新人教版七年级数学下册期中测试卷
- 格式:doc
- 大小:165.63 KB
- 文档页数:2
新人教版七年级数学下册期中考试卷及参考答案班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.计算(-2)1999+(-2)2000等于()A.-23999B.-2C.-21999D.219992.我国倡导的“一带一路”建设将促进我国与世界一些国家的互利合作,根据规划“一带一路”地区覆盖总人口为4400000000人,这个数用科学记数法表示为()A.4.4×108B.4.40×108C.4.4×109D.4.4×10103.如图,给出了过直线外一点作已知直线的平行线的方法,其依据是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角互补,两直线平行D.两直线平行,同位角相等4.若x是3的相反数,|y|=4,则x-y的值是()A.-7 B.1 C.-1或7 D.1或-75.如图所示,下列推理及括号中所注明的推理依据错误的是()A.∵∠1=∠3,∴AB∥CD(内错角相等,两直线平行)B.∵AB∥CD,∴∠1=∠3(两直线平行,内错角相等)C.∵AD∥BC,∴∠BAD+∠ABC=180°(两直线平行,同旁内角互补)D.∵∠DAM=∠CBM,∴AB∥CD(两直线平行,同位角相等)6.如图,∠1=70°,直线a平移后得到直线b,则∠2-∠3()A .70°B .180°C .110°D .80°7.下列各组线段不能组成三角形的是 ( )A .4cm 、4cm 、5cmB .4cm 、6cm 、11cmC .4cm 、5cm 、6cmD .5cm 、12cm 、13cm8.定义:对于任意数a ,符号[]a 表示不大于a 的最大整数,例如:[]5.8=5,[]10=10,[]=4π--.若[]=6a -,则a 的取值范围是( ).A .6a ≥-B .65a -≤-<C .65a <<--D .76a -≤-<9.如图是一个切去了一个角的正方体纸盒,切面与棱的交点A ,B ,C 均是棱的中点,现将纸盒剪开展成平面,则展开图不可能是( )A .B .C .D .10.若不论k 取什么实数,关于x 的方程2136kx a x bk +--=(a 、b 是常数)的解总是x=1,则a+b 的值是( )A .﹣0.5B .0.5C .﹣1.5D .1.5二、填空题(本大题共6小题,每小题3分,共18分)11x -x 的取值范围是_______.2.点P 是直线l 外一点,点A ,B ,C ,D 是直线l 上的点,连接PA ,PB ,PC ,PD .其中只有PA 与l 垂直,若PA =7,PB =8,PC =10,PD =14,则点P 到直线l 的距离是________.3.实数8的立方根是________.4.一大门栏杆的平面示意图如图所示,BA 垂直地面AE 于点A ,CD 平行于地面AE ,若∠BCD=150°,则∠ABC=_______度.5.若不等式组2x b 0{x a 0-≥+≤的解集为3≤x ≤4,则不等式ax+b <0的解集为________.6.若实数a 、b 满足a 2b 40++-=,则2a b=_______. 三、解答题(本大题共6小题,共72分)1.解方程:(1)3(2x ﹣1)=15 (2)71132x x -+-=2.先化简,再求值:(a+b )2+b (a ﹣b )﹣4ab ,其中a=2,b=﹣123.如图,直线AB ,CD 相交于点O ,OA 平分∠EOC .(1)若∠EOC =70°,求∠BOD 的度数;(2)若∠EOC :∠EOD =2:3,求∠BOD 的度数.4.如图,某市有一块长为()3a b +米,宽为()2a b +米的长方形地块,规划部门计划将阴影部分进行绿化,中间修建一座雕像,求绿化的面积是多少平方米?并求出当3,2a b ==时的绿化面积?5.随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A (0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B (5001~10000步),C (10001~15000步),D (15000步以上),统计结果如图所示:请依据统计结果回答下列问题:(1)本次调查中,一共调查了 位好友.(2)已知A 类好友人数是D 类好友人数的5倍.①请补全条形图;②扇形图中,“A”对应扇形的圆心角为度.③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?6.为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、C3、A4、D5、D6、C7、B8、B9、B10、A二、填空题(本大题共6小题,每小题3分,共18分)1、1x2、73、2.4、1205、x>3 26、1三、解答题(本大题共6小题,共72分)1、(1)x=3;(2)x=-23.2、5.3、(1)35°;(2)36°.4、(5a2+3ab)平方米,63平方米5、(1)30;(2)①补图见解析;②120;③70人.6、(1)一个足球的单价103元、一个篮球的单价56元;(2)学校最多可以买9个足球.。
新人教版七年级数学下册期中试卷(附答案)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知直角三角形两边的长为3和4,则此三角形的周长为()A.12 B.7+7C.12或7+7D.以上都不对2.如图,将一张含有30角的三角形纸片的两个顶点叠放在矩形的两条对边上,若244∠=,则1∠的大小为()A.14 B.16 C.90α- D.44α-3.如图,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm速度向点A运动,点Q从点A同时出发以每秒2cm速度向点C运动,其中一个动点到达端点,另一个动点也随之停止,当△APQ是以PQ为底的等腰三角形时,运动的时间是( )秒A.2.5 B.3 C.3.5 D.44.已知5x=3,5y=2,则52x﹣3y=()A.34B.1 C.23D.985.如图,数轴上有三个点A、B、C,若点A、B表示的数互为相反数,则图中点C对应的数是()A .