绵阳市三台县2018-2019学年七年级下期中数学测试卷-附标准答案
- 格式:doc
- 大小:406.50 KB
- 文档页数:12
三台县实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)关于x的不等式(a+2 014)x-a>2 014的解集为x<1,那么a的取值范围是()A. a>-2 014B. a<-2 014C. a>2 014D. a<2 014【答案】B【考点】不等式的解及解集,解一元一次不等式【解析】【解答】解:(a+2 014)x>a+2 014∵此不等式的解集为:x<1,∴a+2 014<0解之:a<-2 014故答案为:B【分析】先将不等式转化为(a+2 014)x>a+2 014,再根据它的解集为x<1,得出a+2 014<0,解不等式即可求解。
2、(2分)如图,直线AB、CD相交于点O,OE平分∠BOC,OF⊥OE于O,若∠AOD=70°,则∠AOF 等于()A. 35°B. 45°C. 55°D. 65°【答案】C【考点】角的平分线,角的运算,对顶角、邻补角【解析】【解答】∵∠B0C=∠AOD=70°,又∵OE平分∠BOC,∴∠BOE= ∠BOC=35°.∵OF⊥OE,∴∠EOF=90°.∴∠AOF=180°-∠EOF-∠BOE=55°.故答案为:C.【分析】有角平分线性质和对顶角相等,由角的和差求出∠AOF=180°-∠EOF-∠BOE的度数.3、(2分)在,1.01001000100001,2 ,3.1415,- ,,0,,这些数中,无理数共有()A. 2个B. 3个C. 4个D. 5个【答案】A【考点】无理数的认识【解析】【解答】解:∵=3,=2,∴无理数有:2 ,- ,一共有2个.故答案为:A.【分析】无理数是指无限不循环小数,根据无理数的定义可知,-是无理数。
2015-2016学年四川省绵阳市三台县七年级(下)期中数学试卷一、选择题(本题有10个小题,每小题3分,满分30分,下面每小题给岀的四个选项中,只有一个是正确的.)D. x=A. y= B )能得到AB// CD的是(6•下列图形中,轴距离为P到x3,到y轴的距离为2,则P )点坐标一定为(.已知点7 ()3,- 2 3 2 3A .(,2)B. (,3)C . (-, - 2)D .,若颠倒个位与十位数字的位置,得到新大1比个位上的数字8 .- 个两位数,十位上的数字xy 数比原数小9,求这个两位数列岀的方程组正确的是()D . C . EGDH9.如图,//// EFB相等的角(不包括/ EFBEF// DCBC,那么与/)的个数为()3 D.1C. 2A. 0 B .卜)..C . 士 2 DA . 士 4 B . 4的算术平方根是(22)•下列各组数中互为相反数的是(-D .数B .2 与|BA • - 2 与2 与带根号的数都是无理数3C. - 2与4 .下列说法正确的是()A .无限小数都是无理C .无理数是无限不循环小数D .实数包括正实数、负实数y为7- Sy 禺- T T- % H3y2|5 •方程2x - 3y=7,用含x的代数式表示\-y-l j\=y+l x+y=l10y+y=10yH-x+^-• C.A. 2个B . 3个C . 4个D . 5个10 •如图把一个长方形纸片沿 EF 折叠后,点 D C 分别落在D '、C 位置,若/ EFB=60°则.65° C . 60° DA . 50° B . 55°分)3分,满分24二、填空题(本题有 8个小题,每小题 . 改写成“如果…,那么…”的形式:11 •把命题“垂直于同一条直线的两直线平行”,开渠,能使所开的渠道ABB 然后沿中,先作 AB 丄CD,垂足为12 •如图,计划把河水引到水池 A . 最短,这样IM ■ ■ MB >4 IK ML ■T3设计的依据是 ____________________ Amn- 3m- 2n. 2y +1仁0 是二元一次方程,则 2m13.如果 5x - n=-一个直角三角板和一把矩形直尺按如图放置,若/a=54 °,则的度数是-|a 在数轴上所表示的点分别在原点的右边和左边,则- 15.如果若有理数 a 和b . b|=_________ 硬赣.0.000316 .如果=1.732,=5.477,那么的平方根是 ____________________ . - 17.如果a+6和2a15是一个数的平方根,则这个数为 ____________________ ,第三OABOA 变换成△ OA18.如图,在直角坐标系中,第一次将△OAB 变换成△ B,第二次将厶211211,4BB ( 2,0),(,,,, 3) A (2,3) A (4,3) A ( 8,3) 1,已知变换成△ OA 次将△ BOABA (,/ AED =()14. _______________每小题,6分)(满分三、计算:6分19 .计算: UeM+IV5-1 卜(逅+1).)(2 「4K - 3尸 5 J8四、解方程组(满分分)20 •解方程组(y=2 1 () 2O 7(yT ) =• (2)分)4小题,满分32五、解答题(共 .0), ( 0 ,) (- 11, 6), ( - 14, 0各个顶点的坐标分别 为(-21 •如图,四边形 ABCD2 8),)求这个四边形的面积. (1个单位长度后得到新的四边,求/ AOD 的度数.DOE=5O 圧AB,且// COECD22如图,直线 AB 、相交于点 O,EA0 \ £打万元,并且今年的万元,估计今年可结余 96023 •革命老区百色某芒果种植基地,去年结余为500 •求去年的收入与支岀各是多少万元?,支岀比去年低收入比去年高15%10%为两直线之间13323221),16, 贝 U B 进行),BO ), ( 0) B ( 0•将△ OABn 次变换得到△ OA Aj^n)•(B5ADB的度数•的平分线相交于点)如图1,若/ MAC与/ EBCD若/ ACB=1O0,求/(1有何数量关系?并证明你的结D,Z ACB与/ ADB的平分线相交于点若/)(2如图2, CAM与/ CBE论.与 /ACBCBF3如图,若Z CAM的平分线与Z的平分线所在的直线相交于点D,请直接写岀Z 3(ADB 之间的数量关系:32015-2016学年四川省绵阳市三台县七年级(下)期中数学试卷参考答案与试题解析一、选择题(本题有10个小题,每小题3分,满分30分,下面每小题给岀的四个选项中,只有一个是正确的.)一点.// EF, CMN24 如图1,3 D. 1 C. 2 A . 0 B .【考点】对顶角、邻补角. 【分析】根据对顶角的定义作岀判断即可.C图中的是对顶角,其它都不是.【解答】解:根据对顶角的定义可知:只有B •故选: 一")的算术平方根是( 2 . 2 2 D . 4 .± 4 B . C .± A 【考点】算术平方根. .厂 【分析】 首先根据算术平方根的定义求岀的值, 然后再利用算术平方根的定义即可求岀结果. • ■” ,【解【解答】解:A B 错误;、都是-B2,故 错误;CC 只有符号不同的两个数互为相反数,故 错误;、都是2,故DD •故选:A)4•下列说法正确的是( B •带根号的数都是无理数 A •无限小数都是无理数 D •实数包括 正实数、负实数 C .无理数是无限不循环小数 【考点】无理数;实数.【分析】根据无理数是无限不循环小数,可得答案.、无限循环小数是有理数,故【解答】解: AA 错误;J 」错误;是有理数,故 BB 正确;CC 无理数是无 限不循环小数,故 、实数包括正实数、零、负实数,故 DD 错误; 故选:C.答】解:••• =4,二4的算术平方根是 2 .二] ).下列各组数中互为相反数的是( 3 22 与 D . 2 与 | - A2 与 B . - 2 与 C.- 有符号不同的两个数互为相反数,可得答案. •••的算术平方根是 2 ;故选D.V (-2)22|【考点】实数的性质;立方根. 【分析】根据只正确;、只有符号不同的两个数互为相反数,故A故选D.9 •如图,DH// EG// BC, DC// EF,那么与/ EFB相等的角(不包括/ EFB)的个数为()5个D . 3个C . 4个A. 2个B .【考点】平行线的性质. BFE=则/ BFE=Z 23,由DC// EF 得///【分析】根据平行线的性质由EGBC得/ BFE=Z 1,/ 2= / . Z 52=/ 3=2 4=5,/ 3=2 4,所以/ BFE=2 1 = 222 2 1 = 2 2=3,再利用DH// EG得2 4= ,// BC【解答】解:丁EG 3,2 2 1,2 2= •••2 BFE= EF,v DC// 2 ,二2 BFE=23 , 2 2=2二2 BFE=2 1= EQ •/ DH// , 3=2 4二2 4=D . 65° BA . 50°. 55° C . 60°【考点】平行线的性质;翻折变换(折叠问题) .,然后2 EFB,再根据翻折变换的性质可得2 2=1 2【分析】根据两直线平行,内错角相等可得2 1=根据平角等于180 °列式计算即可得解. 【解答】解:如图,•••长方形纸片对边平行,1= 2 EFB=60°,2 . 2 522 2=3=2 4=二2 BFE=2 1 =D'、C'位置,若2 EFB=60°,则2分别落在折叠后, 点DC.如图把一个长方形纸片沿10EF ) AED =(6• 2 2 1=60°,由翻折的性质得,2 2= •2 AED' =180°—2 1 —2 2=180 ° - 60°—60° 二、填空题(本题有8个小题,每小题3分,满分24分)=60 °. C .