写好,有些同学可能认为书后习题太简单不值得做,这种想法是极不可取的,书后习题的作用不仅帮助你将书本内容记牢,还辅助你将书写格式规范化,从而使自己的解题结构紧密而又严整,公式定理能够运用的恰如其分,以减少考试中无谓的失分。
快速提高数学成绩的“五大攻略”攻略一:概念记清,基础夯实。
数学≠做题,千万不要忽视最基本的概念、公理、定理和公式,特别是“不定项选择题”就要靠清晰的概念来明辨对错,如果概念不清就会感觉模棱两可,最终造成误选。
因此,要把已经学过的教科书中的概念整理出来,通过读一读、抄一抄加深印象,特别是容易混淆的概念更要彻底搞清,不留隐患。
攻略二:适当做题,巧做为王。
有的同学埋头题海苦苦挣扎,辅导书做掉一大堆却鲜有提高,这就是陷入了做题的误区。
数学需要实践,需要大量做题,但要“埋下头去做题,抬起头来想题”,在做题中关注思路、方法、技巧,要“苦做”更要“巧做”。
考试中时间最宝贵,掌握了好的思路、方法、技巧,不仅解题速度快,而且也不容易犯错。
攻略三:前后联系,纵横贯通。
在做题中要注重发现题与题之间的内在联系,绝不能“傻做”。
最新人教版九年级数学上册知识点总结全套数学上册知识点总结21.1 一元二次方程知识点一:一元二次方程的定义一元二次方程是指等号两边都是只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程。
注意以下几点:①只含有一个未知数;②未知数的最高次数是2;③是整式方程。
知识点二:一元二次方程的一般形式一元二次方程的一般形式为ax2+ bx + c = 0(a≠0)。
其中,ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项。
知识点三:一元二次方程的根一元二次方程的根是指使方程左右两边相等的未知数的值。
方程的解的定义是解方程过程中验根的依据。
21.2 降次——解一元二次方程21.2.1 配方法知识点一:直接开平方法解一元二次方程1)如果方程的一边可以化成含未知数的代数式的平方,另一边是非负数,可以直接开平方。
对于形如x2=a(a≥0)的方程,根据平方根的定义可解得x1=a,x2=a。
2)直接开平方法适用于解形如x2=p或(mx+a)2=p(m≠0)形式的方程,如果p≥0,就可以利用直接开平方法。
3)用直接开平方法求一元二次方程的根,要正确运用平方根的性质,即正数的平方根有两个,它们互为相反数;零的平方根是零;负数没有平方根。
4)直接开平方法解一元二次方程的步骤是:①移项;②使二次项系数或含有未知数的式子的平方项的系数为1;③两边直接开平方,使原方程变为两个一元二次方程;④解一元一次方程,求出原方程的根。
知识点二:配方法解一元二次方程通过配成完全平方形式来解一元二次方程的方法,叫做配方法,配方的目的是降次,把一个一元二次方程转化为两个一元一次方程来解。
配方法的一般步骤可以总结为:①把常数项移到等号的右边;②方程两边都除以二次项系数;③方程两边都加上一次项系数一半的平方,把左边配成完全平方式;④若等号右边为非负数,直接开平方求出方程的解。
21.2.2 公式法知识点一:公式法解一元二次方程一般地,对于一元二次方程ax2+bx+c=0(a≠0),如果b2-4ac≥0,那么方程的两个根为x=b±b2-4ac2a,这个公式叫做一元二次方程的求根公式。
人教版九年级上册数学期末填空题专项训练及答案你能填得又快又准吗?(共8小题,每题4分,共32分)11.(4分)反比例函数的图象在一、三象限,则k应满足.12.(4分)把一个三角形改做成和它相似的三角形,如果面积缩小到原来的倍,那么边长应缩小到原来的倍.13.(4分)已知一元二次方程(a﹣1)x2+7ax+a2+3a﹣4=0有一个根为零,则a 的值为.14.(4分)已知==,则=.15.(4分)如图,双曲线上有一点A,过点A作AB⊥x轴于点B,△AOB的面积为2,则该双曲线的表达式为.16.(4分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,若AD=1,BD=4,则CD=.17.(4分)如图,在梯形ABCD中,AD∥BC,AC,BD交于点O,S△AOD:S△COB=1:9,则S△DOC:S△BOC=.18.(4分)如图,在△ABC中,点D、E分别在AB、AC上,DE∥BC.若AD=4,DB=2,则的值为.填空题(本大题满16分,每小题4分)15.(4分)计算:=.16.(4分)一个矩形的面积为(6ab2+4a2b)cm2,一边长为2abcm,则它的周长为cm.17.(4分)等腰三角形一个顶角和一个底角之和是100°,则顶角等于.18.(4分)下列图形中对称轴最多的是.填空题:每小题3分,共18分.11.(3分)用配方法解方程x2﹣2x﹣7=0时,配方后的形式为.12.(3分)如图,把△ABC绕点A逆时针旋转42°,得到△AB′C′,点C′恰好落在边AB上,连接BB′,则∠B′BC′的大小为.13.(3分)如图,点P在反比例函数y=(x<0)的图象上,PA⊥x轴于点A,△PAO的面积为5,则k的值为.14.(3分)将半径为5的圆形纸片,按如图方式折叠,若和都经过圆心O,则图中阴影部分的面积是.15.(3分)如图,一次函数y1=k1+b与反比例函数y2=的图象相交于A(﹣1,2)、B(2,﹣1)两点,则y2<y1时,x的取值范围是.16.(3分)如图,直线y=x﹣4与x轴、y轴分别交于M、N两点,⊙O的半径为2,将⊙O以每秒1个单位的速度向右作平移运动,当移动时间秒时,直线MN恰好与圆相切.参考答案你能填得又快又准吗?(共8小题,每题4分,共32分)11.(4分)反比例函数的图象在一、三象限,则k应满足k>﹣2.【考点】反比例函数的性质.【分析】由于反比例函数的图象在一、三象限内,则k+2>0,解得k的取值范围即可.【解答】解:由题意得,反比例函数的图象在二、四象限内,则k+2>0,解得k>﹣2.故答案为k>﹣2.【点评】本题考查了反比例函数的性质,重点是注意y=(k≠0)中k的取值,①当k>0时,反比例函数的图象位于一、三象限;②当k<0时,反比例函数的图象位于二、四象限.12.(4分)把一个三角形改做成和它相似的三角形,如果面积缩小到原来的倍,那么边长应缩小到原来的倍.【考点】相似三角形的性质.【分析】根据相似三角形面积的比等于相似比的平方解答即可.【解答】解:∵改做的三角形与原三角形相似,且面积缩小到原来的倍,∴边长应缩小到原来的倍.故答案为:.【点评】本题考查了相似三角形面积的比等于相似比的平方的性质,熟记性质是解题的关键.13.(4分)已知一元二次方程(a﹣1)x2+7ax+a2+3a﹣4=0有一个根为零,则a 的值为﹣4.【考点】一元二次方程的解;一元二次方程的定义.【分析】一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值,即用这个数代替未知数所得式子仍然成立;将x=0代入原方程即可求得a的值.【解答】解:把x=0代入一元二次方程(a﹣1)x2+7ax+a2+3a﹣4=0,可得a2+3a﹣4=0,解得a=﹣4或a=1,∵二次项系数a﹣1≠0,∴a≠1,∴a=﹣4.故答案为:﹣4.【点评】本题逆用一元二次方程解的定义易得出a的值,但不能忽视一元二次方程成立的条件a﹣1≠0,因此在解题时要重视解题思路的逆向分析.14.(4分)已知==,则=.【考点】比例的性质.【分析】根据已知比例关系,用未知量k分别表示出a、b和c的值,代入原式中,化简即可得到结果.【解答】解:设===k,∴a=5k,b=3k,c=4k,∴===,故答案为:.【点评】本题考查了比例的性质,熟练掌握比例的性质是解题的关键.15.(4分)如图,双曲线上有一点A,过点A作AB⊥x轴于点B,△AOB的面积为2,则该双曲线的表达式为y=﹣.【考点】反比例函数系数k的几何意义.【专题】压轴题;数形结合.=2求【分析】先根据反比例函数图象所在的象限判断出k的符号,再根据S△AOB出k的值即可.【解答】解:∵反比例函数的图象在二、四象限,∴k<0,∵S=2,∴|k|=4,∴k=﹣4,即可得双曲线的表达式为:y=﹣,△AOB故答案为:y=﹣.【点评】本题考查的是反比例系数k的几何意义,即在反比例函数的图象上任意一点象坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是,且保持不变.16.(4分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,若AD=1,BD=4,则CD=2.【考点】相似三角形的判定与性质.【分析】首先证△ACD∽△CBD,然后根据相似三角形的对应边成比例求出CD 的长.【解答】解:Rt△ACB中,∠ACB=90°,CD⊥AB;∴∠ACD=∠B=90°﹣∠A;又∵∠ADC=∠CDB=90°,∴△ACD ∽△CBD ;∴CD 2=AD•BD=4,即CD=2.【点评】此题主要考查的是相似三角形的判定和性质.17.(4分)如图,在梯形ABCD 中,AD ∥BC ,AC ,BD 交于点O ,S △AOD :S △COB =1:9,则S △DOC :S △BOC = 1:3 .【考点】相似三角形的判定与性质;梯形.【专题】压轴题.【分析】根据在梯形ABCD 中,AD ∥BC ,AC ,易得△AOD ∽△COB ,且S △AOD :S △COB =1:9,可求=,则S △AOD :S △DOC =1:3,所以S △DOC :S △BOC =1:3.【解答】解:根据题意,AD ∥BC∴△AOD ∽△COB∵S △AOD :S △COB =1:9∴=则S △AOD :S △DOC =1:3所以S △DOC :S △BOC =3:9=1:3.【点评】本题主要考查了相似三角形的性质,相似三角形面积的比等于相似比的平方.18.(4分)如图,在△ABC 中,点D 、E 分别在AB 、AC 上,DE ∥BC .若AD=4,DB=2,则的值为 .【考点】相似三角形的判定与性质.【分析】由AD=3,DB=2,即可求得AB的长,又由DE∥BC,根据平行线分线段成比例定理,可得DE:BC=AD:AB,则可求得答案.【解答】解:∵AD=4,DB=2,∴AB=AD+BD=4+2=6,∵DE∥BC,△ADE∽△ABC,∴=,故答案为:.