﹣2B .0C .1D .46.若一个直角三角形的两直角边的长为12和5,则第三边的长为( )A .13或119B .13或15C .13D .15 7.明月从家里骑车去游乐场,若速度为每小时10km ,则可早到8分钟,若速度为每小时8km ,则就会迟到5分钟,设她家到游乐场的路程为xkm ,根据题意可列出方程为( )A .851060860x x -=- B .851060860x x -=+ C .851060860x x +=- D .85108x x +=+ 8.若0ab <且a b >,则函数y ax b =+的图象可能是( )A .B .C .D .9.下列说法不一定成立的是( )A .若a b >,则a c b c +>+B .若a c b c +>+,则a b >C .若a b >,则22ac bc >D .若22ac bc >,则a b >10.如图,宽为50cm 的长方形图案由10个相同的小长方形拼成,其中一个小长方形的面积为( )A .400cm 2B .500cm 2C .600cm 2D .300cm 2二、填空题(本大题共6小题,每小题3分,共18分)1.一个n 边形的内角和为1080°,则n=________.2.已知关于x ,y 的二元一次方程组2321x y k x y +=⎧⎨+=-⎩的解互为相反数,则k 的值是_________.3.已知|x|=5,|y|=4,且x>y ,则2x +y 的值为____________.4.一个等腰三角形的两边长分别为4cm 和9cm ,则它的周长为______cm .5.一只小蚂蚁停在数轴上表示﹣3的点上,后来它沿数轴爬行5个单位长度,则此时小蚂蚁所处的点表示的数为________.6.木工师傅在锯木料时,一般先在木料上画出两个点,然后过这两个点弹出一条墨线,这是因为______________.三、解答题(本大题共6小题,共72分)1.解下列方程组:(1)430210x y x y -=⎧⎨-=-⎩ (2)134342x y x y ⎧-=⎪⎨⎪-=⎩2.已知5a 2+的立方根是3,3a b 1+-的算术平方根是4,c分.(1)求a ,b ,c 的值;(2)求3a b c -+的平方根.3.如图,直线AB ,CD 相交于点O ,OA 平分∠EOC .(1)若∠EOC =70°,求∠BOD 的度数;(2)若∠EOC :∠EOD =2:3,求∠BOD 的度数.4.如图,∠1=70°,∠2 =70°. 说明:AB∥CD.5.中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对七年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如下所示:(1)统计表中的a=________,b=___________,c=____________;(2)请将频数分布表直方图补充完整;(3)求所有被调查学生课外阅读的平均本数;(4)若该校七年级共有1200名学生,请你分析该校七年级学生课外阅读7本及以上的人数.6.某学校为改善办学条件,计划采购A、B两种型号的空调,已知采购3台A 型空调和2台B型空调,需费用39000元;4台A型空调比5台B型空调的费用多6000元.(1)求A型空调和B型空调每台各需多少元;(2)若学校计划采购A、B两种型号空调共30台,且A型空调的台数不少于B 型空调的一半,两种型号空调的采购总费用不超过217000元,该校共有哪几种采购方案?(3)在(2)的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、A3、D4、D5、C6、C7、C8、A9、C10、A二、填空题(本大题共6小题,每小题3分,共18分)1、82、-13、6或144、225、2或﹣8.6、两点确定一条直线.三、解答题(本大题共6小题,共72分)1、(1)1010xy=⎧⎨=⎩(2)64xy=⎧⎨=⎩2、(1)a=5,b=2,c=3 ;(2)±4.3、(1)35°;(2)36°.4、略.5、(1)a=10,b=0.28,c=50;(2)补图见解析;(3)6.4本;(4)528人.6、(1)A型空调和B型空调每台各需9000元、6000元;(2)共有三种采购方案,方案一:采购A型空调10台,B型空调20台,方案二:采购A型空调11台,B型空调19台,案三:采购A型空调12台,B型空调18台;(3)采购A型空调10台,B型空调20台可使总费用最低,最低费用是210000元.。
人教版七年级数学下册期中测试卷及答案【全面】班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1.已知m, n为常数, 代数式2x4y+mx|5-n|y+xy化简之后为单项式, 则mn 的值共有()A. 1个B. 2个C. 3个D. 4个2.如图, 函数和的图象相交于A(m, 3),则不等式的解集为()A. B. C. D.3.如图, 直线AD, BE被直线BF和AC所截, 则∠1的同位角和∠5的内错角分别是()A. ∠4, ∠2B. ∠2, ∠6C. ∠5, ∠4D. ∠2, ∠44.已知a=b, 下列变形正确的有()个.①a+c=b+c;②a﹣c=b﹣c;③3a=3b;④ac=bc;⑤.A. 5B. 4C. 3D. 25.已知点C在线段AB上, 则下列条件中, 不能确定点C是线段AB中点的是()A. AC=BCB. AB=2ACC. AC+BC=ABD.6.如图, 在△ABC中, ∠ABC, ∠ACB的平分线BE, CD相交于点F, ∠ABC=42°, ∠A=60°, 则∠BFC的度数为()A. 118°B. 119°C. 120°D. 121°7.点在y轴上, 则点M的坐标为()A. B. C. D.8.某旅店一共70个房间, 大房间每间住8个人, 小房间每间住6个人, 一共480个学生刚好住满, 设大房间有个, 小房间有个.下列方程正确的是()A. B. C. D.9.已知(a≠0, b≠0), 下列变形错误的是()A. B. 2a=3b C. D. 3a=2b10. 下列判断正确的是()A. 任意掷一枚质地均匀的硬币10次, 一定有5次正面向上B. 