故选11 •把命题“垂直于同一条直线的两直线平行”,改写成“如果…,那么…”的形式:如果两条_____________ 直线垂直于同一条直线,那么这两条直线平行•_______________________________________________________【考点】命题与定理.【分析】命题由题设和结论两部分组成•题设是已知事项,结论是由已知事项推岀的事项. 命题常常可以写为“如果…那么…”的形式,如果后面接题设,而那么后面接结论.【解答】解:把命题“垂直于同一条直线的两直线平行”,改写成“如果…,那么…”的形式:如果两条直线垂直于同一条直线,那么这两条直线平行.12 •如图,计划把河水引到水池A中,先作AB丄CD,垂足为B,然后沿AB开渠,能使所开的渠道最短,这样设计的依据是连接直线外一点与直线上所有点的连线中,垂线段最短• __________________________________________________________________【考点】垂线段最短. 【分析】过直线外一点作直线的垂线,这一点与垂足之间的线段就是垂线段,且垂线段最短. 【解答】解:根据垂线段定理,连接直线外一点与直线上所有点的连线中,垂线段最短,开渠,能使所开的渠道最短••••沿AB故答案为:连接直线外一点与直线上所有点的连线中,垂线段最短.mn-3m- 2n 2 .是二元一次方程,则- 2y2m - n=.如果135x+1仁0 【考点】二元一次方程的定义.n的值,即可求岀原式的值.【分析】利用二元一次方程的定义判断求岀m与m- n3m- 2n是二元一次方程,-5x2y+1仁0【解答】解:!二一口…亠匕.•.,- n=2,①+②得:2m2 .故答案为:• 36°B的度数是14 •将一个直角三角板和一把矩形直尺按如图放置,若/a =54 °,则/【考点】平行线的性质;三角形内角和定理;直角三角形的性质. 根据/ FCN=90,,B =54 / = / NCE/ SHCE【分析】过C作// QT//,根据平行线性质求岀/ FCE=a即可求岀答【解答】解:,〃作过 CCE// QTSH.・./ FCEN a =54 ° , / NCE=90°- 54 ° =36°. =A/p故答案为:36 ° .7a . |a - b|=-如果若有理数 a 和b 在数轴上所表示的点分别在原点的右边和左边,则- 15. _______ 【考点】实数与数轴•的正负,利用绝对值及二次根式的性质化简,- bb 的正负,以及a 【分析】根据题意判断岀 a 与 计算即可得到结果. 0b > 0,b v 0,即a 【解答】解:根据题意得:a > a .- a+b=-- |a - b|= - b 则原式=|b| a •故答案为:- 一「 八士 0.01732 . =5.477,那么0.0003的平方根是 =16 .如果=1.732,【考33点】算术平方根;平方根. | : ,即可求得平方根.【分析】把0.0003看成I :,【解i 3 V3 1.732答】解:••• 0.0003= . r II ] I. I' 士 0.01732 士. =•••士 =士 =81 . 1517 .如果a+6和2a -是一个数的平方根,则这个数为 ______________ 【考点】平方根. a 的值,即可确定岀这个数. 【分析】利用平方根定义判断求岀15=0,【解答】解:根据题意得: a+6+2a - a=3,移项合并得:3a=9,即 2 =81则这个数为(3+6 ); 81故 答案为: ,第三B.如图,在直角坐标系中,第一次将厶OAB 变换成△ OAB 第二次将厶OAB 变换成△ OA1821111, 4B(, 0),,,) A ( 4,3),A ( 8, 3) B( 2 ,,已知 OA 次将△ B 变换成△ OABA( 1, 3) A ( 2 , 3 13323212n+1n 2 ,A( 2 , 3 ) , B(,将△ BB0,( 8 ,0),(16, 0) . OAB 进行 n 次变换得到△ OAB 则 n^nn7(-2)2 + IV2- 11 -(V2+I)2 ().【考点】实数的运算.8【分析】(1)计算算术平方根、立方根,再加减可得;0 ).B3【分析】观察不难发现,点A 系列的横坐标是 2的指数次幕,,根据此规律写岀即可•列的横坐标是2的指数次幕,指数比脚3123214 =2、,、2 = 28 = 2n ,,8=2,, 【考点】坐标与图形性质•系 指数为脚码,纵坐标都是;点码大1,纵坐标都是0 ,3),A( 8,,,,【解答】解:•/ A( 13), A( 23), A( 43) 3) A 「.( 2n )) B ( 8 , 0 , B (16 , 0,) 0. 2 • B( nn+1n . 2 故答案为:;,320 , 三、计算:(满分6分)每小题6分, 321412316 =24 =2 、 2=2、n+1 ),-'■ - 1 () +(2)化简二次根式、去绝对值符号、去扌括号,严合并即可. I ;3+=2 ;【解答】解:(1)原式=5- . • . •1-- 1=0 (2)原式=2+四、解方程组(满分8 分) 20 •解方程组|2K - y=2)(昭26_ 4) _ 3(y_ 1)二:).2^-2平移.【考点】坐标与图形性质;坐标与图形变化 -9【分析】(1 )根据S = S + S + S 计算即可. △ BCF^AEDAEFB 梯形四边形ABCD ( 2 )把四边形 ABCD 的各个顶点向下平 移3个单位长度,再向左平移2个单位长度即可,写岀平移后各个顶点的坐标即可, 新四边形面 积和原来四边形面积相等,由此即可解决问题.【解答】解:(1)如图,作 AE X CD 于E , BF 丄CD 于F , ••• A (— 2, 8), B (— 11, 6), C (— 14, 0) , D (0, 0),丄円丄、亠/、一--S =S +S +S △BCF 梯形四边形 ABCDAEF B AED 2 2 2 +?3?6+=?2?8 ( 6+8) ?9 =80 .个单位长度后得到新的四 边形个单位长度,再向左平移2( 2)把原来的四边形ABCD 向下平移3 , 2, — 3), -、C (— 163)、(【考点】解二元一次方程组. 1 )方程组利用加减消元法求岀解即可;【分析】(2)方程组 整理后,利用加减消元法求岀解即可.-②x I :』1代入②得:,x=把y=—(【解答】解:1),,12 -①得:y=)方程组整理得:,(2①+②得:4x=8,即x=2 , 3 为 分)32五、解答题(共 4小题,满分 标分别为(-•如图,四边形 21ABCD21 向下平移ABCD3个单位长度,再向左平移y= -, x=2把代入①得:•则方程组的解(,)(-8), 11 , 6, (- 140), 0, 0).,各个顶点的坐 ()求这个四边形的面积•个单位长度后得到新的四边 移后的四边形各点的坐标和新四边形的面积.则方程组的解为; 4z-胶芦①2x -尸2②D(-,, DABC图象如图所示: A (- 45)、B (- 133) 43231421 D是由四边形ABCD平移所得,B:四边形AC231二新四边形面积等于原来四边形面积【考点】垂线;对顶角、邻补角. 5x=180 ° , x+C0E£ EOD=180,即则/由【分析】0E! AB 可得/ EOB=90,设/ C0E=x D0E=5x而/ 的度数.90° =120°,利用对顶角相等即可得到/ A0D得至Ux=30 °,则/ BOC=30 + AB,【解答】解:丁0E1 EOB=90 ,,设/ C0E=x 则/D0E=5x / EOD=180 , v/ C0E+二x+5x=180 ° , 二x=30 ° , 90 °=120°, COE/ BOE=30 + •••/ BOC=/ AOD=/ BOC=120 . A/万元,并且今年的50023 •革命老区百色某芒果种植基地,去年结余为万元,估计今年可结余960 •求去年的收入与支岀各是多少万元?15%,支岀比去年低10%攵入比去年高【考点】二元一次方程组的应用.=960【分析】本题的等量关系是:去年的收入-去年的支岀=500万元•今年的收入-今年的支岀万元•然后根据这两个等量关系来列方程组,求岀未知数的解. 10万元.x万元,支岀是y【解答】解:设去年收入是fK=2040 题意有:.-鼻“ 为两直线之间一点.解得:1540万元.答:去年收入MN/ EF, C.如图241 ,2040万元,支岀AB、CD相交于点00吐1213/的平分线所在的直线相交于点 D,请直接写岀/ AC (3)如图3,若/ CAM 的平分线与/ CBF : ACB . / ADB=90 - ADB 之间的数量关系:【考点】平行线的性质.(2) 根据平行线的性质得到/ 仁/ADH / 2=Z BDH / NAC K ACG / FBC=/BCG 根据角平分—z-Df 1 卩 丿线J 的定义得到/ 1=ACG / 2=,根据平角的定义即可得到结论;(3)根据平行线的性质得到/ 仁/ADH / 2=/BDH / NAC / ACQ / FBC=ZBCG 根据平行线 的2 2 定义得到/仁MAC / 2=/ CBF,根据四边形的内角和和角的和差即可得到结论.【解答】解:(1)如图1 ,过C 作CG// MN DH// MN•/ MN// EF ,••• MN// CG// DH// EF ,•••/ 1= /ADH / 2= / BDH/ MAC=/ ACG / EBC=/ BCG•••/ MAC 与/ EBC 的平分线相交于点 D,11 • / 1=ACG / 2= , 2 2• / ADB= (/ ACG / BCG =/ ACB•••/ ACB=100° ,• / ADB=50°(2)如图 1,过 C 作 CG// MN DH// MN•/ MN// EF ,• MN// CG// DH// EF ,• / 1= / ADH / 2= / BDH/ NAC=/ ACG / FBC=/ BCG【分析】(1)如图1,根据平行线的性质得到/BCG根据角平分线的定义得到/ 仁/ADH / 2=Z BDH / MAC M ACG / EBC=Z 1=ACG / 2=,即可得到结论; 的平分线相交于点 D,若/ ACB=1O0,求/ ADB 的度数.(1)如图1,若/ MAC 与/ EBC 有何数 量关系?并证明你的结,/ ACB 与/ ADBCAM 如图2,若/与/ CBE 的平分线相交于点 D( 2论.与•••/ MAC与/ EBC的平分线相交于点• / 1=ACG / 2=,111213 11 L2 2 2)==,1+ADB=/Z 2=(/ MAC / EBC^Z ; Z ACB^Z ADB=180°-MN, CGI MN DH/H *( 3)如图 3,过 C ,v MN// EF , CGI DH// EF 「. MIN/ , Z 2=Z BDH丄/丄仁 Z ADH , Z BCG ZZ NAC=/ ACGFBCD 与 Z':Z MACFB 啲平分线相交于点 7^7 , CBF, Z 2= Z MAC-Z 仁:-=90 ° ---------- Z ACB=36C ° -Z ACB. Z MAC--Z ACB=360°2016年8月11日1 •••Z ADB=36C°-Z ACB -Z ADB=9C ACB 故答案为:Z ADB=9C°。