【点评】此题考查了平行线分线段成比例定理.此题比较简单,注意掌握比例线段的对应关系是解此题的关键.填空题(本大题满16分,每小题4分)15.(4分)计算:=﹣1.【考点】分式的加减法.【分析】应用同分母分式的加减运算法则求解即可求得答案,注意要化简.【解答】解:==﹣1.故答案为:﹣1.【点评】此题考查了同分母分式的加减运算法则.题目比较简单,解题需细心.16.(4分)一个矩形的面积为(6ab2+4a2b)cm2,一边长为2abcm,则它的周长为4ab+4a+6b cm.【考点】整式的除法;单项式乘多项式.【专题】计算题;几何图形问题.【分析】先根据矩形的面积公式求出另一边的长,再根据矩形的周长=2×(长+宽)列式,通过计算即可得出结果.【解答】解:(6ab2+4a2b)÷2ab=3b+2a,2×(2ab+3b+2a)=4ab+4a+6b.故答案为:4ab+4a+6b.【点评】此题考查了多项式除以单项式、单项式乘多项式在实际中的应用.求出矩形的另一边长是解题的关键.用到的知识点:矩形的面积=长×宽,矩形的周长=2×(长+宽).多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加.单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.17.(4分)等腰三角形一个顶角和一个底角之和是100°,则顶角等于20°.【考点】等腰三角形的性质.【分析】已知给出了两角的和,可根据三角形内角和定理求出另一个底角,再相减即可求出顶角.【解答】解:依题意得:等腰三角形的顶角和一个底角的和是100°即它的另一个底角为180°﹣100°=80°∵等腰三角形的底角相等故它的一个顶角等于100°﹣80°=20°.故答案为:20°.【点评】本题考查了三角形内角和定理以及等腰三角形的性质;本题思路比较直接,简单,属于基础题.18.(4分)下列图形中对称轴最多的是圆.【考点】轴对称图形.【分析】直接得出各图形的对称轴条数,进而得出答案.【解答】解:正方形有4条对称轴;长方形有2条对称轴;圆有无数条对称轴;线段有2条对称轴.故对称轴最多的是圆.故答案为:圆.【点评】此题主要考查了轴对称图形,正确得出各图形对称轴条数是解题关键.填空题:每小题3分,共18分.11.(3分)用配方法解方程x2﹣2x﹣7=0时,配方后的形式为(x﹣1)2=8.【考点】解一元二次方程-配方法.【分析】将常数项移至右边,根据等式性质左右两边配上一次项系数一半的平方,再写成完全平方形式即可.【解答】解:x2﹣2x=7,x2﹣2x+1=7+1,(x﹣1)2=8,故答案为:(x﹣1)2=8.【点评】本题考查配方法解一元二次方程,形如x2+px+q=0型:第一步移项,把常数项移到右边;第二步配方,左右两边加上一次项系数一半的平方;第三步左边写成完全平方式.12.(3分)如图,把△ABC绕点A逆时针旋转42°,得到△AB′C′,点C′恰好落在边AB上,连接BB′,则∠B′BC′的大小为69°.【考点】旋转的性质.【分析】由旋转的性质可知AB=AB′,∠BAB′=42°,接下来,依据等腰三角形的性质和三角形的内角和定理可求得∠B′BC′的大小.【解答】解:∵把△ABC绕点A逆时针旋转42°,得到△AB′C′,点C′恰好落在边AB上,∴∠BAB′=42°,AB=AB′.∴∠AB′B=∠ABB′.∴∠B′BC′=(180°﹣42°)=69°.故答案为:69°.【点评】本题主要考查的是旋转的性质、等腰三角形的性质、三角形的内角和定理,证得△ABB′是等腰三角形是解题的关键.13.(3分)如图,点P在反比例函数y=(x<0)的图象上,PA⊥x轴于点A,△PAO的面积为5,则k的值为﹣10.【考点】反比例函数系数k的几何意义.【分析】由△PAO的面积为5可得|k|=5,再结合图象经过的是第二象限,从而可以确定k值.=5,【解答】解:∵S△PAO∴|x•y|=5,即|k|=5,则|k|=10∵图象经过第二象限,∴k<0,∴k=﹣10【点评】本题主要考查了反比例函数y=中k的几何意义,解题的关键是要明确过双曲线上任意一点引x轴、y轴垂线,所得三角形面积为|k|.14.(3分)将半径为5的圆形纸片,按如图方式折叠,若和都经过圆心O,则图中阴影部分的面积是π.【考点】翻折变换(折叠问题).【分析】作OD⊥AB于点D,连接AO,BO,CO,求出∠OAD=30°,得到∠AOB=2∠AOD=120°,进而求得∠AOC=120°,再利用阴影部分的面积=S求解.扇形AOC【解答】解;如图,作OD⊥AB于点D,连接AO,BO,CO,∵OD=AO,∴∠OAD=30°,∴∠AOB=2∠AOD=120°,同理∠BOC=120°,∴∠AOC=120°,==π.∴阴影部分的面积=S扇形AOC故答案为:π【点评】本题考查的是翻折变换的性质和扇形面积的计算,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.15.(3分)如图,一次函数y1=k1+b与反比例函数y2=的图象相交于A(﹣1,2)、B(2,﹣1)两点,则y2<y1时,x的取值范围是x<﹣1或0<x<2.【考点】反比例函数与一次函数的交点问题.【分析】根据一次函数与反比例函数图象的交点、结合图象解答即可.【解答】解:由图象可知,当﹣1<x<0或x>3时,y1<y2,当x<﹣1或0<x<2时,y2<y1,故答案为x<﹣1或0<x<2.【点评】本题考查的是一次函数与反比例函数的交点问题,掌握反比例函数图象上点的坐标特征、灵活运用数形结合思想是解题的关键.16.(3分)如图,直线y=x﹣4与x轴、y轴分别交于M、N两点,⊙O的半径为2,将⊙O以每秒1个单位的速度向右作平移运动,当移动时间4﹣2或4+2秒时,直线MN恰好与圆相切.【考点】直线与圆的位置关系;一次函数图象上点的坐标特征;平移的性质.【分析】作EF平行于MN,且与⊙O切,交x轴于点E,交y轴于点F,设直线EF的解析式为y=x+b,由⊙O与直线EF相切结合三角形的面积即可得出关于b 的含绝对值符号的一元一次方程,解方程即可求b值,从而得出点E的坐标,根据运动的相对性,即可得出结论.【解答】解:作EF平行于MN,且与⊙O切,交x轴于点E,交y轴于点F,如图所示.设直线EF的解析式为y=x+b,即x﹣y+b=0,∵EF与⊙O相切,且⊙O的半径为2,∴b2=×2×|b|,解得:b=2或b=﹣2,∴直线EF的解析式为y=x+2或y=x﹣2,∴点E的坐标为(2,0)或(﹣2,0).令y=x﹣4中y=0,则x=4,∴点M(4,0).∵根据运动的相对性,且⊙O以每秒1个单位的速度向右作平移运动,∴移动的时间为4﹣2秒或4+2秒.故答案为:4﹣2或4+2.【点评】本题考查了直线与圆的位置关系、一次函数图象上点的坐标特征以及平移的性质,解题的关键是求出点E、M的坐标.本题属于中档题,难度不大,解决该题时,巧妙的利用运动的相对性变移圆为移直线,降低了解题的难度.。
九年级人教版数学上册期末考知识点编辑短评提高数学考试成绩诀窍方法之一是,在考试前进行高水平高效率的复习和知识点总结,花时间去攻克自己不熟悉的题目,不断地把陌生转化为熟悉。
下面提供九年级人教版数学上册期末考知识点给教师和学生,仅供学习参考!前言下载提示:经验是数学的基础,问题是数学的心脏,思考是数学的核心,发展是数学的目标,思想方法是数学的灵魂。
Download tips:Experience is the foundation of mathematics, problems are the heart of mathematics, thinking is the core of mathematics, development is the goal of mathematics, and methods of thinking are the soul of mathematics.九年级人教版数学上册期末考知识点:试题及答案试题一、选择题(共8小题,每小题4分,满分32分)1.方程x2﹣3x﹣5=0的根的情况是( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 无法确定是否有实数根2.在Rt△ABC中,∠C=90°,BC=3,AB=5,则sinA的值为( )A. B. C. D.3.若如图是某个几何体的三视图,则这个几何体是( )A. 长方体B. 正方体C. 圆柱D. 圆锥4.小丁去看某场电影,只剩下如图所示的六个空座位供他选择,座位号分别为1号、4号、6号、3号、5号和2号.若小丁从中随机抽取一个,则抽到的座位号是偶数的概率是( )A. B. C. D.5.如图,△ABC和△A1B1C1是以点O为位似中心的位似三角形,若C1为OC的中点,AB=4,则A1B1的长为( )A. 1B. 2C. 4D. 86.已知点A(x1,y1),B(x2,y2)是反比例函数y=﹣的图象上的两点,若x1<0<x2,则下列结论正确的是( )< p="">A. y1<0<y2 p="" y2<y1<0<="" d.="" y1<y2<0="" c.="" y2<07.如图,AB是半圆O的直径,AC为弦,OD⊥AC于D,过点O作OE∥AC交半圆O于点E,过点E作EF⊥AB于F.若AC=2,则OF的长为( )A. B. C. 1 D. 28.如图,在矩形ABCD中,AB<bc,ac,bd交于点o.点e为线段ac上的一个动点,连接de,be,过e作ef⊥bd于f,设ae=x,图1中某条线段的长为y,若表示y与x的函数关系的图象大致如图2所示,则这条线段可能是图1中的( )< p="">A. 线段EFB. 线段DEC. 线段CED. 线段BE二、填空题(共4小题,每小题4分,满分16分)9.如图,已知扇形的半径为3cm,圆心角为120°,则扇形的面积为cm2.(结果保留π)10.在某一时刻,测得一根高为2m的竹竿的影长为1m,同时测得一栋建筑物的影长为12m,那么这栋建筑物的高度为m.11.如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣2,4),B(1,1),则关于x的方程ax2﹣bx﹣c=0的解为.12.对于正整数n,定义F(n)= ,其中f(n)表示n的首位数字、末位数字的平方和.