天气预报说“明天的降水概率为40%”, 表示明天有40%的时间都在降雨C. “篮球队员在罚球线上投篮一次, 投中”为随机事件D. “a是实数, |a|≥0”是不可能事件二、填空题(本大题共6小题, 每小题3分, 共18分)1. 已知, 则=________.2.如图, 将周长为8的△ABC沿BC方向向右平移1个单位得到△DEF, 则四边形ABFD的周长为_____________.3. 如图为6个边长相等的正方形的组合图形, 则∠1+∠2+∠3=_________4. 如果关于的不等式组无解, 则的取值范围是_________.5. 的平方根为________.6. 关于x的分式方程有增根, 则m的值为__________.三、解答题(本大题共6小题, 共72分)1. 解下列方程:(1)4x+7=12x﹣5 (2)4y﹣3(5﹣y)=6(3)3157146x x---=(4)20.30.40.50.3a a-+-=12. 解不等式组: , 并写出它的所有非负整数解.3. 如图, 已知点A(-2, 3), B(4, 3), C(-1, -3).(1)求点C到x轴的距离;(2)求三角形ABC的面积;(3)点P在y轴上, 当三角形ABP的面积为6时, 请直接写出点P的坐标.4. 如图, 已知点B.E、C.F在一条直线上, AB=DF, AC=DE, ∠A=∠D(1)求证: AC∥DE;(2)若BF=13, EC=5, 求BC的长.5. “安全教育平台”是中国教育学会为方便学长和学生参与安全知识活动、接受安全提醒的一种应用软件.某校为了了解家长和学生参与“防溺水教育”的情况, 在本校学生中随机抽取部分学生作调查, 把收集的数据分为以下4类情形: A. 仅学生自己参与;B. 家长和学生一起参与;C. 仅家长自己参与;D. 家长和学生都未参与.请根据图中提供的信息, 解答下列问题:(1)在这次抽样调查中, 共调查了________名学生;(2)补全条形统计图, 并在扇形统计图中计算C类所对应扇形的圆心角的度数;(3)根据抽样调查结果, 估计该校2000名学生中“家长和学生都未参与”的人数.6. 在十一黄金周期间, 小明、小华等同学随家长共15人一同到金丝峡游玩, 售票员告诉他们: 大人门票每张100元, 学生门票8折优惠. 结果小明他们共花了1400元, 那么小明他们一共去了几个家长、几个学生?参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1.C2.C3.B4.B5.C6.C7、D8、A9、B10、C二、填空题(本大题共6小题, 每小题3分, 共18分)1.1002.10.3.135°4、a≤2.5.±26.4.三、解答题(本大题共6小题, 共72分)1.(1) x=;(2) y=3;(3)x=﹣1;(4)a=4.4.2、不等式组的所有非负整数解为:0, 1, 2, 3.3、(1)3;(2)18;(3)(0, 5)或(0, 1).4.(1)略;(2)4.5.(1)400;(2)补全条形图见解析;C类所对应扇形的圆心角的度数为54°;(3)该校2000名学生中“家长和学生都未参与”有100人.6、10个家长, 5个学生。
新人教版七年级数学下册期中试卷(及参考答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.如果()P m 3,2m 4++在y 轴上,那么点P 的坐标是( )A .()2,0-B .()0,2-C .()1,0D .()0,12.某校为了了解家长对“禁止学生带手机进入校园”这一规定的意见,随机对全校100名学生家长进行调查,这一问题中样本是( )A .100B .被抽取的100名学生家长C .被抽取的100名学生家长的意见D .全校学生家长的意见3.如图,将△ABE 向右平移2cm 得到△DCF ,如果△ABE 的周长是16cm ,那么四边形ABFD 的周长是( )A .16cmB .18cmC .20cmD .21cm4.一5的绝对值是( )A .5B .15C .15-D .-55.将长方形ABCD 纸片沿AE 折叠,得到如图所示的图形,已知∠CED'=70°,则∠EAB 的大小是( )A .60°B .50°C .75°D .55°6.若一个直角三角形的两直角边的长为12和5,则第三边的长为( )A .13119B .13或15C .13D .157.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是( )A .B .C .D .8.一个几何体的表面展开图如图所示,则这个几何体是( )A .四棱锥B .四棱柱C .三棱锥D .三棱柱9.已知实数a 、b 满足a+b=2,ab=34,则a ﹣b=( ) A .1 B .﹣52 C .±1 D .±5210.已知2,1=⎧⎨=⎩x y 是二元一次方程组7,{1ax by ax by +=-=的解,则a b -的值为 A .-1 B .1 C .2 D .3二、填空题(本大题共6小题,每小题3分,共18分)1.16的算术平方根是________.2.通过计算几何图形的面积,可表示一些代数恒等式,如图所示,我们可以得到恒等式:2232a ab b ++=________.3.如图,△ABC 三边的中线AD ,BE ,CF 的公共点G ,若12ABC S =△,则图中阴影部分面积是 _________.4.一大门栏杆的平面示意图如图所示,BA 垂直地面AE 于点A ,CD 平行于地面AE ,若∠BCD=150°,则∠ABC=_______度.5.若不等式(a ﹣3)x >1的解集为13x a <-,则a 的取值范围是________. 6.如果多项式32242(176)x x kx x +-+-中不含2x 的项,则k 的值为________.三、解答题(本大题共6小题,共72分)1.解不等式组,并将解集在数轴上表示出来.273(1)15(4)2x x x x -<-⎧⎪⎨-+≥⎪⎩①②2.先化简再求值:22(3)(3)(3)6(2)a b b a a b b b ⎡⎤+-+--÷-⎣⎦ 其中13a =-,2b =-.3.如图,四边形ABCD 中,AD ∥BC ,点E 在CD 上,EA ,EB 分别平分∠DAB 和∠CBA ,设AD =x ,BC =y 且(x ﹣3)2+|y ﹣4|=0.求AB 的长.4.已知ABN 和ACM △位置如图所示,AB AC =,AD AE =,12∠=∠.