三台满族乡实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)一个自然数的算术平方根是x,则它后面一个数的算术平方根是()A.x+1B.x2+1C.+1D.【答案】D【考点】算术平方根【解析】【解答】解:由题意可知,这个自然数是x2,其后面一个数是x2+1,则其算术平方根是。
故答案为:D.【分析】根据算术平方根的意义可知,这个自然数是x2,从而可得其后的数,据此即可解答。
2、(2分)若正方形的边长是a,面积为S,那么()A.S的平方根是aB.a是S的算术平方根C.a=±D.S=【答案】B【考点】算术平方根【解析】【解答】解:∵a2=s,a>0,∴a=。
故答案为:B.【分析】根据正方形的面积与边长的关系,结合算术平方根的意义即可判断。
3、(2分)如图,已知AB∥CD,∠1=56°,则∠2的度数是()A. 34°B. 56°C. 65°D. 124°【答案】B【考点】平行线的性质【解析】【解答】解:∵AB∥CD,∠1=56°,∴∠2=∠1=56°.故答案为:B.【分析】根据两直线平行,同位角相等,即可得出答案。
4、(2分)在“同一平面内”的条件下,下列说法中错误的有()①过一点有且只有一条直线与已知直线平行;②过一点有且只有一条直线与已知直线垂直;③两条不同直线的位置关系只有相交、平行两种;④不相交的两条直线叫做平行线;⑤有公共顶点且有一条公共边的两个角互为邻补角.A. 1个B. 2个C. 3个D. 4个【答案】B【考点】对顶角、邻补角,垂线,平行公理及推论,平面中直线位置关系【解析】【解答】解:①同一平面内,过直线外一点有且只有一条直线与已知直线平行,故①错误;②同一平面内,过一点有且只有一条直线与已知直线垂直,故②正确;③同一平面内,两条不同直线的位置关系只有相交、平行两种,故③正确;④同一平面内,不相交的两条直线叫做平行线,故④正确;⑤有公共顶点且有一条公共边,另一边互为反向延长线的两个角互为邻补角,⑤错误;错误的有①⑤故答案为:B【分析】根据平行线公理,可对①作出判断;过一点作已知直线的垂线,这点可能在直线上也可能在直线外,且只有一条,可对②作出判断;同一平面内,两条不同直线的位置关系只有相交、平行两种,可对③作出判断;根据平行线的定义,可对④作出判断;根据邻补角的定义,可对⑤作出判断。
2015-2016学年四川省绵阳市三台县七年级(下)期中数学试卷一、选择题(本题有10个小题,每小题3分,满分30分,下面每小题给出的四个选项中,只有一个是正确的.)1.下面四个图形中,∠1与∠2是对顶角的图形的个数是()A.0 B.1 C.2 D.32.的算术平方根是()A.±4 B.4 C.±2 D.23.下列各组数中互为相反数的是()A.﹣2与B.﹣2与C.﹣2与D.2与|﹣2|4.下列说法正确的是()A.无限小数都是无理数B.带根号的数都是无理数C.无理数是无限不循环小数D.实数包括正实数、负实数5.方程2x﹣3y=7,用含x的代数式表示y为()A.y=B.y=C.x=D.x=6.下列图形中,由∠1=∠2能得到AB∥CD的是()A. B.C.D.7.已知点P到x轴距离为3,到y轴的距离为2,则P点坐标一定为()A.(3,2) B.(2,3)C.(﹣3,﹣2)D.(3,﹣2)8.一个两位数,十位上的数字x比个位上的数字y大1,若颠倒个位与十位数字的位置,得到新数比原数小9,求这个两位数列出的方程组正确的是()A.B.C.D.9.如图,DH∥EG∥BC,DC∥EF,那么与∠EFB相等的角(不包括∠EFB)的个数为()A.2个B.3个C.4个D.5个10.如图把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′位置,若∠EFB=60°,则∠AED′=()A.50°B.55° C.60° D.65°二、填空题(本题有8个小题,每小题3分,满分24分)11.把命题“垂直于同一条直线的两直线平行”,改写成“如果…,那么…”的形式: . 12.如图,计划把河水引到水池A 中,先作AB ⊥CD ,垂足为B ,然后沿AB 开渠,能使所开的渠道最短,这样设计的依据是 .13.如果5x 3m ﹣2n ﹣2y n ﹣m +11=0是二元一次方程,则2m ﹣n= .14.将一个直角三角板和一把矩形直尺按如图放置,若∠α=54°,则∠β的度数是 .15.如果若有理数a 和b 在数轴上所表示的点分别在原点的右边和左边,则﹣|a ﹣b|= .16.如果=1.732, =5.477,那么0.0003的平方根是 . 17.如果a+6和2a ﹣15是一个数的平方根,则这个数为 .18.如图,在直角坐标系中,第一次将△OAB 变换成△OA 1B 1,第二次将△OA 1B 1变换成△OA 2B 2,第三次将△OA 2B 2变换成△OA 3B 3,已知A (1,3),A 1(2,3),A 2(4,3),A 3(8,3),B (2,0),B 1(4,0),B 2(8,0),B 3(16,0).将△OAB 进行n 次变换得到△OA n B n ,则A n ( , ),B n ( , ).三、计算:(满分6分,每小题6分) 19.计算:(1)﹣+(2).四、解方程组(满分8分) 20.解方程组(1)(2).五、解答题(共4小题,满分32分)21.如图,四边形ABCD 各个顶点的坐标分别为(﹣2,8),(﹣11,6),(﹣14,0),(0,0). (1)求这个四边形的面积.(2)如果把原来的四边形ABCD 向下平移3个单位长度,再向左平移2个单位长度后得到新的四边形A 1B 2C 3D 4,请直接写出平移后的四边形各点的坐标和新四边形的面积.22.如图,直线AB、CD相交于点O,OE⊥AB,且∠DOE=5∠COE,求∠AOD的度数.23.革命老区百色某芒果种植基地,去年结余为500万元,估计今年可结余960万元,并且今年的收入比去年高15%,支出比去年低10%.求去年的收入与支出各是多少万元?24.如图1,MN∥EF,C为两直线之间一点.(1)如图1,若∠MAC与∠EBC的平分线相交于点D,若∠ACB=100°,求∠ADB的度数.(2)如图2,若∠CAM与∠CBE的平分线相交于点D,∠ACB与∠ADB有何数量关系?并证明你的结论.(3)如图3,若∠CAM的平分线与∠CBF的平分线所在的直线相交于点D,请直接写出∠ACB与∠ADB之间的数量关系:.2015-2016学年四川省绵阳市三台县七年级(下)期中数学试卷参考答案与试题解析一、选择题(本题有10个小题,每小题3分,满分30分,下面每小题给出的四个选项中,只有一个是正确的.)1.下面四个图形中,∠1与∠2是对顶角的图形的个数是()A.0 B.1 C.2 D.3【考点】对顶角、邻补角.【分析】根据对顶角的定义作出判断即可.【解答】解:根据对顶角的定义可知:只有C图中的是对顶角,其它都不是.故选:B.2.的算术平方根是()A.±4 B.4 C.±2 D.2【考点】算术平方根.【分析】首先根据算术平方根的定义求出的值,然后再利用算术平方根的定义即可求出结果.【解答】解:∵=4,∴4的算术平方根是2,∴的算术平方根是2;故选D.3.下列各组数中互为相反数的是()A.﹣2与B.﹣2与C.﹣2与D.2与|﹣2|【考点】实数的性质;立方根.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:A、只有符号不同的两个数互为相反数,故A正确;B、都是﹣2,故B错误;C、只有符号不同的两个数互为相反数,故C错误;D、都是2,故D错误;故选:A.4.下列说法正确的是()A.无限小数都是无理数B.带根号的数都是无理数C.无理数是无限不循环小数D.实数包括正实数、负实数【考点】无理数;实数.【分析】根据无理数是无限不循环小数,可得答案.【解答】解:A、无限循环小数是有理数,故A错误;B、是有理数,故B错误;C、无理数是无限不循环小数,故C正确;D、实数包括正实数、零、负实数,故D错误;故选:C.5.方程2x﹣3y=7,用含x的代数式表示y为()A.y=B.y=C.x=D.x=【考点】解二元一次方程.【分析】本题是将二元一次方程变形,先移项、再系数化为1即可.【解答】解:移项,得﹣3y=7﹣2x,系数化为1,得y=,即y=.故选:B.6.下列图形中,由∠1=∠2能得到AB∥CD的是()A. B.C.D.