例如:F(6)=62=36,F(123)=f(123)=12+32=10.规定F1(n)=F(n),Fk+1(n)=F(Fk(n)).例如:F1(123)=F(123)=10,F2(123)=F(F1(123))=F(10)=1.(1)求:F2(4)= ,F2015(4)= ;(2)若F3m(4)=89,则正整数m的最小值是.三、解答题(共13小题,满分72分)13.计算:(﹣1)2015+sin30°﹣(π﹣3.14)0+( )﹣1.14.如图,△ABC中,AB=AC,D是BC中点,BE⊥AC于E,求证:△ACD∽△BCE.15.已知m是一元二次方程x2﹣3x﹣2=0的实数根,求代数式的值.16.抛物线y=2x2平移后经过点A(0,3),B(2,3),求平移后的抛物线的表达式.17.如图,在平面直角坐标系xOy中,正比例函数y=2x与反比例函数y= 的图象交于A,B两点,A点的横坐标为2,AC⊥x轴于点C,连接BC.(1)求反比例函数的解析式;(2)若点P是反比例函数y= 图象上的一点,且满足△OPC与△ABC的面积相等,请直接写出点P的坐标.18.如图,△ABC中,∠ACB=90°,sinA= ,BC=8,D是AB中点,过点B作直线CD的垂线,垂足为点E.(1)求线段CD的长;(2)求cos∠ABE的值.19.已知关于x的一元二次方程mx2﹣(m+2)x+2=有两个不相等的实数根x1,x2.(1)求m的取值范围;(2)若x2<0,且 >﹣1,求整数m的值.20.某工厂生产的某种产品按质量分为10个档次,据调查显示,每个档次的日产量及相应的单件利润如表所示(其中x为正整数,且1≤x≤10);质量档次1 2 ... x (10)日产量(件) 95 90 ... 100﹣5x (50)单件利润(万元) 6 8 ... 2x+4 (24)为了便于调控,此工厂每天只生产一个档次的产品,当生产质量档次为x的产品时,当天的利润为y万元.(1)求y关于x的函数关系式;(2)工厂为获得利润,应选择生产哪个档次的产品?并求出当天利润的值.21.如图,四边形ABCD是平行四边形,点A,B,C在⊙O上,AD与⊙O相切,射线AO交BC于点E,交⊙O于点F.点P在射线AO上,且∠PCB=2∠BAF.(1)求证:直线PC是⊙O的切线;(2)若AB= ,AD=2,求线段PC的长.22.阅读下面材料:小明观察一个由1×1正方形点阵组成的点阵图,图中水平与竖直方向上任意两个相邻点间的距离都是1,他发现一个有趣的问题:对于图中出现的任意两条端点在点阵上且互相不垂直的线段,都可以在点阵中找到一点构造垂直,进而求出它们相交所成锐角的正切值.请回答:(1)如图1,A,B,C是点阵中的三个点,请在点阵中找到点D,作出线段CD,使得CD⊥AB;(2)如图2,线段AB与CD交于点O.为了求出∠AOD的正切值,小明在点阵中找到了点E,连接AE,恰好满足AE⊥CD于点F,再作出点阵中的其它线段,就可以构造相似三角形,经过推理和计算能够使问题得到解决.请你帮小明计算:OC= ;tan∠AOD=;解决问题:如图3,计算:t an∠AOD=.23.在平面直角坐标系xOy中,反比例函数y= 的图象经过点A(1,4)、B(m,n).(1)求代数式mn的值;(2)若二次函数y=(x﹣1)2的图象经过点B,求代数式m3n﹣2m2n+3mn ﹣4n的值;(3)若反比例函数y= 的图象与二次函数y=a(x﹣1)2的图象只有一个交点,且该交点在直线y=x的下方,结合函数图象,求a的取值范围.24.如图1,在△ABC中,BC=4,以线段AB为边作△ABD,使得AD=BD,连接DC,再以DC为边作△CDE,使得DC=DE,∠CDE=∠ADB=α.(1)如图2,当∠ABC=45°且α=90°时,用等式表示线段AD,DE之间的数量关系;(2)将线段CB沿着射线CE的方向平移,得到线段EF,连接BF,AF.①若α=90°,依题意补全图3,求线段AF的长;②请直接写出线段AF的长(用含α的式子表示).25.在平面直角坐标系xOy中,设点P(x1,y1),Q(x2,y2)是图形W 上的任意两点.定义图形W的测度面积:若|x1﹣x2|的值为m,|y1﹣y2|的值为n,则S=mn为图形W的测度面积.例如,若图形W是半径为1的⊙O,当P,Q分别是⊙O与x轴的交点时,如图1,|x1﹣x2|取得值,且值m=2;当P,Q分别是⊙O与y轴的交点时,如图2,|y1﹣y2|取得值,且值n=2.则图形W的测度面积S=mn=4(1)若图形W是等腰直角三角形ABO,OA=OB=1.①如图3,当点A,B在坐标轴上时,它的测度面积S= ;②如图4,当AB⊥x轴时,它的测度面积S= ;(2)若图形W是一个边长1的正方形ABCD,则此图形的测度面积S的值为;(3)若图形W是一个边长分别为3和4的矩形ABCD,求它的测度面积S的取值范围.2014-2015学年北京市海淀区九年级(上)期末数学试卷参考答案与试题解析一、选择题(共8小题,每小题4分,满分32分)1.方程x2﹣3x﹣5=0的根的情况是( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 无法确定是否有实数根考点:根的判别式.分析:求出b2﹣4ac的值,再进行判断即可.解答:解:x2﹣3x﹣5=0,△=b2﹣4ac=(﹣3)2﹣4×1×(﹣5)=29>0,所以方程有两个不相等的实数根,故选A.点评:本题考查了一元二次方程的根的判别式的应用,注意:一元二次方程ax2+bx+c=0(a、b、c为常数,a≠0)①当b2﹣4ac>0时,一元二次方程有两个不相等的实数根,②当b2﹣4ac=0时,一元二次方程有两个相等的实数根,③当b2﹣4ac<0时,一元二次方程没有实数根.2.在Rt△ABC中,∠C=90°,BC=3,AB=5,则sinA的值为( )A. B. C. D.考点:锐角三角函数的定义.分析:直接根据三角函数的定义求解即可.解答:解:∵Rt△ABC中,∠C=90°,BC=3,AB=5,∴sinA= = .故选A.点评:此题考查的是锐角三角函数的定义,比较简单,用到的知识点:正弦函数的定义:我们把锐角A的对边a与斜边c的比叫做∠A的正弦,记作sinA.即sinA=∠A的对边:斜边=a:c.3.若如图是某个几何体的三视图,则这个几何体是( )A. 长方体B. 正方体C. 圆柱D. 圆锥考点:由三视图判断几何体.分析:由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.解答:解:主视图和左视图都是等腰三角形,那么此几何体为锥体,由俯视图为圆,可得此几何体为圆锥.故选:D.点评:本题考查的知识点是三视图,如果有两个视图为三角形,该几何体一定是锥,如果有两个矩形,该几何体一定柱,其底面由第三个视图的形状决定.4.小丁去看某场电影,只剩下如图所示的六个空座位供他选择,座位号分别为1号、4号、6号、3号、5号和2号.若小丁从中随机抽取一个,则抽到的座位号是偶数的概率是( )A. B. C. D.考点:概率公式.分析:由六个空座位供他选择,座位号分别为1号、4号、6号、3号、5号和2号,直接利用概率公式求解即可求得答案.解答:解:∵六个空座位供他选择,座位号分别为1号、4号、6号、3号、5号和2号,∴抽到的座位号是偶数的概率是: = .故选C.点评:此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.5.如图,△ABC和△A1B1C1是以点O为位似中心的位似三角形,若C1为OC的中点,AB=4,则A1B1的长为( )A. 1B. 2C. 4D. 8考点:位似变换.专题:计算题.分析:根据位似变换的性质得到 = ,B1C1∥BC,再利用平行线分线段成比例定理得到 = ,所以 = ,然后把OC1= OC,AB=4代入计算即可.解答:解:∵C1为OC的中点,∴OC1= OC,∵△ABC和△A1B1C1是以点O为位似中心的位似三角形,∴ = ,B1C1∥BC,∴ = ,∴ = ,即 =∴A1B1=2.故选B.点评:本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.注意:①两个图形必须是相似形;②对应点的连线都经过同一点;③对应边平行.6.已知点A(x1,y1),B(x2,y2)是反比例函数y=﹣的图象上的两点,若x1<0<x2,则下列结论正确的是( )< p="">A. y1<0<y2 p="" y2<y1<0<="" d.="" y1<y2<0="" c.="" y2<0考点:反比例函数图象上点的坐标特征.专题:计算题.分析:根据反比例函数图象上点的坐标特征得到y1=﹣,y2=﹣,然后利用x1<0<x2即可得到y1与y2的大小.< p="">解答:解:∵A(x1,y1),B(x2,y2)是反比例函数y=﹣的图象上的两点,∴y1=﹣,y2=﹣,∵x1<0<x2,< p="">∴y2<0<y1.< p="">故选B.点评:本题考查了反比例函数图象上点的坐标特征:反比例函数y= (k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.7.如图,AB是半圆O的直径,AC为弦,OD⊥AC于D,过点O作OE∥AC交半圆O于点E,过点E作EF⊥AB于F.若AC=2,则OF的长为( )A. B. C. 1 D. 2考点:垂径定理;全等三角形的判定与性质.分析:根据垂径定理求出AD,证△ADO≌△OF E,推出OF=AD,即可求出答案.解答:解:∵OD⊥AC,AC=2,∴AD=CD=1,∵OD⊥AC,EF⊥AB,∴∠ADO=∠OFE=90°,∵OE∥AC,∴∠DOE=∠ADO=90°,∴∠DAO+∠DOA=90°,∠DOA+∠EF=90°,∴∠DAO=∠EOF,在△ADO和△OFE中,,∴△ADO≌△OFE(AAS),∴OF=AD=1,故选C.点评:本题考查了全等三角形的性质和判定,垂径定理的应用,解此题的关键是求出△ADO≌△OFE和求出AD的长,注意:垂直于弦的直径平分这条弦.8.如图,在矩形ABCD中,AB<bc,ac,bd交于点o.点e为线段ac上的一个动点,连接de,be,过e作ef⊥bd于f,设ae=x,图1中某条线段的长为y,若表示y与x的函数关系的图象大致如图2所示,则这条线段可能是图1中的( )< p="">A. 