(1)试说明:BD CE =;(2)试说明:M N ∠=∠.5.某校为了了解初三年级1000名学生的身体健康情况,从该年级随机抽取了若干名学生,将他们按体重(均为整数,单位:kg )分成五组(A :39.5~46.5;B :46.5~53.5;C :53.5~60.5;D :60.5~67.5;E :67.5~74.5),并依据统计数据绘制了如下两幅尚不完整的统计图.解答下列问题:(1)这次抽样调查的样本容量是 ,并补全频数分布直方图;(2)C 组学生的频率为 ,在扇形统计图中D 组的圆心角是 度;(3)请你估计该校初三年级体重超过60kg 的学生大约有多少名?6.一农民带上若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售,售出的土豆千克数与他手中持有的钱数(含备用零钱)的关系,如图所示,结合图象回答下列问题.(1)农民自带的零钱是多少?(2) 由表达式你能求出降价前每千克的土豆价格是多少?试求降价前y与x之间的关系式(3) 降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,试问他一共带了多少千克土豆?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、C4、A5、D6、C7、B8、A9、C10、A二、填空题(本大题共6小题,每小题3分,共18分)1、22、()()2a b a b++.3、44、1205、3a<.6、2三、解答题(本大题共6小题,共72分)1、原不等式组的解集为﹣4<x≤2,在数轴上表示见解析.2、-3 .3、74、(1)略;(2)略.5、(1)50;(2)0.32;72(3)3606、(1) 5元(2) 0.5元/千克; y=12x+5(0≤x≤30);(3)他一共带了45千克土豆.。
2024年最新人教版初一数学(下册)期中考卷一、选择题(每题3分,共30分)1. 下列哪个数是正数?A. 3B. 0C. 1/2D. 1/22. 一个数的绝对值是它本身的数是?A. 正数B. 负数C. 零D. 正数和零3. 下列哪个数是分数?A. 0.5B. 3/4C. 0.333D. 14. 下列哪个数是无理数?A. 3B. 2/3C. √2D. 0.255. 下列哪个数是整数?A. 1/2B. 0.5C. 3D. 0.3336. 下列哪个数是正整数?A. 0B. 1C. 1D. 1/27. 下列哪个数是负整数?A. 0B. 1C. 1D. 1/28. 下列哪个数是奇数?A. 0B. 2C. 3D. 49. 下列哪个数是偶数?A. 1B. 2C. 3D. 410. 下列哪个数是质数?A. 0B. 1C. 2D. 4二、填空题(每题4分,共20分)1. 5的绝对值是______。
2. 2的相反数是______。
3. 3/4的倒数是______。
4. 5的平方是______。
5. 2的立方根是______。
三、解答题(每题10分,共50分)1. 解方程:2x 3 = 7。
2. 解不等式:3x + 4 > 11。
3. 解方程组:x + y = 5, x y = 1。
4. 解不等式组:x > 2, x < 5。
5. 计算下列表达式的值:(3 + 4) × (5 2) ÷ 2。
四、应用题(每题15分,共30分)1. 小明买了5本书,每本书的价格是8元。
他付了50元,应该找回多少元?2. 一个长方形的长是6厘米,宽是4厘米。
求这个长方形的面积。
五、附加题(每题10分,共20分)1. 证明:对于任意实数a,a的平方总是非负的。
2. 解析几何:在平面直角坐标系中,点A(2, 3),点B(5, 1)。
求线段AB的长度。
选择题答案:1. C2. D3. B4. C5. C6. C7. C8. C9. B10. C填空题答案:1. 52. 23. 4/34. 255. 1.2599210498948732(约等于1.26)解答题答案:1. x = 52. x > 33. x = 3, y = 24. 2 < x < 55. 13应用题答案:1. 找回的金额为10元。
20232024学年全国初中七年级下数学人教版期中考试试卷一、选择题(每题2分,共20分)1.下列各数中,是整数的是()A. 0.5B. 2C. 3/4D. 1.52.下列各数中,是负数的是()A. 0B. 3C. 2D. 1/23.下列各数中,是正数的是()A. 3B. 0C. 1/2D. 1.54.下列各数中,是正分数的是()A. 3/4B. 0C. 1/2D. 1.55.下列各数中,是负分数的是()A. 3/4B. 0C. 1/2D. 1.56.下列各数中,是正整数的是()A. 2B. 0C. 1/2D. 37.下列各数中,是负整数的是()A. 2B. 0C. 1/2D. 38.下列各数中,是正无理数的是()A. √2B. 0C. √3D. 1.59.下列各数中,是负无理数的是()A. √2B. 0C. √3D. 1.510.下列各数中,是分数的是()A. √2B. 0C. 3/4D. 1.5二、填空题(每题2分,共20分)1.若a是正数,b是负数,则a+b的值()2.若a是正数,b是负数,则ab的值()3.若a是正数,b是负数,则ab的值()4.若a是正数,b是负数,则a/b的值()5.若a是正数,b是负数,则a+b的绝对值()6.若a是正数,b是负数,则ab的绝对值()7.若a是正数,b是负数,则ab的绝对值()8.若a是正数,b是负数,则a/b的绝对值()9.若a是正数,b是负数,则a+b的平方()10.若a是正数,b是负数,则ab的平方()三、解答题(每题5分,共30分)1.解方程:3x5=2x+72.解方程:2x+3=5x43.解方程:4x3=2x+94.解方程:5x+4=3x85.解方程:6x5=4x+76.解方程:7x+6=5x9四、应用题(每题10分,共20分)1.某水果店有苹果和香蕉两种水果,苹果每斤5元,香蕉每斤3元。
小明想买3斤苹果和2斤香蕉,一共需要多少钱?2.某学校组织了一次运动会,参加跑步的学生有男生和女生两种,男生有20人,女生有15人。