【考点】平行线的判定.【分析】利用平行线的判定方法判断即可.【解答】解:如图所示:∵∠1=∠2(已知),∴AB∥CD(内错角相等,两直线平行),故选B7.已知点P到x轴距离为3,到y轴的距离为2,则P点坐标一定为()A.(3,2) B.(2,3)C.(﹣3,﹣2)D.(3,﹣2)【考点】点的坐标.【分析】根据点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度求出点P的坐标,即可得解.【解答】解:∵点P到x轴距离为3,到y轴的距离为2,∴点P的横坐标为±2,纵坐标为±3,∴点P的坐标为(2,3)或(2,﹣3)或(﹣2,3)或(﹣2,﹣3).故选B.8.一个两位数,十位上的数字x比个位上的数字y大1,若颠倒个位与十位数字的位置,得到新数比原数小9,求这个两位数列出的方程组正确的是()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【分析】先表示出颠倒前后的两位数,然后根据十位上的数字x比个位上的数字y大1,若颠倒个位与十位数字的位置,得到新数比原数小9,列方程组即可.【解答】解:由题意得,.故选D.9.如图,DH∥EG∥BC,DC∥EF,那么与∠EFB相等的角(不包括∠EFB)的个数为()A.2个B.3个C.4个D.5个【考点】平行线的性质.【分析】根据平行线的性质由EG∥BC得∠BFE=∠1,∠2=∠3,由DC∥EF得∠BFE=∠2,则∠BFE=∠1=∠2=∠3,再利用DH∥EG得∠4=∠5,∠3=∠4,所以∠BFE=∠1=∠2=∠3=∠4=∠5.【解答】解:∵EG∥BC,∴∠BFE=∠1,∠2=∠3,∵DC∥EF,∴∠BFE=∠2,∴∠BFE=∠1=∠2=∠3,∵DH∥EG,∴∠4=∠5,∠3=∠4,∴∠BFE=∠1=∠2=∠3=∠4=∠5.故选D.10.如图把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′位置,若∠EFB=60°,则∠AED′=()A.50°B.55° C.60° D.65°【考点】平行线的性质;翻折变换(折叠问题).【分析】根据两直线平行,内错角相等可得∠1=∠EFB,再根据翻折变换的性质可得∠2=∠1,然后根据平角等于180°列式计算即可得解.【解答】解:如图,∵长方形纸片对边平行,∴∠1=∠EFB=60°,由翻折的性质得,∠2=∠1=60°,∴∠AED′=180°﹣∠1﹣∠2=180°﹣60°﹣60°=60°.故选C.二、填空题(本题有8个小题,每小题3分,满分24分)11.把命题“垂直于同一条直线的两直线平行”,改写成“如果…,那么…”的形式:如果两条直线垂直于同一条直线,那么这两条直线平行.【考点】命题与定理.【分析】命题由题设和结论两部分组成.题设是已知事项,结论是由已知事项推出的事项.命题常常可以写为“如果…那么…”的形式,如果后面接题设,而那么后面接结论.【解答】解:把命题“垂直于同一条直线的两直线平行”,改写成“如果…,那么…”的形式:如果两条直线垂直于同一条直线,那么这两条直线平行.12.如图,计划把河水引到水池A中,先作AB⊥CD,垂足为B,然后沿AB开渠,能使所开的渠道最短,这样设计的依据是连接直线外一点与直线上所有点的连线中,垂线段最短.【考点】垂线段最短.【分析】过直线外一点作直线的垂线,这一点与垂足之间的线段就是垂线段,且垂线段最短.【解答】解:根据垂线段定理,连接直线外一点与直线上所有点的连线中,垂线段最短,∴沿AB开渠,能使所开的渠道最短.故答案为:连接直线外一点与直线上所有点的连线中,垂线段最短.13.如果5x3m﹣2n﹣2y n﹣m+11=0是二元一次方程,则2m﹣n= 2 .【考点】二元一次方程的定义.【分析】利用二元一次方程的定义判断求出m与n的值,即可求出原式的值.【解答】解:∵5x3m﹣2n﹣2y n﹣m+11=0是二元一次方程,∴,①+②得:2m﹣n=2,故答案为:2.14.将一个直角三角板和一把矩形直尺按如图放置,若∠α=54°,则∠β的度数是36°.【考点】平行线的性质;三角形内角和定理;直角三角形的性质.【分析】过C作CE∥QT∥SH,根据平行线性质求出∠FCE=∠α=54°,∠β=∠NCE,根据∠FCN=90°,即可求出答案.【解答】解:过C作CE∥QT∥SH,∴∠FCE=∠α=54°,∴∠β=∠NCE=90°﹣54°=36°.故答案为:36°.15.如果若有理数a和b在数轴上所表示的点分别在原点的右边和左边,则﹣|a﹣b|= ﹣a .【考点】实数与数轴.【分析】根据题意判断出a 与b 的正负,以及a ﹣b 的正负,利用绝对值及二次根式的性质化简,计算即可得到结果.【解答】解:根据题意得:a >0,b <0,即a ﹣b >0, 则原式=|b|﹣|a ﹣b|=﹣b ﹣a+b=﹣a . 故答案为:﹣a .16.如果=1.732, =5.477,那么0.0003的平方根是 =±0.01732 . 【考点】算术平方根;平方根.【分析】把0.0003看成,即可求得平方根.【解答】解:∵0.0003=,∴±=±=±=±0.01732.17.如果a+6和2a ﹣15是一个数的平方根,则这个数为 81 . 【考点】平方根.【分析】利用平方根定义判断求出a 的值,即可确定出这个数. 【解答】解:根据题意得:a+6+2a ﹣15=0, 移项合并得:3a=9,即a=3, 则这个数为(3+6)2=81; 故答案为:8118.如图,在直角坐标系中,第一次将△OAB 变换成△OA 1B 1,第二次将△OA 1B 1变换成△OA 2B 2,第三次将△OA 2B 2变换成△OA 3B 3,已知A (1,3),A 1(2,3),A 2(4,3),A 3(8,3),B (2,0),B 1(4,0),B 2(8,0),B 3(16,0).将△OAB 进行n 次变换得到△OA n B n ,则A n ( 2n , 3 ),B n ( 2n+1 , 0 ).【考点】坐标与图形性质.【分析】观察不难发现,点A 系列的横坐标是2的指数次幂,指数为脚码,纵坐标都是3;点B 系列的横坐标是2的指数次幂,指数比脚码大1,纵坐标都是0,根据此规律写出即可. 【解答】解:∵A (1,3),A 1(2,3),A 2(4,3),A 3(8,3), 2=21、4=22、8=23, ∴A n (2n ,3), ∵B (2,0),B 1(4,0),B 2(8,0),B 3(16,0), 2=21、4=22、8=23,16=24, ∴B n (2n+1,0).故答案为:2n ,3;2n+1,0.三、计算:(满分6分,每小题6分) 19.计算:(1)﹣+(2).【考点】实数的运算. 【分析】(1)计算算术平方根、立方根,再加减可得;(2)化简二次根式、去绝对值符号、去括号,再合并即可.【解答】解:(1)原式=5﹣3+=2;(2)原式=2+﹣1﹣﹣1=0.四、解方程组(满分8分)20.解方程组(1)(2).【考点】解二元一次方程组.【分析】(1)方程组利用加减消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.【解答】解:(1),②×2﹣①得:y=﹣1,把y=﹣1代入②得:x=,则方程组的解为;(2)方程组整理得:,①+②得:4x=8,即x=2,把x=2代入①得:y=﹣,则方程组的解为.五、解答题(共4小题,满分32分)21.如图,四边形ABCD各个顶点的坐标分别为(﹣2,8),(﹣11,6),(﹣14,0),(0,0).(1)求这个四边形的面积.(2)如果把原来的四边形ABCD向下平移3个单位长度,再向左平移2个单位长度后得到新的四边形A 1B2C3D4,请直接写出平移后的四边形各点的坐标和新四边形的面积.【考点】坐标与图形性质;坐标与图形变化-平移.【分析】(1)根据S四边形ABCD =S△AED+S梯形AEFB+S△BCF计算即可.(2)把四边形ABCD的各个顶点向下平移3个单位长度,再向左平移2个单位长度即可,写出平移后各个顶点的坐标即可,新四边形面积和原来四边形面积相等,由此即可解决问题.【解答】解:(1)如图,作AE⊥CD于E,BF⊥CD于F,∵A (﹣2,8),B (﹣11,6),C (﹣14,0),D (0,0), ∴S 四边形ABCD =S △AED +S 梯形AEFB +S △BCF ,=•2•8+(6+8)•9+•3•6=80. (2)把原来的四边形ABCD 向下平移3个单位长度,再向左平移2个单位长度后得到新的四边形A 1B 2C 3D 4,图象如图所示:A 1(﹣4,5)、B 2(﹣13,3)、C 3(﹣16,﹣3)、D 4(﹣2,﹣3), ∵四边形A 1B 2C 3D 4是由四边形ABCD 平移所得, ∴新四边形面积等于原来四边形面积=80.22.如图,直线AB 、CD 相交于点O ,OE ⊥AB ,且∠DOE=5∠COE ,求∠AOD 的度数.【考点】垂线;对顶角、邻补角.【分析】由OE ⊥AB 可得∠EOB=90°,设∠COE=x ,则∠DOE=5x ,而∠COE+∠EOD=180°,即x+5x=180°,得到x=30°,则∠BOC=30°+90°=120°,利用对顶角相等即可得到∠AOD 的度数. 【解答】解:∵OE ⊥AB , ∴∠EOB=90°,设∠COE=x ,则∠DOE=5x , ∵∠COE+∠EOD=180°, ∴x+5x=180°, ∴x=30°,∴∠BOC=∠COE+∠BOE=30°+90°=120°, ∴∠AOD=∠BOC=120°.23.革命老区百色某芒果种植基地,去年结余为500万元,估计今年可结余960万元,并且今年的收入比去年高15%,支出比去年低10%.求去年的收入与支出各是多少万元? 【考点】二元一次方程组的应用. 【分析】本题的等量关系是:去年的收入﹣去年的支出=500万元.