线段EFB. 线段DEC. 线段CED. 线段BE考点:动点问题的函数图象.分析:作BN⊥AC,垂足为N,FM⊥AC,垂足为M,DG⊥AC,垂足为G,分别找出线段EF、CE、BE最小值出现的时刻即可得出结论.解答:解:作BN⊥AC,垂足为N,FM⊥AC,垂足为M,DG⊥AC,垂足为G.由垂线段最短可知:当点E与点M重合时,即AE< 时,FE有最小值,与函数图象不符,故A错误;由垂线段最短可知:当点E与点G重合时,即AEd> 时,DE有最小值,故B正确;∵CE=AC﹣AE,CE随着AE的增大而减小,故C错误;由垂线段最短可知:当点E与点N重合时,即AE< 时,BE有最小值,与函数图象不符,故D错误;故选:B.点评:本题主要考查的是动点问题的函数图象,根据垂线段最短确定出函数最小值出现的时刻是解题的关键.二、填空题(共4小题,每小题4分,满分16分)9.如图,已知扇形的半径为3cm,圆心角为120°,则扇形的面积为3πcm2.(结果保留π)考点:扇形面积的计算.专题:压轴题.分析:知道扇形半径,圆心角,运用扇形面积公式就能求出.解答:解:由S= 知S= × π×32=3πcm2.点评:本题主要考查扇形面积的计算,知道扇形面积计算公式S= .10.在某一时刻,测得一根高为2m的竹竿的影长为1m,同时测得一栋建筑物的影长为12m,那么这栋建筑物的高度为24 m.考点:相似三角形的应用.分析:根据同时同地的物高与影长成正比列式计算即可得解.解答:解:设这栋建筑物的高度为xm,由题意得, = ,解得x=24,即这栋建筑物的高度为24m.故答案为:24.点评:本题考查了相似三角形的应用,熟记同时同地的物高与影长成正比是解题的关键.11.如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣2,4),B(1,1),则关于x的方程ax2﹣bx﹣c=0的解为x1=﹣2,x2=1 .考点:二次函数的性质.专题:数形结合.分析:根据二次函数图象与一次函数图象的交点问题得到方程组的解为,,于是易得关于x的方程ax2﹣bx﹣c=0的解.解答:解:∵抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣2,4),B(1,1),∴方程组的解为,,即关于x的方程ax2﹣bx﹣c=0的解为x1=﹣2,x2=1.故答案为x1=﹣2,x2=1.点评:本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的顶点坐标是(﹣, ),对称轴直线x=﹣ .也考查了二次函数图象与一次函数图象的交点问题.12.对于正整数n,定义F(n)= ,其中f(n)表示n的首位数字、末位数字的平方和.例如:F(6)=62=36,F(123)=f(123)=12+32=10.规定F1(n)=F(n),Fk+1(n)=F(Fk(n)).例如:F1(123)=F(123)=10,F2(123)=F(F1(123))=F(10)=1.(1)求:F2(4)= 37 ,F2015(4)= 26 ;(2)若F3m(4)=89,则正整数m的最小值是 6 .考点:规律型:数字的变化类.专题:新定义.分析:通过观察前8个数据,可以得出规律,这些数字7个一个循环,根据这些规律计算即可.解答:解:(1)F2(4)=F(F1(4))=F(16)=12+62=37;F1(4)=F(4)=16,F2(4)=37,F3(4)=58,F4(4)=89,F5(4)=145,F6(4)=26,F7(4)=40,F8(4)=16,通过观察发现,这些数字7个一个循环,2015是7的287倍余6,因此F2015(4)=26;(2)由(1)知,这些数字7个一个循环,F4(4)=89=F18(4),因此3m=18,所以m=6.故答案为:(1)37,26;(2)6.点评:本题属于数字变化类的规律探究题,通过观察前几个数据可以得出规律,熟练找出变化规律是解题的关键.三、解答题(共13小题,满分72分)13.计算:(﹣1)2015+sin30°﹣(π﹣3.14)0+( )﹣1.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:原式第一项利用乘方的意义计算,第二项利用特殊角的三角函数值计算,第三项利用零指数幂法则计算,最后一项利用负指数幂法则计算即可.解答:解:原式=﹣1+ ﹣1+2= .点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.14.如图,△ABC中,AB=AC,D是BC中点,BE⊥AC于E,求证:△ACD∽△BCE.考点:相似三角形的判定.专题:证明题.分析:根据等腰三角形的性质,由AB=AC,D是BC中点得到AD⊥BC,易得∠ADC=∠BEC=90°,再加上公共角,于是根据有两组角对应相等的两个三角形相似即可得到结论.解答:证明:∵AB=AC,D是BC中点,∴AD⊥BC,∴∠ADC=90°,∵BE⊥AC,∴∠BEC=90°,∴∠ADC=∠BEC,而∠ACD=∠BCE,∴△ACD∽△BCE.点评:本题考查了相似三角形的判定:有两组角对应相等的两个三角形相似.也考查了等腰三角形的性质.15.已知m是一元二次方程x2﹣3x﹣2=0的实数根,求代数式的值.考点:一元二次方程的解.专题:计算题.分析:把x=m代入方程得到m2﹣2=3m,原式分子利用平方差公式化简,将m2﹣2=3m代入计算即可求出值.解答:解:把x=m代入方程得:m2﹣3m﹣2=0,即m2﹣2=3m,则原式= = =3.点评:此题考查了一元二次方程的解,熟练掌握运算法则是解本题的关键.16.抛物线y=2x2平移后经过点A(0,3),B(2,3),求平移后的抛物线的表达式.考点:二次函数图象与几何变换.专题:计算题.分析:由于抛物线平移前后二次项系数不变,则可设平移后的抛物线的表达式为y=2x2+bx+c,然后把点A和点B的坐标代入得到关于b、c 的方程组,解方程组求出b、c即可得到平移后的抛物线的表达式.解答:解:设平移后的抛物线的表达式为y=2x2+bx+c,把点A(0,3),B(2,3)分别代入得,解得,所以平移后的抛物线的表达式为y=2x2﹣4x+3.点评:本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.17.如图,在平面直角坐标系xOy中,正比例函数y=2x与反比例函数y= 的图象交于A,B两点,A点的横坐标为2,AC⊥x轴于点C,连接BC.(1)求反比例函数的解析式;(2)若点P是反比例函数y= 图象上的一点,且满足△OPC与△ABC的面积相等,请直接写出点P的坐标.考点:反比例函数与一次函数的交点问题.分析: (1)把A点横坐标代入正比例函数可求得A点坐标,代入反比例函数解析式可求得k,可求得反比例函数解析式;(2)由条件可求得B、C的坐标,可先求得△ABC的面积,再结合△OPC与△ABC的面积相等求得P点坐标.解答:解:(1)把x=2代入y=2x中,得y=2×2=4,∴点A坐标为(2,4),∵点A在反比例函数y= 的图象上,∴k=2×4=8,∴反比例函数的解析式为y= ;(2)∵AC⊥OC,∴OC=2,∵A、B关于原点对称,∴B点坐标为(﹣2,﹣4),∴B到OC的距离为4,∴S△ABC=2S△ACO=2× ×2×4=8,∴S△OPC=8,设P点坐标为(x, ),则P到OC的距离为| |,∴ ×| |×2=8,解得x=1或﹣1,∴P点坐标为(1,8)或(﹣1,﹣8).点评:本题主要考查待定系数法求函数解析式及函数的交点问题,在(1)中求得A点坐标、在(2)中求得P点到OC的距离是解题的关键.18.如图,△ABC中,∠ACB=90°,sinA= ,BC=8,D是AB中点,过点B作直线CD的垂线,垂足为点E.(1)求线段CD的长;(2)求cos∠ABE的值.考点:解直角三角形;勾股定理.专题:计算题.分析: (1)在△ABC中根据正弦的定义得到sinA= = ,则可计算出AB=10,然后根据直角三角形斜边上的中线性质即可得到CD= AB=5;(2)在Rt△ABC中先利用勾股定理计算出AC=6,在根据三角形面积公式得到S△BDC=S△ADC,则S△BDC= S△ABC,即 CD?BE= ? AC?BC,于是可计算出BE= ,然后在Rt△BDE中利用余弦的定义求解.解答:解:(1)在△ABC中,∵∠ACB=90°,∴s inA= = ,而BC=8,∴AB=10,∵D是AB中点,∴CD= AB=5;(2)在Rt△ABC中,∵AB=10,BC=8,∴AC= =6,∵D是AB中点,∴BD=5,S△BDC=S△ADC,∴S△BDC= S△ABC,即 CD?BE= ? AC?BC,∴BE= = ,在Rt△BDE中,cos∠DBE= = = ,即cos∠ABE的值为 .点评:本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.也考查了直角三角形斜边上的中线性质和三角形面积公式.19.已知关于x的一元二次方程mx2﹣(m+2)x+2=有两个不相等的实数根x1,x2.(1)求m的取值范围;(2)若x2<0,且 >﹣1,求整数m的值.考点:根的判别式;根与系数的关系.专题:计算题.分析: (1)由二次项系数不为0,且根的判别式大于0,求出m的范围即可;(2)利用求根公式表示出方程的解,根据题意确定出m的范围,找出整数m的值即可.解答:解:(1)由已知得:m≠0且△=(m+2)2﹣8m=(m﹣2)2>0,则m的范围为m≠0且m≠2;(2)方程解得:x= ,即x=1或x= ,∵x2<0,∴x2= <0,即m<0,∵ >﹣1,∴ >﹣1,即m>﹣2,∵m≠0且m≠2,∴﹣2<m<0,< p="">∵m为整数,∴m=﹣1.点评:此题考查了根的判别式,一元二次方程有两个不相等的实数根即为根的判别式大于0.20.某工厂生产的某种产品按质量分为10个档次,据调查显示,每个档次的日产量及相应的单件利润如表所示(其中x为正整数,且1≤x≤10);质量档次1 2 ... x (10)日产量(件) 95 90 ... 100﹣5x (50)单件利润(万元) 6 8 ... 