人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(每小题3分,共24分)1.下列方程中,是一元一次方程是( )A. 2x =1B. 120x -=C. 2x -y =5D. 2x +1=2x 2.二元一次方程组224x y x y +=⎧⎨-=⎩的解是( ) A. 02x y =⎧⎨=⎩ B. 20x y =⎧⎨=⎩ C. 31x y =⎧⎨=-⎩ D. 11x y =⎧⎨=⎩3.若m >n ,则下列不等式正确的是( )A. m -2<n -2B. 6m <6nC. -8m >-8nD. 44m n > 4.方程2143x x ++=,去分母后正确的是( ). A. ()32124x x ++= B. ()1221212x x ++=C. ()42123x x ++=D. ()3214x x ++= 5.由方程组43x m y m +=⎧⎨-=⎩,可得出x 与y 的关系是( ) A. x+y=1 B. x+y=-1 C. x+y=7 D. x+y=-76.不等式组10260x x +>⎧⎨-≤⎩解集在数轴上表示正确的是( ) A.B.C.D 7.某文具店一本练习本和一支中性笔单价合计为3元,小妮在该店买了20本练习本和10支中性笔,共花了40元.若设练习本每本为x 元,中性笔每支为y 元,则下面所列方程组正确的是( )A. 3201040x y x y -=⎧⎨+=⎩B. 3201040x y x y +=⎧⎨+=⎩C. 3201040y x x y -=⎧⎨+=⎩D. 3102040x y x y +=⎧⎨+=⎩ 8.某汽车厂改进生产工艺后,每天生产的汽车比原来每天生产的汽车多6辆,那么现在15天的产量就超过了原来20天的产量,设原来每天生产汽车x 辆,则列出的不等式为( )A. 15x>20(x+6)B. 15(x+6)>20xC. 15x>20(x-6)D. 15(x-6)>20x二、填空题(每小题3分,共18分)9.如果x=6是方程2x +3a=0的解,那么a 的值是_____.10.x 的3倍与5的和不大于8,用不等式表示为______.11.若方程23x y -=,用含的代数式表示,则=____.12.不等式5140x +≥的负整数解的和是____.13.一个书包的标价为110元,按8折出售仍可获利10%,则该书包的进价为____元.14.如图,两个天平都平衡,则三个球体的质量等于____个正方体的质量.三、解答题(本大题共10小题,共78分)15.解方程:315(1)x x -=+.16.解方程组:20346x y x y +=⎧⎨+=⎩ 17.解方程组:2201160x y z x y z x y ++=-⎧⎪-+=⎨⎪+=⎩.18.解不等式213436x x --≥,并把解集数轴上表示出来. 19.已知x=1是方程2﹣13(a ﹣x)=2x 的解,求关于y 的方程a(y ﹣5)﹣2=a(2y ﹣3)的解. 20.列方程解应用题《九章算术》中有“盈不足术”的问题,原文如下:“今有共買羊,人出五,不足四十五;人出七,不足三.问人数、羊價各幾何?”题意是:若干人共同出资买羊,每人出5元,则差45元;每人出7元,则差3元.求人数和羊价各是多少?21.已知关于x的方程4x+2m+1=2x+5的解是负数.(1)求m的取值范围.(2)当m取最小整数时,解关于x的不等式112mxx+-<.22.先阅读下列解题过程,然后解答后面两个问题.解方程:|x+3|=2.解:当x+3≥0时,原方程可化为x+3=2,解得x=-1;当x+3<0时,原方程可化为x+3=-2,解得x=-5.所以原方程的解是x=-1或x=-5.(1)解方程:|3x-2|-4=0.(2)已知关于x的方程|x-2|=b+1.①若方程无解,则b的取值范围是.②若方程只有一个解,则b的值为.③若方程有两个解,则b的取值范围是.23.学校计划购买甲、乙两种图书作为“校园读书节”的奖品,已知甲种图书的单价比乙种图书的单价多10元,且购买3本甲种图书和2本乙种图书共需花费130元(1)甲、乙两种图书的单价分别为多少元?(2)学校计划购买这两种图书共50本,且投入总经费不超过1200元,则最多可以购买甲种图书多少本?24.已知:用2辆A型车和1辆B型车载满货物一次可运货10吨;用1辆A型车和2辆B型车载满货物一次可运货11吨,某物流公司现有26吨货物,计划A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆车B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次.请选出最省钱车方案,并求出最少租车费.答案与解析一、选择题(每小题3分,共24分)1.下列方程中,是一元一次方程的是( )A. 2x=1B. 120x-= C. 2x-y=5 D. 2x+1=2x[答案]A[解析][分析]依据一元一次方程的定义解答即可.[详解]解:A、2x=1是一元一次方程,故A正确;B、120x-=不是整式方程,故B错误;C、2x-y=5是二元一次方程,故C错误;D、2x+1=2x是一元二次方程,故D错误;故选:A.[点睛]本题主要考查的是一元一次方程的定义,熟练掌握一元一次方程的概念是解题的关键.2.二元一次方程组224x yx y+=⎧⎨-=⎩的解是()A.2xy=⎧⎨=⎩B.2xy=⎧⎨=⎩C.31xy=⎧⎨=-⎩D.11xy=⎧⎨=⎩[答案]B[解析][分析]方程组利用加减消元法求出解即可.[详解]224x yx y①②+=⎧⎨-=⎩,①+②得:3x=6,即x=2, 把x=2代入①得:y=0,则方程组的解为20 xy=⎧⎨=⎩,故答案选B.[点睛]本题考查了解二元一次方程组,利用消元的思想,消元的方法有:代入消元法与加减消元法.解题的关键是熟练的掌握解二元一次方程组的方法.3.若m >n ,则下列不等式正确的是( )A. m -2<n -2B. 6m <6nC. -8m >-8nD. 44m n > [答案]D[解析][分析]根据不等式的性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变,对A 进行判断;不等式两边乘(或除以)同一个正数,不等号的方向不变,对B 、D 进行判断;不等式两边乘(或除以)同一个负数,不等号的方向改变,对C 进行判断.