今年的收入﹣今年的支出=960万元.然后根据这两个等量关系来列方程组,求出未知数的解. 【解答】解:设去年收入是x 万元,支出是y 万元.根据题意有:解得:答:去年收入2040万元,支出1540万元.24.如图1,MN∥EF,C为两直线之间一点.(1)如图1,若∠MAC与∠EBC的平分线相交于点D,若∠ACB=100°,求∠ADB的度数.(2)如图2,若∠CAM与∠CBE的平分线相交于点D,∠ACB与∠ADB有何数量关系?并证明你的结论.(3)如图3,若∠CAM的平分线与∠CBF的平分线所在的直线相交于点D,请直接写出∠ACB与∠ADB之间的数量关系:∠ADB=90°﹣ACB .【考点】平行线的性质.【分析】(1)如图1,根据平行线的性质得到∠1=∠ADH,∠2=∠BDH,∠MAC=∠ACG,∠EBC=∠BCG,根据角平分线的定义得到∠1=ACG,∠2=,即可得到结论;(2)根据平行线的性质得到∠1=∠ADH,∠2=∠BDH,∠NAC=∠ACG,∠FBC=∠BCG,根据角平分线的定义得到∠1=ACG,∠2=,根据平角的定义即可得到结论;(3)根据平行线的性质得到∠1=∠ADH,∠2=∠BDH,∠NAC=∠ACG,∠FBC=∠BCG,根据平行线的定义得到∠1=MAC,∠2=∠CBF,根据四边形的内角和和角的和差即可得到结论.【解答】解:(1)如图1,过C作CG∥MN,DH∥MN,∵MN∥EF,∴MN∥CG∥DH∥EF,∴∠1=∠ADH,∠2=∠BDH,∠MAC=∠ACG,∠EBC=∠BCG,∵∠MAC与∠EBC的平分线相交于点D,∴∠1=ACG,∠2=,∴∠ADB=(∠ACG+∠BCG)=∠ACB;∵∠ACB=100°,∴∠ADB=50°;(2)如图1,过C作CG∥MN,DH∥MN,∵MN∥EF,∴MN∥CG∥DH∥EF,∴∠1=∠ADH,∠2=∠BDH,∠NAC=∠ACG,∠FBC=∠BCG,∵∠MAC与∠EBC的平分线相交于点D,∴∠1=ACG,∠2=,∴∠ADB=∠1+∠2=(∠MAC+∠EBC)==,∴∠ADB=180°﹣∠ACB;(3)如图3,过C作CG∥MN,DH∥MN,∵MN∥EF,∴MN∥CG∥DH∥EF,∴∠1=∠ADH,∠2=∠BDH,∠NAC=∠ACG,∠FBC=∠BCG,∵∠MAC与∠FBC的平分线相交于点D,∴∠1=MAC,∠2=∠CBF,∵∠ADB=360°﹣∠1﹣﹣∠ACB=360°﹣∠MAC﹣﹣∠ACB=360°﹣﹣=90°﹣∠ACB.∴∠ADB=90°﹣ACB.故答案为:∠ADB=90°﹣ACB.2016年8月11日。
三台初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级___________ 座号_______ 姓名 ____________ 分数 ____________一、选择题1、(2分)下列各组数值是二元一次方程x- 3y=4的解的是()【答案】A【考点】二元一次方程的解【解析】【解答】解:A、将x=1, y= - 1代入方程左边得:x - 3y=1+3=4,右边为4,符合题意;B、将x=2 , y=1代入方程左边得:x - 3y=2 - 3= - 1,右边为4,不符合题意;C、将x= - 1, y= - 2代入方程左边得:x- 3y= - 1+6=5,右边为4,不符合题意;D、将x=4 , y= - 1代入方程左边得:x - 3y=4+3=7,右边为4,不符合题意.故答案为:A【分析】由二元一次方程的解的意义,将选项中的x、y的值代入已知的方程检验即可判断求解。
2、(2分)下列方程组是二元一次方程组的是()>-J=l A. -l-l = v B 3x-y = 0x2-x-2 = 0€c.b'r+i= -1D. -【答案】D【考点】二元一次方程组的定义【解析】【解答】解:A、是二元二次方程组,故A不符合题意;B、是分式方程组,故B不符合题意;C、是二元二次方程组,故C不符合题意;D、是二元一次方程组,故D符合题意;故答案为:D.【分析】根据二元一次方程组的定义:方程组中含有两个未知数,且未知数的最高次数是2的整式方程,再对关系逐一判断,可得出答案。
观察下面图案,在A、B、C、D四幅图案中,能通过图案(如图所示)的平移得到的是()【答案】C【考点】平移的性质【解析】【解答】解:将题图所示的图案平移后,可以得到的图案是C选项•故答案为:C •【分析】根据平移的性质,结合图形,对各选项逐一分析判断即可。
4、(2分)如图,直线AB , CD交于O, E0丄AB于0, / 1与/ 3的关系是()A. 互余B.对顶角C.互补D.相等【答案】A【考点】余角、补角及其性质,对顶角、邻补角【解析】【解答】•/ E0丄AB于0, •••/ EOB=90 ° A/ 1+ / 3=90 ;则/ 1与/ 3的关系是互余.故答案为:A .【分析】根据对顶角相等得到 / 2= / 3,再由E0丄AB于0,得到/ 1与/ 3的关系是互余.82082进行如下操作:对121只需进行多少次操作后变为 1 ()=1这样对82只需进行3次操作后变为1,类似地,(2分)对于实数x, 我们规定[X]表示不大于x的最大整数,如[4]=4 ,[]=1 , [ —2.5]= —3.现对A. B. C. D.【答案】C【考点】估算无理数的大小•••对121只需进行3次操作后变为1, 故答案为:C【分析】[x ]表示不大于x 的最大整数,依据题目中提供的操作进行计算即可。
绵阳市初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)如图,,、、分别平分的内角、外角、外角.以下结论:①∥;②;③;④;⑤平分.其中正确的结论有()A. 2个B. 3个C. 4个D. 5个【答案】C【考点】平行线的判定与性质,三角形内角和定理,三角形的外角性质,等边三角形的判定,菱形的判定【解析】【解答】解:延长BA,在BA的延长线上取点F.①∵BD、CD分别平分△ABC的内角∠ABC、外角∠ACP,∴AD平分△ABC的外角∠FAC,∴∠FAD=∠DAC,∵∠FAC=∠ACB+∠ABC,且∠ABC=∠ACB,∴∠FAD=∠ABC,∴AD∥BC,故①正确;故①符合题意,②∵BD、BE分别平分△ABC的内角∠ABC、外角∠MBC,∴∠DBE=∠DBC+∠EBC=∠ABC+∠MBC=×180∘=90∘,∴EB⊥DB,故②正确,故②符合题意,③∵∠DCP=∠BDC+∠CBD,2∠DCP=∠BAC+2∠DBC,∴2(∠BDC+∠CBD)=∠BAC+2∠DBC,∴∠BDC=②∠BAC,∵∠BAC+2∠ACB=180∘,∴∠BAC+∠ACB=90∘,∴∠BDC+∠ACB=90∘,故③正确,故③符合题意,④∵∠BEC=180∘−(∠MBC+∠NCB)=180∘−(∠BAC+∠ACB+∠BAC+∠ABC)=180∘−(180∘+∠BAC)∴∠BEC=90∘−∠BAC,∴∠BAC+2∠BEC=180∘,故④正确,故④符合题意,⑤不妨设BD平分∠ADC,则易证四边形ABCD是菱形,推出△ABC是等边三角形,这显然不可能,故⑤错误。
故⑤不符合题意故应选:C。
【分析】根据角平分线的定义、三角形的内角和定理、三角形的外角的性质、平行线的判定、菱形的判定、等边三角形的判定一一判断即可.2、(2分)如图,AB∥CD,EF⊥CD,FG平分∠EFC,则()A.∠1<∠2B.∠1>∠2C.∠1=∠2D.不能确定【答案】C【考点】对顶角、邻补角,平行线的性质【解析】【解答】解:∵AB∥CD,∴∠2=∠CFG,又∵FG平分∠EFC,∴∠1=∠CFG,∴∠1=∠2,故答案为:C.【分析】根据平行线性质可得∠2=∠CFG,由角平分线性质得∠1=∠CFG,等量代换即可得证.3、(2分)如图,,=120º,平分,则等于()A. 60ºB. 50ºC. 30ºD. 35º【答案】C【考点】角的平分线,平行线的性质【解析】【解答】解:∵AB∥CD∴∠BGH+∠GHD=180°,∠GKH=∠KHD∵HK平分∠EHD∴∠GHD=2∠KHD=2∠GKH∵∠BGH=∠AGE=120°∴∠BGH+2∠GKH=180°,即120°+2∠GKH=180°,∴∠GKH=30°故答案为:C【分析】根据平行线的性质,可得出∠BGH+∠GHD=180°,∠GKH=∠KHD,再根据角平分线的定义,可得出∠GHD=2∠KHD=2∠GKH,然后可推出∠BGH+2∠GKH=180°,即可得出答案。