2x+4 (24)为了便于调控,此工厂每天只生产一个档次的产品,当生产质量档次为x的产品时,当天的利润为y万元.(1)求y关于x的函数关系式;(2)工厂为获得利润,应选择生产哪个档次的产品?并求出当天利润的值.考点:二次函数的应用.分析: (1)根据总利润=单件利润×销售量就可以得出y与x之间的函数关系式;(2)由(1)的解析式转化为顶点式,由二次函数的性质就可以求出结论.解答:解:(1)由题意,得y=(100﹣5x)(2x+4),y=﹣10x2+180x+400(1≤x≤10的整数);答:y关于x的函数关系式为y=﹣10x2+180x+400;(2)∵y=﹣10x2+180x+400,∴y=﹣10(x﹣9)2+1210.∵1≤x≤10的整数,∴x=9时,y=1210.答:工厂为获得利润,应选择生产9档次的产品,当天利润的值为1210万元.点评:本题考查了总利润=单件利润×销售量的运用,二次函数的解析式的运用,顶点式的运用,解答时求出函数的解析式是关键.21.如图,四边形ABCD是平行四边形,点A,B,C在⊙O上,AD与⊙O相切,射线AO交BC于点E,交⊙O于点F.点P在射线AO上,且∠PCB=2∠BAF.(1)求证:直线PC是⊙O的切线;(2)若AB= ,AD=2,求线段PC的长.考点:切线的判定;勾股定理;平行四边形的性质;相似三角形的判定与性质.分析: (1)首先连接OC,由AD与⊙O相切,可得FA⊥AD,四边形ABCD是平行四边形,可得AD∥BC,然后由垂径定理可证得F是的中点,BE=CE,∠OEC=90°,又由∠PCB=2∠BAF,即可求得∠OCE+∠PCB=90°,继而证得直线PC是⊙O的切线;(2)首先由勾股定理可求得AE的长,然后设⊙O的半径为r,则OC=OA=r,OE=3﹣r,则可求得半径长,易得△OCE∽△CPE,然后由相似三角形的对应边成比例,求得线段PC的长.解答: (1)证明:连接OC.∵AD与⊙O相切于点A,∴FA⊥AD.∵四边形ABCD是平行四边形,∴AD∥BC,∴FA⊥BC.∵FA经过圆心O,∴F是的中点,BE=CE,∠OEC=90°,∴∠COF=2∠BAF.∵∠PCB=2∠BAF,∴∠PCB=∠COF.∵∠OCE+∠COF=180°﹣∠OEC=90°,∴∠OCE+∠PCB=90°.∴OC⊥PC.∵点C在⊙O上,∴直线PC是⊙O的切线.(2)解:∵四边形ABCD是平行四边形,∴BC=AD=2.∴BE=CE=1.在Rt△ABE中,∠AEB=90°,AB= ,∴ .设⊙O的半径为r,则OC=OA=r,OE=3﹣r. 在Rt△OCE中,∠OEC=90°,∴OC2=OE2+CE2.∴r2=(3﹣r)2+1.解得,∵∠COE=∠PCE,∠OEC=∠CEP=90°.∴△OCE∽△CPE,∴ .∴ .∴ .点评:此题考查了切线的判定、平行四边形的性质、勾股定理以及相似三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用.22.阅读下面材料:小明观察一个由1×1正方形点阵组成的点阵图,图中水平与竖直方向上任意两个相邻点间的距离都是1,他发现一个有趣的问题:对于图中出现的任意两条端点在点阵上且互相不垂直的线段,都可以在点阵中找到一点构造垂直,进而求出它们相交所成锐角的正切值.请回答:(1)如图1,A,B,C是点阵中的三个点,请在点阵中找到点D,作出线段CD,使得CD⊥AB;(2)如图2,线段AB与CD交于点O.为了求出∠AOD的正切值,小明在点阵中找到了点E,连接AE,恰好满足AE⊥CD于点F,再作出点阵中的其它线段,就可以构造相似三角形,经过推理和计算能够使问题得到解决.请你帮小明计算:OC= ;tan∠AOD= 5 ;解决问题:如图3,计算:tan∠AOD=.考点:相似形综合题.分析: (1)用三角板过C作AB的垂线,从而找到D的位置;(2)连接AC、DB、AD、DE.由△ACO∽△DBO求得CO的长,由等腰直角三角形的性质可以求出AF,DF的长,从而求出OF的长,在Rt△AFO中,根据锐角三角函数的定义即可求出tan∠AOD的值;(3)如图,连接AE、BF,则AF= ,AB= ,由△AOE∽△BOF,可以求出AO= ,在Rt△AOF中,可以求出OF= ,故可求得tan∠AOD.解答:解:(1)如图所示:线段CD即为所求.(2)如图2所示连接AC、DB、AD.∵AD=DE=2,∴AE=2 .∵CD⊥AE,∴DF=AF= .∵AC∥BD,∴△ACO∽△DBO.∴CO:DO=2:3.∴CO= .∴DO= .∴OF= .tan∠AOD= .(3)如图3所示:根据图形可知:BF=2,AE=5.由勾股定理可知:AF= = ,AB= = .∵FB∥AE,∴△AOE∽△BOF.∴AO:OB=AE:FB=5:2.∴AO= .在Rt△AOF中,OF= = .∴tan∠AOD= .点评:本题主要考查的是相似三角形的性质和判定、勾股定理的应用、锐角三角函数的定义,根据点阵图构造相似三角形是解题的关键.23.在平面直角坐标系xOy中,反比例函数y= 的图象经过点A(1,4)、B(m,n).(1)求代数式mn的值;(2)若二次函数y=(x﹣1)2的图象经过点B,求代数式m3n﹣2m2n+3mn ﹣4n的值;(3)若反比例函数y= 的图象与二次函数y=a(x﹣1)2的图象只有一个交点,且该交点在直线y=x的下方,结合函数图象,求a的取值范围.考点:反比例函数综合题;代数式求值;反比例函数与一次函数的交点问题;二次函数的性质.专题:综合题;数形结合;分类讨论.分析: (1)只需将点A、B的坐标代入反比例函数的解析式就可解决问题;(2)将点B的坐标代入y=(x﹣1)2得到n=m2﹣2m+1,先将代数式变形为mn(m2﹣2m+1)+2mm﹣4n,然后只需将m2﹣2m+1用n代替,即可解决问题;(3)可先求出直线y=x与反比例函数y= 交点C和D的坐标,然后分a>0和a<0两种情况讨论,先求出二次函数的图象经过点D或C时对应的a的值,再结合图象,利用二次函数的性质(|a|越大,抛物线的开口越小)就可解决问题.解答:解:(1)∵反比例函数y= 的图象经过点A(1,4)、B(m,n),∴k=mn=1×4=4,即代数式mn的值为4;(2)∵二次函数y=(x﹣1)2的图象经过点B,∴n=(m﹣1)2=m2﹣2m+1,∴m3n﹣2m2n+3mn﹣4n=m3n﹣2m2n+mn+2mn﹣4n=mn(m2﹣2m+1)+2mm﹣4n=4n+2×4﹣4n=8,即代数式m3n﹣2m2n+3mn﹣4n的值为8;(3)设直线y=x与反比例函数y= 交点分别为C、D,解,得:或,∴点C(﹣2,﹣2),点D(2,2).①若a>0,如图1,当抛物线y=a(x﹣1)2经过点D时,有a(2﹣1)2=2,解得:a=2.∵|a|越大,抛物线y=a(x﹣1)2的开口越小,∴结合图象可得:满足条件的a的范围是0<a<2;< p=""> ②若a<0,如图2,当抛物线y=a(x﹣1)2经过点C时,有a(﹣2﹣1)2=﹣2,解得:a=﹣ .∵|a|越大,抛物线y=a(x﹣1)2的开口越小,∴结合图象可得:满足条件的a的范围是a<﹣ .综上所述:满足条件的a的范围是0<a<2或a<﹣ p="" .点评:本题主要考查了反比例函数图象上点的坐标特征、求代数式的值、求直线与反比例函数图象的交点坐标、二次函数的性质等知识,另外还重点对整体思想、数形结合的思想、分类讨论的思想进行了考查,运用整体思想是解决第(2)小题的关键,考虑临界位置并运用数形结合及分类讨论的思想是解决第(3)小题的关键.24.如图1,在△ABC中,BC=4,以线段AB为边作△ABD,使得AD=BD,连接DC,再以DC为边作△CDE,使得DC=DE,∠CDE=∠ADB=α.(1)如图2,当∠ABC=45°且α=90°时,用等式表示线段AD,DE之间的数量关系;(2)将线段CB沿着射线CE的方向平移,得到线段EF,连接BF,AF.①若α=90°,依题意补全图3,求线段AF的长;②请直接写出线段AF的长(用含α的式子表示).考点:几何变换综合题.分析: (1)根据等腰直角三角形的性质得出即可;(2)①设DE与BC相交于点H,连接 AE,交BC于点G,根据SAS推出△ADE≌△BDC,根据全等三角形的性质得出AE=BC,∠AED=∠BCD.求出∠AFE=45°,解直角三角形求出即可;②过E作EM⊥AF于M,根据等腰三角形的性质得出∠AEM=∠FME= ,AM=FM,解直角三角形求出FM即可.解答:解:(1)AD+DE=4,。
九年级上册数学知识点第一单元 二次根式1、二次根式 式子)0(≥a a 叫做二次根式,二次根式必须满足:含有二次根号“”;被开方数a必须是非负数。
2、最简二次根式若二次根式满足:被开方数的因数是整数,因式是整式;被开方数中不含能开得尽方的因数或因式,这样的二次根式叫做最简二次根式。
化二次根式为最简二次根式的方法和步骤:(1)如果被开方数是分数(包括小数)或分式,先利用商的算数平方根的性质把它写成分式的形式,然后利用分母有理化进行化简。
(2)如果被开方数是整数或整式,先将他们分解因数或因式,然后把能开得尽方的因数或因式开出来。
3、同类二次根式几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫做同类二次根式。
4、二次根式的性质 (1))0()(2≥=a a a)0(≥a a(2)==a a 2)0(<-a a(3))0,0(≥≥•=b a b a ab (4))0,0(≥≥=b a bab a 5、二次根式混合运算二次根式的混合运算与实数中的运算顺序一样,先乘方,再乘除,最后加减,有括号的先算括号里的(或先去括号)。
第二单元 一元二次方程一、一元二次方程1、一元二次方程含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。
2、一元二次方程的一般形式)0(02≠=++a c bx ax ,它的特征是:等式左边十一个关于未知数x 的二次多项式,等式右边是零,其中2ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项。
二、一元二次方程的解法1、直接开平方法利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。