[详解]∵不等式两边加(或减)同一个数(或式子),不等号的方向不变∵m >n∴m -2>n -2故A 错误∵不等式两边乘(或除以)同一个正数,不等号的方向不变∵m >n∴6m >6n ,44m n > 故B 错误,D 正确∵不等式两边乘(或除以)同一个负数,不等号的方向改变∵m >n∴-8m <-8n故C 错误故选:D[点睛]本题考查了不等式的基本性质,不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变. 4.方程2143x x ++=,去分母后正确的是( ). A. ()32124x x ++= B. ()1221212x x ++=C. ()42123x x ++=D. ()3214x x ++=[答案]A[解析]根据等式的性质方程两边都乘以12即可.解:24x ++1=3x,去分母得:3(x+2)+12=4x,故选A.“点睛”本题考查了一元一次方程的变形,注意:解一元一次方程的步骤是:去分母,去括号,移项,合并同类项,系数化成1.5.由方程组43x my m+=⎧⎨-=⎩,可得出x与y的关系是( )A. x+y=1B. x+y=-1C. x+y=7D. x+y=-7 [答案]C[解析][分析]将两个方程相加即可得到结论.[详解]43 x my m+=⎧⎨-=⎩①②由①+②得:x+y=7.故选C.[点睛]考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键.6.不等式组10260xx+>⎧⎨-≤⎩的解集在数轴上表示正确的是()A.B.C.D. [答案]C [解析] [分析]分别解两个不等式得到1x >-和3x ,从而得到不等式组的解集为13x -<,然后利用此解集对各选项进行判断.[详解]10{260x x ①②+>-≤,解①得x>-1,解②得x≤3,所以不等式组的解集为-1<x≤3.故选.[点睛]本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.7.某文具店一本练习本和一支中性笔的单价合计为3元,小妮在该店买了20本练习本和10支中性笔,共花了40元.若设练习本每本为x 元,中性笔每支为y 元,则下面所列方程组正确的是( )A. 3201040x y x y -=⎧⎨+=⎩B. 3201040x y x y +=⎧⎨+=⎩C. 3201040y x x y -=⎧⎨+=⎩D. 3102040x y x y +=⎧⎨+=⎩ [答案]B[解析][分析]根据等量关系“一本练习本和一支中性笔的单价合计为3元”,“20本练习本的总价+10支中性笔的总价=40”,列方程组求解即可.[详解]设练习本每本为x 元,中性笔每支为y 元,根据单价的等量关系可得方程为x+y=3,根据总价40得到的方程为20x+10y=40,所以可列方程为:3201040x y x y +=⎧⎨+=⎩, 故选:B .[点睛]此题主要考查了由实际问题抽象出二元一次方程组,得到单价和总价的2个等量关系是解决本题的关8.某汽车厂改进生产工艺后,每天生产的汽车比原来每天生产的汽车多6辆,那么现在15天的产量就超过了原来20天的产量,设原来每天生产汽车x 辆,则列出的不等式为( )A. 15x>20(x+6)B. 15(x+6)>20xC. 15x>20(x-6)D. 15(x-6)>20x[答案]B[解析][分析]首先根据题意可得改进生产工艺后,每天生产汽车(x+6)辆,根据关键描述语:现在15天的产量就超过了原来20天的产量列出不等式即可.[详解]设原来每天最多能生产x 辆,由题意得:15(x+6)>20x,故选B .[点睛]此题主要考查了由实际问题抽象出一元一次不等式,关键正确理解题意,抓住关键描述语. 二、填空题(每小题3分,共18分)9.如果x=6是方程2x +3a=0的解,那么a 的值是_____.[答案]-4[解析]把x =6代入方程2x +3a =0得:12+3a =0,解得:a =﹣4,10.x 的3倍与5的和不大于8,用不等式表示为______.[答案]358x +≤[解析]分析:先表示出x 的3倍,再表示出与5的和,最后根据和不大于...8可得不等式.详解:根据题意可列不等式:3x +5≤8.故答案为3x +5≤8.点睛:本题考查了由实际问题抽象出一元一次不等式,根据关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.11.若方程23x y -=,用含的代数式表示,则=____.[答案]32x - [解析]要用含x 的代数式表示y ,就要把方程中含有x 的项和常数项移到等式的右边,再把y 的系数化为1即可.[详解]解:移项,得23y x -=-+,系数化为1,得32x y -=, 故答案为:32x -. [点睛]本题考查了代入消元法解二元一次方程组,解题关键是把方程中含有x 的项和常数项移到等式的右边,再把y 的系数化为1.12.不等式5140x +≥的负整数解的和是____.[答案]-3[解析][分析]先移项再系数化为1即可解不等式,再取负整数的解进行相加即可得到答案.[详解]解:5140x +≥,移项得到:514x ≥-,系数化为1得到:145x ≥-, ∴负整数解有:-2、-1,∴负整数解得和为:(-2)+(-1)= -3,故答案为:-3;[点睛]本题主要考查了解不等式以及整数的定义,掌握解不等式的步骤值解题的关键.13.一个书包的标价为110元,按8折出售仍可获利10%,则该书包的进价为____元.[答案]80[解析][分析]设该书包的进价为x 元,根据销售收入﹣成本=利润,即可得出关于x 的一元一次方程,解之即可得出结论.[详解]解:设该书包的进价为x 元,根据题意得:110×0.8﹣x =10%x ,解得:x =80.答:该书包的进价为80元.故答案为:80.[点睛]本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.14.如图,两个天平都平衡,则三个球体的质量等于____个正方体的质量.[答案]5[解析][分析]由图可知:2个球体的重量=5个圆柱体的重量,2个正方体的重量=3个圆柱体的重量.可设一个球体重x ,圆柱重y ,正方体重z .根据等量关系列方程即可得出答案.[详解]解:设一个球体重x ,圆柱重y ,正方体重z .根据等量关系列方程:2x =5y ;2z =3y ,即:6x =15y ;10z =15y ,则:6x =10z ,即:3x =5z ,即三个球体的重量等于五个正方体的重量.