2018-2019学七年级下学期数学期中考试试题2019年4月28日一.选择题(每题3分,共30分)1.若(2x +1)0=l 则 ( )A .x ≥-12B .x ≠-12C .x ≤-12D .x ≠122.下列四个运算:①2100.001-=,②2121(1)1x x -+=+,③11133-÷=,④100(1)1--=. 其中正确的有( )A .1个B . 2个C .3个D .4个 3.201020112()1.53-⨯等于( )A .1B .23-C .32-D .324.如下图,ABC ∆中,,,AD BC GC BC CF AB ⊥⊥⊥,,,D C F 是垂足,则下列说法错误的是(A)ABC ∆中,AD 是BC 边上的高 (B)ABC ∆中,GC 是BC 边上的高(C)GBC ∆中,GC 是BC 边上的高 (D)GBC ∆中,CF 是BG 边上的高 (第4题) (第5题) (第9题)5.如图,直线l 1∥l 2,l 3⊥l 4.有三个命题:①∠1+∠3=90°;②∠2+∠3=90°;③∠2=∠4.下列说法中,正确的是 ( )A .只有①正确B .只有②正确C .①和③正确D .①②③都正确 6.下列各式中,可以运用平方差公式计算的是( )A .(4)(4)a b a b -+-B .(2)(2)x y x y -+C .(31)(13)a a ---D .11()()22x y x y --+ 7.若()2221243by xy x y ax +-=+,则a ,b 的值分别为 ( )A .2, 9B .2, -9C .-2 ,9D .-4, 98.把一个三角形分成面积相等的两个三角形的线段为 A .三角形的中线 B .三角形的角平分线C .三角形的高 D .以上都可以 9.如图,已知ABC ∆中90=∠C ,若沿图中虚线剪去C ∠,则12∠+∠ 等于( ) A .90︒ B .135︒ C .270︒ D .315︒ 10.等腰三角形的周长为24,那么腰长x 的取值范围为( ) A .0<x ≤8 B .0<x < 6 C .0<x <12 D .6<x <12F GC D BA21EDCBAD CBA二.填空题(每空2分,共22分)11.已知:a +b =9,a b =7,则 a 2+b 2= ; (a -b ) 2= . 12.0.0000034可用科学记数法表示为 .13.已知2m +3n =3,则4m ·8n 的值为 . 14.如图,12,3100∠=∠∠=︒,则4∠= .15.从n 边形一个顶点出发共可作4条对角线,则这个n 边形的内角和为________. 16.若2249a kab b ++是完全平方式,则常数k = .17.如图,在△ABC 中,∠C =90°,AD 平分∠CAB ,BC =6,BD =4,则点D 到AB 的距离是 .(第14题) (第17题) (第19题) 18.等腰三角形的一个底角为700,则一腰上的高与另一腰的夹角的度数是 .19.如图,直线AB CD ∥,直线EF 交AB 于G ,交CD 于F ,直线EH 交AB 于H .若145=∠,260=∠,则E ∠的度数为 度.20.若210a a ++=,则3a 值为 .三.解答题:(21每小题4分,22每小题5分 ,23题5分.)21.计算(1)120211()(2)5()42---+-⨯-; (2)2332(2)()x x --;22.计算:(1) )5)(32()12(52-+-++x x x x x ; (2)2(23)(23)(2)x y x y x y -++---+23.先化简,再求值:()()()()3342213222-+-+-++-m m m m m m m ,其中321=mA HBDCGE12F432124.(本题6分) 如图,////AB CD PN ,若50,150ABC CPN ∠=︒∠=︒,求BCP ∠的度数.25.(本题6分) 如图,在△ABC 中,BD ⊥AC ,E F ⊥AC ,垂足分别为D .F . (1)若∠1=∠2,试说明DE ∥BC ; (2)若DE ∥BC ,你能得到∠l=∠2吗?26.(本题7分)如图,四边形ABCD 中,∠F 为四边形ABCD 的∠ABC 的角平分线及外角∠DCE 的平分线所在的直线构成的锐角,若设∠A=α,∠D=β; (1)如图①,αβ+>180°,试用α,β表示∠F ;N P D C B A(2)如图②,αβ+<180°,请在图中画出∠F ,并试用α,β表示∠F ;(3)一定存在∠F 吗?如有,求出∠F 的值,如不一定,指出α,β满足什么条件时,不存在∠F .27.(本题6分)(1)欲求231333++++ (20)3+的值,可令231333S =++++ (20)3+…①,将①式两边同乘以3,得 ……②,由②式减去①式,得S = . (2)仿照(1)的方法,当1k ≠时,试求23a ak ak ak ++++…nak +的值(用含,,a n k 的代数式表示)参考答案一.选择题.( 本题共10小题,每题3分,共30分.)题号 1 2 3 4 5 6 7 8 9 10EDC B AFEDC BA图①图②二.填空题.(本题共10小题,每空2分,共22分)11.22a b +=__67 _,2()a b -=___53 ;12.63.410-⨯ ;13. 8 ;14.∠4= 80 °; 15.__900° ;16. k=_ ±12 ;17. 2 __ ;18. 50°_; 19.__15°_ ;20. 1 .三、计算题(21每小题4分,22每小题5分 ,23题5分.)21.(1)-4;(2)69x -;22.(1)3258215x x x +++;(2)281249y y xy -++-23. 原式=311m -+=624.∠BCD=50° (2分) ∠PCD=30° (2分) ∠BCD=20° (2分) 25.(1) 3分(2) 3分 26.(1)∠F=0902αβ+- (2分)(2)画图 (1分)∠F=0902αβ+-(2分)(3)0180αβ+= (2分)27.(1)233333S =+++ (21)3+ (1分)21312S -= (2分)(2)1(1)1n a k k +-- (3分)答案 B B D B A C CA CD。
三台乡初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)已知a2=25, =7,且|a+b|=a+b,则a﹣b的值为()A. 2或12B. 2或﹣12C. ﹣2或12D. ﹣2或﹣12【答案】D【考点】平方根【解析】【解答】∵a2=25, =7,∴a=±5,b=±7.又∵|a+b|=a+b,∴a=±5,b=7.∴当a=5,b=7时,a﹣b=﹣2;当a=﹣5,b=7时,a﹣b=﹣5﹣7=﹣12.故答案为:D.【分析】平方根是指如果一个数的平方等于a,则这个数叫作a的平方根。
根据平方根的意义可得a=5,b=7,再根据已知条件|a+b|=a+b,可得a=±5,b=7,再求出a-b的值即可。
2、(2分)一个自然数的算术平方根是x,则它后面一个数的算术平方根是()A.x+1B.x2+1C.+1D.【答案】D【考点】算术平方根【解析】【解答】解:由题意可知,这个自然数是x2,其后面一个数是x2+1,则其算术平方根是。
故答案为:D.【分析】根据算术平方根的意义可知,这个自然数是x2,从而可得其后的数,据此即可解答。
3、(2分)如图所示,在△ABC中,AB=12,BC=10,点O为AC的中点,则BO的取值范围是()A. 1<BO<11B. 2<BO<22C. 10<BO<12D. 5<BO<6【答案】A【考点】一元一次不等式组的应用,三角形三边关系,平行四边形的判定与性质【解析】【解答】解:如图延长BO到D,使OB=OD,连接CD,AD,则四边形ABCD是平行四边形,在△ABD中,AD=10,BA=12,所以2<BD<22,所以1<BO<11答案。
故答案为:A.【分析】如图延长BO到D,使OB=OD,连接CD,AD,根据对角线互相平分的四边形是平行四边形得出四边形ABCD是平行四边形,根据平行四边形对边相等得出AD=BC=10,在△ABD中,根据三角形三边之间的关系得出AB-AD<BD<AB+AD,即2<BD<22,从而得出4、(2分)下列说法正确的是()A. |-2|=-2B. 0的倒数是0C. 4的平方根是2D. -3的相反数是3【答案】D【考点】相反数及有理数的相反数,绝对值及有理数的绝对值,有理数的倒数,平方根【解析】【解答】A、根据绝对值的代数意义可得|﹣2|=2,不符合题意;B、根据倒数的定义可得0没有倒数,不符合题意;C、根据平方根的定义可4的平方根为±2,不符合题意;D、根据相反数的定义可得﹣3的相反数为3,符合题意,故答案为:D.【分析】根据绝对值的意义,可对选项A作出判断;利用倒数的定义,可对选项B作出判断;根据正数的平方根有两个,它们互为相反数,可对选项C作出判断;根据相反数的定义,可对选项D作出判断。
三台乡实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)下列问题用普查(即全面调查)较为合适的是()A. 调查北京某区中学生一周内上网的时间B. 检验一批药品的治疗效果C. 了解50位同学的视力情况D. 检测一批地板砖的强度【答案】C【考点】全面调查与抽样调查【解析】【解答】解:A、学生较多,上网时间难调查,故宜选用抽样调查;B、实验要损耗药品,故宜选用抽样调查;C、人数较少且要具体到每个人,故宜用全面调查;D、有破坏性,宜采用抽样调查.故答案为:C.【分析】一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查,根据全面调查的特征进行判断即可,2、(2分)下列方程中,是二元一次方程的是()A.3x﹣2y=4zB.6xy+9=0C.D.【答案】D【考点】二元一次方程的定义【解析】【解答】解:根据二元一次方程的定义,方程有两个未知数,方程两边都是整式,故D符合题意,故答案为:D【分析】根据二元一次方程的定义:方程有两个未知数,含未知数项的最高次数都是1次,方程两边都是整式,即可得出答案。
3、(2分)用加减法解方程组时,要使方程中同一个未知数的系数相等或互为相反数,必须适当变形,以下四种变形正确的是()①②③④A. ①②B. ②③C. ③④D. ①④【答案】C【考点】解二元一次方程组【解析】【解答】解:试题分析:把y的系数变为相等时,①×3,②×2得,,把x的系数变为相等时,①×2,②×3得,,所以③④正确.故答案为:C.【分析】观察方程特点:若把y的系数变为相等时,①×3,②×2,就可得出结果;若把x的系数变为相等时,①×2,②×3,即可得出答案。
三台镇实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)下列各式中正确的是()A. B. C. D.【答案】A【考点】平方根,算术平方根,立方根及开立方【解析】【解答】解:A、,故A选项符合题意;B、,故B选项不符合题意;C、,故C选项不符合题意;D、,故D选项不符合题意;故答案为:A.【分析】一个正数的算数平方根是一个正数,一个正数的平方根有两个,它们互为相反数;任何数都只有一个立方根,正数的立方根是一个正数,根据定义即可一一判断。