直接开平方法适用于解形如b a x =+2)(的一元二次方程。
根据平方根的定义可知,a x +是b的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根。
人教版九年级上数学期末复习基础填空训练(含解析)一、填空题(共100小题;共100分)1. 将方程化为一元二次方程的一般形式为.2. 已知关于的一元二次方程的一个根是,则.3. 将一元二次方程化成一般形式为.4. 设一元二次方程的两个实数根分别为和,则.5. 若是一元二次方程的一个解,则.6. 一元二次方程的二次项系数是,一次项系数是,常数项是.7. 当时,关于的方程是关于的一元二次方程.8. 若一元二次方程的两根分别为,,则有.9. 叫做一元二次方程的根的判别式.判别式的符号决定了方程根的情况,即方程有两个的实数根;方程有两个的实数根;方程实数根.10. 一元二次方程的解(根):使一元二次方程左右两边的未知数的值叫做一元二次方程的解(根).11. 一元二次方程:只含有个未知数的整式方程,并且都可以化成(,,为常数,)的形式,这样的方程叫做一元二次方程.12. 已知二次函数有最大值,则的取值范围是.13. 对于二次函数,在对称轴左侧即,随的增大而;在对称轴右侧即,随的增大而.14. 对于二次函数,在对称轴左侧即,随的增大而;在对称轴右侧即,随的增大而.15. 现用一条长为的木料做成如图所示的窗框,窗框的面积与窗框的宽之间的函数关系为.16. 一个边长为的正方形,若它的边长增加,面积随之增加,则关于的函数解析式是.17. 如果函数是二次函数,那么的取值范围是.18. 二次函数的图象的顶点坐标是.19. 将抛物线的图象向上平移个单位,则平移后的抛物线的解析式为.20. 二次函数与一元二次方程的关系1. 二次函数,当时,就变成了一元二次方程.2. 的解是抛物线的图象与轴交点的横坐标.3. 方程有两个不相等的实数根,抛物线与轴有个交点;方程有两个相等的实数根,抛物线与轴有且只有个交点;方程没有实数根,抛物线与轴交点.21. 二次函数的图象与性质22. 等腰三角形的周长为,其一边长为,则另两边的长为.23. 函数,图象的开口大小分别记为,,则与的大小关系为.24. 函数的图象开口向,对称轴是,顶点是.25. 对于二次函数,当时,的值最小,最小值是.26. 二次函数的图象在对称轴的左边,随着的增大,的值,在对称轴的右边,随着的增大,的值.27. 已知函数,当时,随的增大而减小;当时,随的增大而增大;当时,最小值为.28. 若二次函数的图象与轴有两个公共点,则 .29. 若是关于的二次函数,则满足的条件是 .30. 二次函数的二次项的系数是,一次项的系数是,常数项是 .31. 把下列每个字母都看成一个图形,那么中心对称图形是.O L Y M P I C32. 旋转不改变图形的和.33. 如图,正方形经平移后成为正方形,则该组合图形为对称图形,对称中心为,点的对称点为,点的对称点为点.34. 请写出一个中心对称图形的几何图形的名称:.35. 在字母"X"、"V"、"Z"、"H"中绕某点旋转(旋转度数不超过)后能与原字母重合的是36. 旋转对称图形的旋转角的范围是37. 中心对称的性质:成中心对称的两个图形中,对应点所连线段经过且被对称中心.38. 中心对称图形:把一个图形绕某个点旋转,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心.39. 中心对称:如果把一个图形绕着某一点旋转,它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做它们的对称中心.40. 图形的旋转(1)旋转:在平面内,将一个图形绕一个按某个方向转动一个角度,这样的图形运动称为旋转.这个定点称为,转动的角称为.(2)旋转的性质①旋转不改变图形的形状和大小;②对应点到旋转中心的距离;③任意一组对应点与的连线所成的角都等于旋转角;④对应线段,对应角.41. 正方形的性质:(1)正方形的四个角都是;(3)正方形既是中心对称图形,也是轴对称图形,有条对称轴.42. 如图所示,与都是等腰直角三角形,和都是直角,点在上,如果经逆时针旋转后能与重合,那么旋转中心是点;旋转的度数是.43. 如图所示,绕点旋转得到,则:点的对应点是点;线段的对应线段是线段;线段的对应线段是线段;的对应角是;的对应角是;旋转中心是点;旋转的角是.44. 如图所示,绕点逆时针旋转后变成.点的对应点是点;线段的对应线段是线段;线段的对应线段是线段;的对应角是;的对应角是;旋转中心是点;旋转的角度是.45. 作点关于点的对称点时,连接并延长,即可得到点的对称点;作某个图形关于点的对称图形时,先作出图形的关于点的对称点,然后顺次连接各对称点即可.46. 成中心对称的两个图形中,对应点所连线段都经过,而且都被对称中心,且这两个图形是全等的.47. 把一个图形绕着某一点旋转,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或,这个点叫做它们的,这两个图形在旋转后能重合的对应点叫做关于对称中心的.48. 把一个图案进行旋转变换,选择不同的旋转中心、不同的,会有不同的效果.49. 旋转作图的步骤和方法:(1)确定旋转中心,及;(2)作出图形关键点经过旋转后的;(3)按一定的顺序连接对应点.50. 旋转的性质:(1)对应点到旋转中心的距离;(2)任意一组对应点与旋转中心的连线所成的角等于;(3)旋转前、后的图形.51. 圆周角定理及其推论(1)定理:圆周角的度数等于它所对弧上的圆心角度数的.(2)推论:①同弧或等弧所对的圆周角;②半圆(或直径)所对的圆周角是;的圆周角所对的弦是;③圆内接四边形的对角.52. 内切圆与三角形各边都的圆叫做三角形的内切圆,内切圆的圆心是三角形三条角平分线的交点,叫做三角形的.53. 由组成圆心角的两条半径和圆心角所对的弧围成的图形叫做扇形.如果扇形弧长为,圆心角为,扇形半径为,面积为.(1)扇形弧长公式为:..(2)扇形面积公式为:扇54. 已知的直径为,且点在上,那么.55. 判断题(正确的打“ ”,错误的打“”):(1)经过三个点可以作圆;(2)三角形的外心到三角形各顶点的距离都相等;(3)任意一个三角形一定有一个外接圆,并且只有一个外接圆;(4)任意一个圆一定有一个内接三角形,且只有一个内接三角形.56. 点在圆外,即这个点到圆心的距离半径.点在圆上,即这个点到圆心的距离半径.点在圆内,即这个点到圆心的距离半径.57. 连接圆上的线段叫做弦.的弦叫做直径.圆的内部是到的距离定长的点的集合.圆的外部是到的距离定长的点的集合.58. 圆是平面内到的距离定长的点的集合.59. 在平面内线段绕固定端点旋转一周,另一个端点所描出的叫做圆.以点为圆心的圆记作,读作“”.60. 车轮通常都做成形.若,表示车轮边缘上的两点,点表示车轮的轴心,,之间的距离与,之间的距离具有的关系是:.61. 平面直角坐标系内的三个点,,(选填“能”或“不能”)确定一个圆.62. 已知的直径为,点到直线的距离为 .①若直线与相切,则;②若,则直线与有个交点;③若,则直线与的位置关系是.63. 已知的半径为,点到圆心的距离为 .①点在外,则;②,则;③,则.64. 已知的半径为,为线段的中点,,点在.65. 已知是外一点,切于,切于.若,则.66. 已知的半径为,如果一条直线和圆心的距离为,那么这条直线和这个圆的位置关系为.67. 下列图形中的角,是圆心角的个数是.A.个B.个C.个68. 扇形面积的计算公式;(1)如果扇形的半径为,圆心角为,那么扇形面积的计算公式扇形.(2)比较扇形面积公式与弧长公式,用弧长来表示扇形的面积扇形69. 战国时期数学家墨子撰写的《墨经》一书中,就有“圆,一中同长也”的记载,这句话里的“中”字的意思可以理解为.70. 三角形的三个顶点确定一个圆,这个圆叫做三角形的外接圆,外接圆的圆心是三角形三边的交点,叫做三角形的外心.71. 求概率的方法(1)一般地,如果一次试验有种等可能的结果,事件包含其中的种结果,那么事件发生的概率为.(2)面积法:当一次试验涉及的图形的面积是,事件发生时涉及的图形面积是,则事件发生的概率.(3)列表法:当一次试验涉及两个因素,且等可能出现的结果数目较多时,可采用列表法列出所有等可能的结果数,再找出符合要求的结果数,则概率.(4)画树状图法:当一次试验涉及两个或两个以上因素时,可采用画树状图的方法表示出所有等可能的结果数,则概率.72. 必然事件发生的概率是,不可能事件发生的概率是,随机事件发生的概率是和之间的一个数.73. 下列事件:其中是随机事件的是.(填序号)②测得某天的最高气温是;③掷一次头骰子向上一面的数字是;④度量四边形的内角和,结果是.74. 小亮在一次篮球投篮时,正好命中,这是事件;在正常情况下,水由低处自然流向高处,这是事件.75. 抛一枚分别标有,,,的四面体骰子,写出这个试验中的一个可能事件:;写出这个试验中的一个必然事件:.76. "若是实数则 "这一事件是.(选填“必然事件”“不可能事件”或“随机事件”)77. 如图所示,转动转盘待停止后,指针落在区域的可能性最小,指针落在性最大.78. 甲、乙两队进行足球比赛,裁判员用掷一枚硬币的方法决定双方比赛场地,这样对两队.(选填“公平”或“不公平”)79. 一个装有红球和黑球的袋子,全班同学都在袋子中任意摸出一球再放回袋内,最后发现同学们摸到红球所占比例比黑球大,可能的原因是袋子中.80. 掷一枚均匀的殷子,点朝上是事件,点朝上是事件.81. 在一个不透明的箱子里放有除颜色外,其余都相同的个小球,其中红球个,白球个.搅匀后,从中同时摸出个小球,请你写出这个试验中的一个可能事件:.82. 下列事件:①同学甲竞选班长成功.②两支球队比赛,强队胜利了.③从,,中任选两数相加,其和为偶数.④骑车通过个十字路口,均遇红灯.其中属于随机事件的有.(填序号)83. 下列事件中,①打开电视,它正在播关于扬州特产的广告;②太阳绕着地球转;③掷一枚正方体骰子,点数" " 朝上;④人中至少有人的生日是同一个月.属于随机事件的个数是 .84. 不透明的布袋里有个黄球、个红球、个白球,它们除颜色外其他都相同,那么从布袋中任意摸出一球恰好为红球的概率是.85. 