故答案:5.[点睛]本题主要考查等式的性质.需利用等式的性质对根据已知得到的等式进行变形,从而找到最后的答案.三、解答题(本大题共10小题,共78分)15.解方程:315(1)x x -=+.[答案]x =-3.[解析][分析]方程去括号,移项合并,把x 系数化为1,即可求出解.[详解]解:去括号得:3x -1=5x +5,移项得:3x -5x =5+1,合并得:-2x =6,系数化为1得:x =-3.[点睛]此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.16.解方程组:20 346 x yx y+=⎧⎨+=⎩[答案]原方程组的解为=63 xy⎧⎨=-⎩[解析][分析]利用代入法进行求解即可得.[详解]20346x yx y+=⎧⎨+=⎩①②,由①得:x=-2y ③将③代入②得:3(-2y)+4y=6, 解得:y=-3,将y=-3代入③得:x=6,∴原方程组的解为63xy=⎧⎨=-⎩.[点睛]本题考查了解二元一次方程组,熟练掌握二元一次方程组的解法是解题的关键.17.解方程组:220 1160x y zx y zx y++=-⎧⎪-+=⎨⎪+=⎩.[答案]6113xyz=⎧⎪=-⎨⎪=⎩.[解析][分析]①﹣②得出2y=-22,求出y=﹣11,把y=﹣11代入③,即可求得x=6,再把x=6,y=-11代入①进而求得z=3即可.[详解]解:220 1160x y zx y zx y++=-⎧⎪-+=⎨⎪+=⎩①②③①-②得,2y=-22, 解得y=-11.把y=-11代入③中, 得11x+6×(-11)=0,解得x=6.把x=6,y=-11代入①中, 得6-11+z=-2,解得z=3.∴原方程组的解为6113xyz=⎧⎪=-⎨⎪=⎩.[点睛]本题考查了三元一次方程组的解法,利用了消元的思想,解决本题的关键是消元,消元的方法有:代入消元法与加减消元法.18.解不等式213436x x--≥,并把解集在数轴上表示出来.[答案]x≥-2;在数轴上表示见解析.[解析][分析]根据不等式的性质解一元一次不等式,然后在数轴上表示不等式的解集.[详解]解:2(2x-1)≥3x-4,4x-2≥3x-4,4x-3x≥-4+2,x≥-2.在数轴上表示如图所示:[点睛]本题考查的是解一元一次不等式,熟知解一元一次不等式的基本步骤是解答此题的关键.19.已知x=1是方程2﹣13(a﹣x)=2x的解,求关于y的方程a(y﹣5)﹣2=a(2y﹣3)的解.[答案]y=﹣4.[解析]试题分析:把x=1代入方程计算求出a的值,代入所求方程求出解即可.试题解析:把x=1代入方程得:2﹣13(a﹣1)=2,解得:a=1,代入方程a(y﹣5)﹣2=a(2y﹣3)得:(y﹣5)﹣2=2y﹣3, 解得:y=﹣4.20.列方程解应用题《九章算术》中有“盈不足术”的问题,原文如下:“今有共買羊,人出五,不足四十五;人出七,不足三.问人数、羊價各幾何?”题意是:若干人共同出资买羊,每人出5元,则差45元;每人出7元,则差3元.求人数和羊价各是多少?[答案]21人,羊为150元[解析][分析]可设买羊人数为未知数,等量关系为:5×买羊人数+45=7×买羊人数+3,把相关数值代入可求得买羊人数,代入方程的等号左边可得羊价.[详解]设买羊为x人,则羊价为(5x+45)元钱,5x+45=7x+3,x=21(人),5×21+45=150,答:买羊人数21人,羊价为150元.[点睛]本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.21.已知关于x的方程4x+2m+1=2x+5的解是负数.(1)求m的取值范围.(2)当m取最小整数时,解关于x的不等式112mxx+-<.[答案](1)m>2;(2)3x>-.[解析][分析](1)首先要解这个关于x的方程,然后根据解是负数,就可以得到一个关于m的不等式,最后求出m的范围.(2)本题是关于x的不等式,应先只把x看成未知数,根据m的取值范围求得x的解集.[详解]解:(1)4x+2m+1=2x+5,2x=4-2m,x=2-m.由题意,得x<0,即2-m<0,∴m>2,∴m的取值范围m>2;(2)∵m>2,∴m取最小整数为3.∴关于x的不等式为3112xx+-<,2(1)31x x-<+,2231x x-<+,3x>-∴不等式的解集为3x>-.[点睛]本题主要考查解一元一次不等式和一元一次方程的能力,(1)此题是一个方程与不等式的综合题目,解关于x的不等式是本题的一个难点.(2)需注意,在不等式两边都除以一个负数时,应改变不等号的方向.22.先阅读下列解题过程,然后解答后面两个问题.解方程:|x+3|=2.解:当x+3≥0时,原方程可化为x+3=2,解得x=-1;当x+3<0时,原方程可化为x+3=-2,解得x=-5.所以原方程的解是x=-1或x=-5.(1)解方程:|3x-2|-4=0.(2)已知关于x的方程|x-2|=b+1.①若方程无解,则b的取值范围是.②若方程只有一个解,则b的值为.③若方程有两个解,则b的取值范围是.[答案](1)x=2或23x=-;(2)①b<-1;②-1;③b>-1.[解析][分析](1)首先要认真审题,解此题时要理解绝对值的意义,要会去绝对值,然后化为一元一次方程即可求得.(2)根据绝对值的性质分类讨论进行解答.[详解]解:(1)当3x-2≥0时,原方程可化为3x-2=4,解得x=2;当3x-2<0时,原方程可化为3x-2=-4,解得23x=-.所以原方程的解是x=2或23x=-.(2)∵|x﹣2|≥0,∴当b +1<0,即b <﹣1时,方程无解;当b +1=0,即b =﹣1时,方程只有一个解;当b +1>0,即b >﹣1时,方程有两个解故答案为:①b <-1;②-1;③b >-1.[点睛]本题主要考查含绝对值符号的一元一次方程,解题的关键是根据绝对值的性质将绝对值符号去掉,从而化为一般的一元一次方程求解.23.学校计划购买甲、乙两种图书作为“校园读书节”的奖品,已知甲种图书的单价比乙种图书的单价多10元,且购买3本甲种图书和2本乙种图书共需花费130元(1)甲、乙两种图书的单价分别为多少元?(2)学校计划购买这两种图书共50本,且投入总经费不超过1200元,则最多可以购买甲种图书多少本?[答案](1)甲种图书单价为30元,乙种图书单价为20元;(2)最多可购买甲种图书20本.