2、(2分)如果方程组的解中与的值相等,那么的值是()A.1B.2C.3D.4【答案】C【考点】解二元一次方程组【解析】【解答】解:∵方程组的解中与的值相等,∴x=y∴3x+7x=10解之:x=1∴y=1∴a+a-1=5解之:a=3故答案为:C【分析】根据已知可得出x=y,将x=y代入第1个方程可求出x、y的值,再将x、y的值代入第2个方程,解方程求出a的值。
3、(2分)下列说法中:①-1的平方根是±1;②(-1)2的平方根是±1;③实数按性质分类分为正实数,0和负实数;④-2是-8的立方根;其中正确的个数是()A. 0B. 1C. 2D. 3【答案】D【考点】平方根,立方根及开立方,实数及其分类【解析】【解答】解:①-1没有平方根,因此①错误;②(-1)2=1,(-1)2的平方根是±1,因此②正确;③实数按性质分类分为正实数,0和负实数,因此③正确;④-2是-8的立方根,因此④正确正确的有②④③故答案为:D【分析】根据平方根,立方根的性质,及实数的分类,对各选项逐一判断即可。
4、(2分)下列说法中正确的是()A. 有且只有一条直线垂直于已知直线B. 互相垂直的两条线段一定相交C. 从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离。
2018-2019学年四川省绵阳市三台县七年级(下)期中测试卷数学一、选择题(本题有10个小题,每小题3分,满分30分,下面每小题给出的四个选项中,只有一个是正确的.)1.下面四个图形中,∠1与∠2是对顶角的图形的个数是()A.0 B.1 C.2 D.32.的算术平方根是()A.±4 B.4 C.±2 D.23.下列各组数中互为相反数的是()A.﹣2与B.﹣2与C.﹣2与D.2与|﹣2|4.下列说法正确的是()A.无限小数都是无理数B.带根号的数都是无理数C.无理数是无限不循环小数D.实数包括正实数、负实数5.方程2x﹣3y=7,用含x的代数式表示y为()A.y=B.y=C.x=D.x=6.下列图形中,由∠1=∠2能得到AB∥CD的是()A.B.C.D.7.已知点P到x轴距离为3,到y轴的距离为2,则P点坐标一定为()A.(3,2)B.(2,3)C.(﹣3,﹣2)D.(3,﹣2)8.一个两位数,十位上的数字x比个位上的数字y大1,若颠倒个位与十位数字的位置,得到新数比原数小9,求这个两位数列出的方程组正确的是()A.B.C.D.9.如图,DH∥EG∥BC,DC∥EF,那么与∠EFB相等的角(不包括∠EFB)的个数为()A.2个B.3个C.4个D.5个10.如图把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′位置,若∠EFB=60°,则∠AED′=()A.50°B.55°C.60°D.65°二、填空题(本题有8个小题,每小题3分,满分24分)11.把命题“垂直于同一条直线的两直线平行”,改写成“如果…,那么…”的形式:.12.如图,计划把河水引到水池A中,先作AB⊥CD,垂足为B,然后沿AB开渠,能使所开的渠道最短,这样设计的依据是.13.如果5x3m﹣2n﹣2y n﹣m+11=0是二元一次方程,则2m﹣n=.14.将一个直角三角板和一把矩形直尺按如图放置,若∠α=54°,则∠β的度数是.15.如果若有理数a和b在数轴上所表示的点分别在原点的右边和左边,则﹣|a﹣b|=.16.如果=1.732,=5.477,那么0.0003的平方根是.17.如果a+6和2a﹣15是一个数的平方根,则这个数为.18.如图,在直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA2B2变换成△OA3B3,已知A(1,3),A1(2,3),A2(4,3),A3(8,3),B(2,0),B1(4,0),B2(8,0),B3(16,0).将△OAB进行n次变换得到△OA n B n,则A n(,),B n(,).三、计算:(满分6分,每小题6分)19.计算:(1)﹣+(2).四、解方程组(满分8分)20.解方程组(1)(2).五、解答题(共4小题,满分32分)21.如图,四边形ABCD各个顶点的坐标分别为(﹣2,8),(﹣11,6),(﹣14,0),(0,0).(1)求这个四边形的面积.(2)如果把原来的四边形ABCD向下平移3个单位长度,再向左平移2个单位长度后得到新的四边形A1B2C3D4,请直接写出平移后的四边形各点的坐标和新四边形的面积.22.如图,直线AB、CD相交于点O,OE⊥AB,且∠DOE=5∠COE,求∠AOD的度数.23.革命老区百色某芒果种植基地,去年结余为500万元,估计今年可结余960万元,并且今年的收入比去年高15%,支出比去年低10%.求去年的收入与支出各是多少万元?24.如图1,MN∥EF,C为两直线之间一点.(1)如图1,若∠MAC与∠EBC的平分线相交于点D,若∠ACB=100°,求∠ADB的度数.(2)如图2,若∠CAM与∠CBE的平分线相交于点D,∠ACB与∠ADB有何数量关系?并证明你的结论.(3)如图3,若∠CAM的平分线与∠CBF的平分线所在的直线相交于点D,请直接写出∠ACB与∠ADB 之间的数量关系:.2018-2019学年四川省绵阳市三台县七年级(下)期中数学试卷参考答案与试题解析一、选择题(本题有10个小题,每小题3分,满分30分,下面每小题给出的四个选项中,只有一个是正确的.)1.下面四个图形中,∠1与∠2是对顶角的图形的个数是()A.0 B.1 C.2 D.3【考点】对顶角、邻补角.【分析】根据对顶角的定义作出判断即可.【解答】解:根据对顶角的定义可知:只有C图中的是对顶角,其它都不是.故选:B.2.的算术平方根是()A.±4 B.4 C.±2 D.2【考点】算术平方根.【分析】首先根据算术平方根的定义求出的值,然后再利用算术平方根的定义即可求出结果.【解答】解:∵=4,∴4的算术平方根是2,∴的算术平方根是2;故选D.3.下列各组数中互为相反数的是()A.﹣2与B.﹣2与C.﹣2与D.2与|﹣2|【考点】实数的性质;立方根.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:A、只有符号不同的两个数互为相反数,故A正确;B、都是﹣2,故B错误;C、只有符号不同的两个数互为相反数,故C错误;D、都是2,故D错误;故选:A.4.下列说法正确的是()A.无限小数都是无理数B.带根号的数都是无理数C.无理数是无限不循环小数D.实数包括正实数、负实数【考点】无理数;实数.【分析】根据无理数是无限不循环小数,可得答案.【解答】解:A、无限循环小数是有理数,故A错误;B、是有理数,故B错误;C、无理数是无限不循环小数,故C正确;D、实数包括正实数、零、负实数,故D错误;故选:C.5.方程2x﹣3y=7,用含x的代数式表示y为()A.y=B.y=C.x=D.x=【考点】解二元一次方程.【分析】本题是将二元一次方程变形,先移项、再系数化为1即可.【解答】解:移项,得﹣3y=7﹣2x,系数化为1,得y=,即y=.故选:B.6.下列图形中,由∠1=∠2能得到AB∥CD的是()A.B.C.D.【考点】平行线的判定.【分析】利用平行线的判定方法判断即可.【解答】解:如图所示:∵∠1=∠2(已知),∴AB∥CD(内错角相等,两直线平行),故选B7.已知点P到x轴距离为3,到y轴的距离为2,则P点坐标一定为()A.(3,2)B.(2,3)C.(﹣3,﹣2)D.(3,﹣2)【考点】点的坐标.【分析】根据点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度求出点P的坐标,即可得解.【解答】解:∵点P到x轴距离为3,到y轴的距离为2,∴点P的横坐标为±2,纵坐标为±3,∴点P的坐标为(2,3)或(2,﹣3)或(﹣2,3)或(﹣2,﹣3).故选B.8.一个两位数,十位上的数字x比个位上的数字y大1,若颠倒个位与十位数字的位置,得到新数比原数小9,求这个两位数列出的方程组正确的是()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【分析】先表示出颠倒前后的两位数,然后根据十位上的数字x比个位上的数字y大1,若颠倒个位与十位数字的位置,得到新数比原数小9,列方程组即可.【解答】解:由题意得,.故选D.9.如图,DH∥EG∥BC,DC∥EF,那么与∠EFB相等的角(不包括∠EFB)的个数为()A.2个B.3个C.4个D.5个【考点】平行线的性质.【分析】根据平行线的性质由EG∥BC得∠BFE=∠1,∠2=∠3,由DC∥EF得∠BFE=∠2,则∠BFE=∠1=∠2=∠3,再利用DH∥EG得∠4=∠5,∠3=∠4,所以∠BFE=∠1=∠2=∠3=∠4=∠5.【解答】解:∵EG∥BC,∴∠BFE=∠1,∠2=∠3,∵DC∥EF,∴∠BFE=∠2,∴∠BFE=∠1=∠2=∠3,∵DH∥EG,∴∠4=∠5,∠3=∠4,∴∠BFE=∠1=∠2=∠3=∠4=∠5.故选D.10.如图把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′位置,若∠EFB=60°,则∠AED′=()A.50°B.55°C.60°D.65°【考点】平行线的性质;翻折变换(折叠问题).【分析】根据两直线平行,内错角相等可得∠1=∠EFB,再根据翻折变换的性质可得∠2=∠1,然后根据平角等于180°列式计算即可得解.