在一个不透明的袋子中装有除颜色外完全相同的个红球、个白球、个绿球,任意摸出一球,摸到白球的概率是.(1)在一个装有数量相同的红、白、蓝三种除颜色不同其余都相同的竹签的盒子中,从中任意抽出一支签,抽到三种颜色竹签的可能性相同.(2)掷一枚质地均匀的骰子,出现种点数中的任何一种点数的可能性相同.(3)在适宜的条件下种一粒油菜种子,观察它是否发芽,则“发芽”与“不发芽”是等可能的.87. 频率:在次重复试验中,不确定事件发生了次,则比值称为事件发生的频率.88. 概率:事件发生的可能性大小的数值,称为事件的概率.必然事件发生的概率为,不可能事件发生的概为,不确定事件发生的概率介于之间.89. 确定事件(1)必然事件:在一定条件下,有些事情我们事先能肯定它,这些事情称为必然事件.(2)不可能事件:在一定条件下,有些事情我们事先能肯定它一定不会发生,这些事情称为不可能事件.90. 下列事件:①随意翻到一本书的某页,这页的页码是奇数;②测得某天的最高气温是;③掷一次骰子,向上一面的数字是;④度量四边形的内角和,结果是.其中是随机事件的是.(填序号)91. 如果抛物线的开口向上,那么的取值范围是.92. 抛物线与的形状相同,而开口方向相反,则.93. 抛物线的顶点坐标是.94. 请写出一个开口向下,对称轴为直线的抛物线的解析式,.95. 圆的对称性(1)圆是轴对称图形,其对称轴是任意一条的直线,有条对称轴.(2)圆是中心对称图形,对称中心为.96. 与圆有关的概念(1)弧:圆上任意的部分叫做圆弧,简称弧.(2)弦:连接圆上任意两点的叫做弦.(3)直径:经过的弦叫做直径.(5)圆心角:顶点在的角叫做圆心角.(6)圆周角:顶点在,两边分别与圆还有另一个交点.像这样的角,叫做圆周角.97. 圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆.其中,定点称为,定长称为.98. 弧长的计算公式在半径为的圆中,的圆心角所对的弧长的计算公式.99. 三角形的内心是三角形的三条的交点,它到三角形三边的距离相等.100. 和三角形各边都的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心.答案第一部分1.2.3.4.【解析】,5.6. ,,7.8. ,9. ,不相等,相等,没有10. 相等11. 一12.13. ,减小,,增大14. ,增大,,减小15.16.17.18.19.20. 两,一,没有21. ,减小,增大,增大,减小22. ,或,23.24. 向下,轴,坐标原点25. ,26. 减小,增大27. ,,,28.29.30. ,,.31. O,I32. 形状,大小33. 中心,点,点,点34. 平行四边形(答案不唯一)35. X、Z、H36.37. 对称中心,平分38.39.40. (1)定点,旋转中心,旋转角,(2)②相等,③旋转中心,④相等,相等41. (1)直角,相等,(2)互相垂直平分,平分,(3)42. ,43. ,,,,,,或44. ,,,,,,45. 一倍,每个关键点46. 对称中心,平分47. ,中心对称,对称中心,对称点48. 旋转角49. 旋转角度,旋转方向,对应点50. (1)相等,(2)旋转角,(3)全等51. (1)一半,(2)①相等,②直角,直径,③互补52. 相切,内心53. ,,54.55. (1),(2),(3),(4)56. 大于,等于,小于57. 任意两点,经过圆心,定点,小于,定点,大于58. 定点,等于59. 封闭曲线,,圆60. 圆,相等61. 能62. ,,相离63. ,点在上,点在内64. 上65.66. 相切67. B【解析】根据圆心角的含义可知:第一个和第二个图中的角是圆心角.68. (1),(2)69. 圆心70. 垂直平分线73. ①③【解析】书的页码可能是奇数,也有可能是偶数,所以事件①是随机事件;的气温,人不能生存,所以不可能测得这样的气温,所以事件②是不可能事件,属于确定事件;骰子六个面的数字分别是、、、、、,因此事件③是随机事件;四边形内角和总是,所以事件④是必然事件,属于确定事件.74. 不确定,不可能75. 向上一面的点数是,(答案不唯一)向上一面的点数是,,,中的一个76. 必然事件77. 黑色,红色78. 公平79. 红球的数量比黑球数量多80. 不可能,不确定81. 摸出的两个小球都是红色(答案不唯一)82. ①②④83.84.【解析】在不透明的袋中装有个黄球、个红球、个白球,共个球且它们除颜色外其它都相同,从这不透明的袋里随机摸出一个球,所摸到的球恰好为红球的概率是.85.【解析】袋子中共有个球,其中白球有个,任意摸出一球,摸到白球的概率是.86. ,,87.88. ,,与89. (1)一定发生90. ①③91.92.93.94. (答案不唯一)95. 过圆心,无数,圆心96. (1)两点间,(2)线段,(3)圆心,(5)圆心,(6)圆上97. 圆心,半径98.99. 角平分线。
期末复习重点知识点:一、一元二次方程1.一元二次方程:在整式方程中,只含 个未知数,并且未知数的最高次数是 次的方程叫做一元二次方程.一元二次方程的一般形式是 .其中 叫做二次项, 叫做一次项, 叫做常数项; 叫做二次项的系数, 叫做一次项的系数.2. 一元二次方程的常用解法:(1)直接开平方法:形如)0(2≥=a a x 或)0()(2≥=-a a b x 的一元二次方程,就可用直接开平方的方法.(2)配方法:用配方法解一元二次方程()02≠=++a o c bx ax 的一般步骤是:①化二次项系数为1,即方程两边同时除以二次项系数;②移项,使方程左边为二次项和一次项,右边为常数项,③配方,即方程两边都加上一次项系数一半的平方,④化原方程为2()x m n+=的形式,⑤如果是非负数,即0n ≥,就可以用直接开平方求出方程的解.如果n <0,则原方程无解.(3)公式法:一元二次方程20(0)ax bx c a ++=≠的求根公式是 .公式法解方程的步骤 1.变形: 化已知方程为一般形式ax 2+bx +c =0; 2.确定系数:用a ,b ,c 写出各项系数; 3.计算: b 2-4ac 的值;4.判断:若b 2-4ac ≥0,则利用求根公式求出; 若b 2-4ac <0,则方程没有实数根. (4)因式分解法:因式分解法的一般步骤是:①将方程的右边化为 ;②将方程的左边化成两个一次因式的乘积;③令每个因式都等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解. 3. 一元二次方程根的判别式:关于x 的一元二次方程()002≠=++a c bx ax 的根的判别式为 .(1)ac b 42->0⇔一元二次方程()002≠=++a c bx ax 有两个 实数根,即=x .(2)ac b 42-=0⇔一元二次方程有 相等的实数根,即==21x x . (3)ac b 42-<0⇔一元二次方程()002≠=++a c bx ax 实数根.(4)ac b 42-≥0⇔一元二次方程()002≠=++a c bx ax 有 实数根.4. 一元二次方程根与系数的关系若关于x 的一元二次方程20(0)ax bx c a ++=≠有两根分别为1x ,2x ,那么=+21x x ,=⋅21x x .同时:若α、β为一元二次方程0132=++x x 的两个实数根,则有01α3α2=++ 和01β3β2=++5.列一元二次方程解应用题的一般步骤:审、找、设、列、解、答六步。
最新人教版初中九年级《数学》上册全册期末总复习知识点考点重难点要点综合归类整理复习梳理汇总汇编精品复习资料精品精编精选超级完整版完美版打印版人教版九年级数学上册主要包括了二元一次方程、二次函数、旋转、圆和概率五个章节的内容。
一.知识框架二.知识概念:一元二次方程:方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx 是一次项,b是一次项系数;c是常数项.本章内容主要要求学生在理解一元二次方程的前提下,通过解方程来解决一些实际问题。
(1)运用开平方法解形如(x+m)2=n(n≥0)的方程;领会降次──转化的数学思想.(2)配方法解一元二次方程的一般步骤:现将已知方程化为一般形式;化二次项系数为1;常数项移到右边;方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;变形为(x+p)2=q的形式,如果q≥0,方程的根是x=-p±√q;如果q<0,方程无实根.介绍配方法时,首先通过实际问题引出形如的方程。
这样的方程可以化为更为简单的形如的方程,由平方根的概念,可以得到这个方程的解。
进而举例说明如何解形如的方程。
然后举例说明一元二次方程可以化为形如的方程,引出配方法。
最后安排运用配方法解一元二次方程的例题。
在例题中,涉及二次项系数不是1的一元二次方程,也涉及没有实数根的一元二次方程。
对于没有实数根的一元二次方程,学了“公式法”以后,学生对这个内容会有进一步的理解。
(3)一元二次方程ax 2+bx+c=0(a ≠0)的根由方程的系数a 、b 、c 而定,因此:解一元二次方程时,可以先将方程化为一般形式ax 2+bx+c=0,当b 2-4ac ≥0时,•将a 、b 、c 代入式子x=2b a-就得到方程的根.(公式所出现的运算,恰好包括了所学过的六中运算,加、减、乘、除、乘方、开方,这体现了公式的统一性与和谐性。
新人教版九年级上册数学期末复习资料知识点归纳二次根式1.二次根式是指形如 $\sqrt{a}$ ($a\geq 0$)的式子。
1)下列哪些式子是二次根式?① $m^2+1$。
② $3-8$。
③ $x-1$。
④ $5$。
⑤ $\pi$2)当 $x$ 取何值时,下列各式在实数范围内有意义?2.最简二次根式最简二次根式是指同时满足以下两个条件的二次根式:①被开方数的因数是整数,因式是整式(分母中不含根号);②被开方数中含能开得尽方的因数或因式。
1)下列哪些式子是最简的二次根式?8y^2x^2+1$。
422)若 $18-n$ 是整数,求自然数 $n$ 的值。
3)若 $24n$ 是整数,求正整数 $n$ 的最小值。
3.同类二次根式几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式就叫同类二次根式。