【解答】解:如图,∵长方形纸片对边平行,∴∠1=∠EFB=60°,由翻折的性质得,∠2=∠1=60°,∴∠AED′=180°﹣∠1﹣∠2=180°﹣60°﹣60°=60°.故选C.二、填空题(本题有8个小题,每小题3分,满分24分)11.把命题“垂直于同一条直线的两直线平行”,改写成“如果…,那么…”的形式:如果两条直线垂直于同一条直线,那么这两条直线平行.【考点】命题与定理.【分析】命题由题设和结论两部分组成.题设是已知事项,结论是由已知事项推出的事项.命题常常可以写为“如果…那么…”的形式,如果后面接题设,而那么后面接结论.【解答】解:把命题“垂直于同一条直线的两直线平行”,改写成“如果…,那么…”的形式:如果两条直线垂直于同一条直线,那么这两条直线平行.12.如图,计划把河水引到水池A中,先作AB⊥CD,垂足为B,然后沿AB开渠,能使所开的渠道最短,这样设计的依据是连接直线外一点与直线上所有点的连线中,垂线段最短.【考点】垂线段最短.【分析】过直线外一点作直线的垂线,这一点与垂足之间的线段就是垂线段,且垂线段最短.【解答】解:根据垂线段定理,连接直线外一点与直线上所有点的连线中,垂线段最短,∴沿AB开渠,能使所开的渠道最短.故答案为:连接直线外一点与直线上所有点的连线中,垂线段最短.13.如果5x3m﹣2n﹣2y n﹣m+11=0是二元一次方程,则2m﹣n=2.【考点】二元一次方程的定义.【分析】利用二元一次方程的定义判断求出m与n的值,即可求出原式的值.【解答】解:∵5x3m﹣2n﹣2y n﹣m+11=0是二元一次方程,∴,①+②得:2m﹣n=2,故答案为:2.14.将一个直角三角板和一把矩形直尺按如图放置,若∠α=54°,则∠β的度数是36°.【考点】平行线的性质;三角形内角和定理;直角三角形的性质.【分析】过C作CE∥QT∥SH,根据平行线性质求出∠FCE=∠α=54°,∠β=∠NCE,根据∠FCN=90°,即可求出答案.【解答】解:过C作CE∥QT∥SH,∴∠FCE=∠α=54°,∴∠β=∠NCE=90°﹣54°=36°.故答案为:36°.15.如果若有理数a和b在数轴上所表示的点分别在原点的右边和左边,则﹣|a﹣b|=﹣a.【考点】实数与数轴.【分析】根据题意判断出a与b的正负,以及a﹣b的正负,利用绝对值及二次根式的性质化简,计算即可得到结果.【解答】解:根据题意得:a>0,b<0,即a﹣b>0,则原式=|b|﹣|a﹣b|=﹣b﹣a+b=﹣a.故答案为:﹣a.16.如果=1.732,=5.477,那么0.0003的平方根是=±0.01732.【考点】算术平方根;平方根.【分析】把0.0003看成,即可求得平方根.【解答】解:∵0.0003=,∴±=±=±=±0.01732.17.如果a+6和2a﹣15是一个数的平方根,则这个数为81.【考点】平方根.【分析】利用平方根定义判断求出a的值,即可确定出这个数.【解答】解:根据题意得:a+6+2a﹣15=0,移项合并得:3a=9,即a=3,则这个数为(3+6)2=81;故答案为:8118.如图,在直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA2B2变换成△OA3B3,已知A(1,3),A1(2,3),A2(4,3),A3(8,3),B(2,0),B1(4,0),B2(8,0),B3(16,0).将△OAB进行n次变换得到△OA n B n,则A n(2n,3),B n(2n+1,0).【考点】坐标与图形性质.【分析】观察不难发现,点A系列的横坐标是2的指数次幂,指数为脚码,纵坐标都是3;点B系列的横坐标是2的指数次幂,指数比脚码大1,纵坐标都是0,根据此规律写出即可.【解答】解:∵A(1,3),A1(2,3),A2(4,3),A3(8,3),2=21、4=22、8=23,∴A n(2n,3),∵B(2,0),B1(4,0),B2(8,0),B3(16,0),2=21、4=22、8=23,16=24,∴B n(2n+1,0).故答案为:2n,3;2n+1,0.三、计算:(满分6分,每小题6分)19.计算:(1)﹣+(2).【考点】实数的运算.【分析】(1)计算算术平方根、立方根,再加减可得;(2)化简二次根式、去绝对值符号、去括号,再合并即可.【解答】解:(1)原式=5﹣3+=2;(2)原式=2+﹣1﹣﹣1=0.四、解方程组(满分8分) 20.解方程组(1)(2).【考点】解二元一次方程组. 【分析】(1)方程组利用加减消元法求出解即可; (2)方程组整理后,利用加减消元法求出解即可.【解答】解:(1),②×2﹣①得:y=﹣1,把y=﹣1代入②得:x=,则方程组的解为;(2)方程组整理得:,①+②得:4x=8,即x=2,把x=2代入①得:y=﹣,则方程组的解为.五、解答题(共4小题,满分32分)21.如图,四边形ABCD 各个顶点的坐标分别为(﹣2,8),(﹣11,6),(﹣14,0),(0,0). (1)求这个四边形的面积.(2)如果把原来的四边形ABCD 向下平移3个单位长度,再向左平移2个单位长度后得到新的四边形A 1B 2C 3D 4,请直接写出平移后的四边形各点的坐标和新四边形的面积.【考点】坐标与图形性质;坐标与图形变化-平移. 【分析】(1)根据S 四边形ABCD =S △AED +S 梯形AEFB +S △BCF 计算即可.(2)把四边形ABCD 的各个顶点向下平移3个单位长度,再向左平移2个单位长度即可,写出平移后各个顶点的坐标即可,新四边形面积和原来四边形面积相等,由此即可解决问题. 【解答】解:(1)如图,作AE ⊥CD 于E ,BF ⊥CD 于F , ∵A (﹣2,8),B (﹣11,6),C (﹣14,0),D (0,0),∴S 四边形ABCD =S △AED +S 梯形AEFB +S △BCF ,=•2•8+(6+8)•9+•3•6=80. (2)把原来的四边形ABCD 向下平移3个单位长度,再向左平移2个单位长度后得到新的四边形A 1B 2C 3D 4,图象如图所示:A 1(﹣4,5)、B 2(﹣13,3)、C 3(﹣16,﹣3)、D 4(﹣2,﹣3), ∵四边形A 1B 2C 3D 4是由四边形ABCD 平移所得, ∴新四边形面积等于原来四边形面积=80.22.如图,直线AB 、CD 相交于点O ,OE ⊥AB ,且∠DOE=5∠COE ,求∠AOD 的度数.【考点】垂线;对顶角、邻补角.【分析】由OE ⊥AB 可得∠EOB=90°,设∠COE=x ,则∠DOE=5x ,而∠COE +∠EOD=180°,即x +5x=180°,得到x=30°,则∠BOC=30°+90°=120°,利用对顶角相等即可得到∠AOD 的度数. 【解答】解:∵OE ⊥AB , ∴∠EOB=90°,设∠COE=x ,则∠DOE=5x , ∵∠COE +∠EOD=180°, ∴x +5x=180°, ∴x=30°,∴∠BOC=∠COE +∠BOE=30°+90°=120°, ∴∠AOD=∠BOC=120°.23.革命老区百色某芒果种植基地,去年结余为500万元,估计今年可结余960万元,并且今年的收入比去年高15%,支出比去年低10%.求去年的收入与支出各是多少万元? 【考点】二元一次方程组的应用.【分析】本题的等量关系是:去年的收入﹣去年的支出=500万元.今年的收入﹣今年的支出=960万元.然后根据这两个等量关系来列方程组,求出未知数的解. 【解答】解:设去年收入是x 万元,支出是y 万元.根据题意有:解得:答:去年收入2040万元,支出1540万元.24.如图1,MN∥EF,C为两直线之间一点.(1)如图1,若∠MAC与∠EBC的平分线相交于点D,若∠ACB=100°,求∠ADB的度数.(2)如图2,若∠CAM与∠CBE的平分线相交于点D,∠ACB与∠ADB有何数量关系?并证明你的结论.(3)如图3,若∠CAM的平分线与∠CBF的平分线所在的直线相交于点D,请直接写出∠ACB与∠ADB之间的数量关系:∠ADB=90°﹣ACB.【考点】平行线的性质.【分析】(1)如图1,根据平行线的性质得到∠1=∠ADH,∠2=∠BDH,∠MAC=∠ACG,∠EBC=∠BCG,根据角平分线的定义得到∠1=ACG,∠2=,即可得到结论;(2)根据平行线的性质得到∠1=∠ADH,∠2=∠BDH,∠NAC=∠ACG,∠FBC=∠BCG,根据角平分线的定义得到∠1=ACG,∠2=,根据平角的定义即可得到结论;(3)根据平行线的性质得到∠1=∠ADH,∠2=∠BDH,∠NAC=∠ACG,∠FBC=∠BCG,根据平行线的定义得到∠1=MAC,∠2=∠CBF,根据四边形的内角和和角的和差即可得到结论.【解答】解:(1)如图1,过C作CG∥MN,DH∥MN,∵MN∥EF,∴MN∥CG∥DH∥EF,∴∠1=∠ADH,∠2=∠BDH,∠MAC=∠ACG,∠EBC=∠BCG,∵∠MAC与∠EBC的平分线相交于点D,∴∠1=ACG,∠2=,∴∠ADB=(∠ACG+∠BCG)=∠ACB;∵∠ACB=100°,∴∠ADB=50°;(2)如图1,过C作CG∥MN,DH∥MN,∵MN∥EF,∴MN∥CG∥DH∥EF,∴∠1=∠ADH,∠2=∠BDH,∠NAC=∠ACG,∠FBC=∠BCG,∵∠MAC与∠EBC的平分线相交于点D,∴∠1=ACG,∠2=,∴∠ADB=∠1+∠2=(∠MAC+∠EBC)==,∴∠ADB=180°﹣∠ACB;(3)如图3,过C作CG∥MN,DH∥MN,∵MN∥EF,∴MN∥CG∥DH∥EF,∴∠1=∠ADH,∠2=∠BDH,∠NAC=∠ACG,∠FBC=∠BCG,∵∠MAC与∠FBC的平分线相交于点D,∴∠1=MAC,∠2=∠CBF,∵∠ADB=360°﹣∠1﹣﹣∠ACB=360°﹣∠MAC﹣﹣∠ACB=360°﹣﹣=90°﹣∠ACB.∴∠ADB=90°﹣ACB.故答案为:∠ADB=90°﹣ACB.。