1)若 $\sqrt{a+4\sqrt{3}b-1}$ 和 $\sqrt{a+4}$ 是同类二次根式,则 $a=\_\_\_\_$,$b=\_\_\_\_$。
2)若 $\sqrt{3x-1}$ 和 $\frac{x}{\sqrt{3}}$ 是同类二次根式,则 $x=\_\_\_\_$。
4.二次根式的性质① $(\sqrt{a})^2=a$ ($a\geq 0$);② $\sqrt{a^2}=|a|$,即当 $a\geq 0$ 时,$\sqrt{a^2}=a$,当 $a<0$ 时,$\sqrt{a^2}=-a$。
1)化简 $x-1+1-x=$ ______。
2)若 $a<0$,化简 $a-3-a^2=$ ______。
3)要使 $3-x+\frac{1}{2x-1}$ 有意义,则 $x$ 的取值范围是 $\_\_\_\_$。
5.二次根式的运算① $\sqrt{ab}=\sqrt{a}\cdot\sqrt{b}$ ($a\geq 0$,$b\geq 0$);② $\frac{\sqrt{a}}{\sqrt{b}}=\sqrt{\frac{a}{b}}$ ($a\geq 0$,$b>0$)。
yxO期末复习重点知识点:一、一元二次方程1.一元二次方程:在整式方程中,只含 个未知数,并且未知数的最高次数是 次的方程叫做一元二次方程.一元二次方程的一般形式是 .其中 叫做二次项, 叫做一次项, 叫做常数项; 叫做二次项的系数, 叫做一次项的系数.2. 一元二次方程的常用解法:(1)直接开平方法:形如)0(2≥=a a x 或)0()(2≥=-a a b x 的一元二次方程,就可用直接开平方的方法.(2)配方法:用配方法解一元二次方程()02≠=++a o c bx ax 的一般步骤是:①化二次项系数为1,即方程两边同时除以二次项系数;②移项,使方程左边为二次项和一次项,右边为常数项,③配方,即方程两边都加上一次项系数一半的平方,④化原方程为2()x m n+=的形式,⑤如果是非负数,即0n ≥,就可以用直接开平方求出方程的解.如果n <0,则原方程无解.(3)公式法:一元二次方程20(0)ax bx c a ++=≠的求根公式是 .公式法解方程的步骤 1.变形: 化已知方程为一般形式ax 2+bx +c =0; 2.确定系数:用a ,b ,c 写出各项系数; 3.计算: b 2-4ac 的值;4.判断:若b 2-4ac ≥0,则利用求根公式求出; 若b 2-4ac <0,则方程没有实数根. (4)因式分解法:因式分解法的一般步骤是:①将方程的右边化为 ;②将方程的左边化成两个一次因式的乘积;③令每个因式都等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解. 3. 一元二次方程根的判别式: 关于x 的一元二次方程()002≠=++a c bx ax的根的判别式为 .(1)ac b 42->0⇔一元二次方程()002≠=++a c bx ax 有两个 实数根,即=x .(2)ac b 42-=0⇔一元二次方程有 相等的实数根,即==21x x . (3)ac b 42-<0⇔一元二次方程()002≠=++a c bx ax 实数根.(4)ac b 42-≥0⇔一元二次方程()002≠=++a c bx ax 有 实数根.4. 一元二次方程根与系数的关系若关于x 的一元二次方程20(0)ax bx c a ++=≠有两根分别为1x ,2x ,那么=+21x x ,=⋅21x x .同时:若α、β为一元二次方程0132=++x x 的两个实数根,则有01α3α2=++和01β3β2=++5.列一元二次方程解应用题的一般步骤:审、找、设、列、解、答六步。
二、二次函数及其图像2()y a x h k =-+的图像和性质a >0 a <0图 象 开 口 对 称 轴 顶点坐标最 值 当x = 时,y 有最 值 当x = 时,y 有最 值增 减 性在对称轴左侧 y 随x 的增大而 y 随x 的增大而 在对称轴右侧 y 随x 的增大而y 随x 的增大而2. 二次函数2用配方法可化成()2的形式,其中h = ,k = .3. 二次函数2()y a x h k =-+的图像和2ax y =图像的关系.4. 常用二次函数的解析式:(1)一般式: ;(2)顶点式: ;(3)交点式: 。
5. 顶点式的几种特殊形式.⑴ , ⑵ , ⑶ ,(4) .6.二次函数c bx ax y ++=2通过配方可得224()24b ac b y a x a a -=++,其抛物线关于直线x =对称,顶点坐标为( , ).⑴ 当0a >时,抛物线开口向 ,有最 (填“高”或“低”)点, 当x = 时,y 有最 (“大”或“小”)值是 ;⑵ 当0a <时,抛物线开口向 ,有最 (填“高”或“低”)点, 当x = 时,y 有最 (“大”或“小”)值是 .三、旋转与中心对称1.把一个图形绕着某一个点旋转 ,叫做图形的旋转,这个点就是它的 .旋转前后的图形是全等图形,对应角 ,对应线段 ,对应点与旋转中心形成的夹角为旋转角。
旋转关键是找准对应点。
2. 把一个图形绕着某一个点旋转 °,如果它能够与另一个图形 ,那么就说这两个图形关于这个点 ,这个点叫做 .这两个图形中的对应点叫做关于中心的 .3. 关于中心对称的两个图形,对称点所连线段都经过 ,而且被对称中心所 .关于中心对称的两个图形是 图形.4. 两个点关于原点对称时,它们的坐标符号 ,即点),(y x P 关于原点的对称点为 .四、圆一、圆的有关概念1. 圆上各点到圆心的距离都等于 .2. 圆是 对称图形,任何一条直径所在的直线都是它的 ; 圆又是 对称图形, 是它的对称中心.3. 垂径定理:垂直于弦的直径平分 ,并且平分 ;平分弦(不是直径)的 垂直于弦,并且平分 . ➢ 垂径定理的几个基本图形: 垂径定理黄金搭档:勾股定理如图1 ∵ CD 是直径,CD ⊥AB ,∴4. 在同圆或等圆中,如果两个圆心角,两条弧,两条弦,两条弦心距,两个圆周角中有一组量 ,那么它们所对应的其余各组量都分别 . 填一填: 如图,AB 、CD 是⊙O 的两条弦.(1)如果AB=CD ,那么___________,____________. (2)如果,那么____________,_____________.(3)如果∠AOB =∠COD ,那么_____________,_________.(4)如果AB=CD ,OE ⊥AB于E,OF⊥CD于F,那么OE与OF相等。
5. 同弧或等弧所对的圆周角,都等于它所对的圆心角的 .如图,点A、B、C、D在同一个圆上,AC、BD为四边形ABCD的对角线(1)完成下列填空∠1= . ∠2= .∠3= . ∠5= .6. 直径所对的圆周角是,90°所对的弦是 .如图,点A、B、C、D在同一个圆上,AC、BD为四边形ABCD的对角线.若AC是直径,∠ADC= ∠ABC= .例:如图,⊙O直径AC为10cm,弦AD为6cm.(1)求DC的长;(DC=8 cm)(2)若∠ADC的平分线交⊙O于B, 求AB、BC的长(AB=BC=25cm)二、与圆有关的位置关系1. 点与圆的位置关系共有三种:①,②,③;对应的点到圆心的距离d和半径r之间的数量关系分别为:①d r,②d r,③d r.2. 直线与圆的位置关系共有三种:①,②,③ .对应的圆心到直线的距离d和圆的半径r之间的数量关系分别为:①d r,②d r,③d r.3. 圆与圆的位置关系共有五种:①,②,③,④,⑤;两圆的圆心距d和两圆的半径R、r(R≥r)之间的数量关系分别为:①d R-r,②d R-r,③ R-r d R+r,④d R+r,⑤d R+r. 4. 圆的切线过切点的半径;经过的一端,并且这条的直线是圆的切线.5. 从圆外一点可以向圆引条切线,相等,相等. (1).切线长的定义:经过圆外一点作圆的切线,这点和切点之间的线段的长叫做切线长.(2).切线长与切线的区别在哪里?①切线是直线,不能度量.②切线长是线段的长,这条线段的两个端点分别是圆外一点和切点,可以度量.6. 三角形的三个顶点确定 个圆,这个圆叫做三角形的外接圆,三角形的外接圆的圆心叫 心,是三角形 的交点,它到 相等。
7. 与三角形各边都相切的圆叫做三角形的 ,内切圆的圆心是三角形 的交点,叫做三角形的 ,它到 相等. 三、与圆有关的计算1. 圆的周长为 ,1°的圆心角所对的弧长为 ,n °的圆心角所对 的弧长为 ,弧长公式为 .2. 圆的面积为 ,1°的圆心角所在的扇形面积为 ,n °的圆心角所在的扇形面积为S= 2R π⨯ = = .3. 圆柱的侧面积公式:S=2rl π.(其中r 为 的半径,l 为 的高)。
4. 圆柱的全面积公式:S= + 。
5. 圆锥的侧面积公式:S=rl π.(其中r 为 的半径,l 为 的长)。
圆中常见的辅助线:1. ;2. ;3. ; 4. ;5. 。
五、概率1.事件的分类:必然事件: P=1 确定事件 事件 不可能事件:P=0不确定事件: 0<P <1总之,任何事件E 发生的概率P(E)都是0和1之间(也包括0和1)的数, 即0≤P(E)≤1. 2.求概率的方法:(1)利用概率的定义直接求概率; (2)用树形图和________________求概率; (3)用相乘的方法估计一些随机事件发生的概率.六、反比例函数1.反比例函数:一般地,如果两个变量x 、y 之间的关系可以表示成y = 或 (k 为常数,k ≠0)的形式,那么称y 是x 的反比例函数. 2. 反比例函数的图象和性质3.k 的几何含义:反比例函数y =k x (k ≠0)中比例系数k 的几何意义,即过双曲线y =k x(k ≠0)上任意一点P 作x 轴、y 轴垂线,设垂足分别为A 、B ,则所得矩形OAPB 的面积为 .若点(x 1,y 1)、(x 2,y 2)、(x 3,y 3)都是反比例函数y=的图象上的点,并且x 1<0<x 2<x 3,则下列各式中正确的是( )A .y 1<y 3<y 2B .y 2<y 3<y 1C .y 3<y 2<y 1D .y 1<y 2<y 3k 的符号 k >0 k <0图像的大致位置经过象限 第 象限 第 象限 性质在每一象限内y 随x 的增大而在每一象限内y 随x 的增大而oy xyxo。