[解析][分析](1)根据题意可以列出相应的方程,从而可以解答本题;(2)根据题意可以列出相应的不等式,从而可以求得甲种图书最多能购买多少本.[详解](1)设甲种图书的单价为x 元,乙种图书的单价为y 元,由题意,得:1032130x y x y =+⎧⎨+=⎩解得:3020x y =⎧⎨=⎩. 答:甲种图书单价为30元,乙种图书单价为20元.(2)设最多可购买甲种图书m 本,则购乙种图书(50﹣m )本,由题意,得:30m +20×(50﹣m )≤1200解得:m ≤20.答:最多可购买甲种图书20本.[点睛]本题考查了二元一次方程组的应用、一元一次不等式的应用,解答本题的关键是明确题意,列出相应的方程和一元一次不等式.24.已知:用2辆A 型车和1辆B 型车载满货物一次可运货10吨;用1辆A 型车和2辆B 型车载满货物一次可运货11吨,某物流公司现有26吨货物,计划A 型车a 辆,B 型车b 辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆车B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次.请选出最省钱车方案,并求出最少租车费.[答案](1)1辆A型车和1辆B型车都装满货物一次可分别运货3吨、4吨;(2)共有2种租车方案:①租A型车6辆,B型车2辆;②租A型车2辆,B型车5辆;(3)最省钱租车方案为方案②,租车费用为800元.[解析][分析](1)根据2辆A型车和1辆B型车装满货物=10吨;1辆A型车和2辆B型车装满货物=11吨,列出方程组即可解决问题.(2)由题意得到3a+4b=26,根据a、b均为正整数,即可求出a、b的值.(3)求出每种方案下的租金数,经比较、分析,即可解决问题.[详解]解:(1)设1辆A型车和1辆B型车都装满货物一次可分别运货λ吨、μ吨,由题意得:210211λμλμ+=⎧⎨+=⎩,解得:34λμ=⎧⎨=⎩故1辆A型车和1辆B型车都装满货物一次可分别运货3吨、4吨.(2)由题意和(1)得:3a+4b=26,∵a、b均非负整数,∴62ab=⎧⎨=⎩或25ab=⎧⎨=⎩,∴共有2种租车方案:①租A型车6辆,B型车2辆,②租A型车2辆,B型车5辆.(3)方案①的租金为:6×100+2×120=840(元),方案②的租金为:2×100+5×120=800(元),∵840>800,∴最省钱的租车方案为方案②,租车费用为800元.[点睛]根据题意设未知数列方程,并确保计算的正确性.。
新人教版七年级数学下册期中测试卷及答案【通用】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a=2018x+2018,b=2018x+2019,c=2018x+2020,则a2+b2+c2-ab-ac-bc的值是()A.0 B.1 C.2 D.32.下列图形中,不是轴对称图形的是()A.B.C.D.3.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,则下面所列方程正确的是()A.2×1000(26﹣x)=800x B.1000(13﹣x)=800xC.1000(26﹣x)=2×800x D.1000(26﹣x)=800x4.下列图形中,由AB∥CD,能得到∠1=∠2的是A. B.C. D.5.如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A.BC=EC,∠B=∠E B.BC=EC,AC=DCC .BC=DC ,∠A=∠D D .∠B=∠E ,∠A=∠D6.如图,若AB ∥CD ,CD ∥EF ,那么∠BCE =( )A .∠1+∠2B .∠2-∠1C .180°-∠1+∠2D .180°-∠2+∠17.如图,已知70AOC BOD ∠=∠=︒,30BOC ∠=︒,则AOD ∠的度数为( )A .100︒B .110︒C .130︒D .140︒8.在数轴上,a 所表示的点总在b 所表示的点的右边,且|a |=6,|b |=3,则a -b 的值为( )A .-3B .-9C .-3或-9D .3或99.图中由“○”和“□”组成轴对称图形,该图形的对称轴是直线( )A .l 1B .l 2C .l 3D .l 410.将9.52变形正确的是( )A .9.52=92+0.52B .9.52=(10+0.5)(10﹣0.5)C .9.52=102﹣2×10×0.5+0.52D .9.52=92+9×0.5+0.52二、填空题(本大题共6小题,每小题3分,共18分)13的整数部分是a ,小数部分是b 3a b -=________.2.如图,数轴上A 、B 两点所表示的数分别是-4和2, 点C 是线段AB 的中点,则点C 所表示的数是________.3.如图,AB ∥CD ,则∠1+∠3—∠2的度数等于 __________.4.写出一个数,使这个数的绝对值等于它的相反数:__________.5.有三个互不相等的整数a,b,c ,如果abc=4,那么a+b+c=__________6.如图所示,想在河堤两岸塔建一座桥,搭建方式最短的是________,理由________.三、解答题(本大题共6小题,共72分)1.解方程(1)25x +-12x -=1-5x (2)210.60.2-+=x x2.解不等式组并求出它所有的非负整数解.3.已知,点A 、B 、C 在同一条直线上,点M 为线段AC 的中点、点N 为线段BC 的中点.(1)如图,当点C 在线段AB 上时:①若线段86AC BC ==,,求MN 的长度.②若AB=a ,求MN 的长度.(2)若8,AC BC n ==,求MN 的长度(用含n 的代数式表示).4.如图1,P 点从点A 开始以2厘米/秒的速度沿A →B →C 的方向移动,点Q 从点C 开始以1厘米/秒的速度沿C →A →B 的方向移动,在直角三角形ABC 中,∠A =90°,若AB =16厘米,AC =12厘米,BC =20厘米,如果P 、Q 同时出发,用t(秒)表示移动时间,那么:(1)如图1,若P 在线段AB 上运动,Q 在线段CA 上运动,试求出t 为何值时,QA =AP(2)如图2,点Q 在CA 上运动,试求出t 为何值时,三角形QAB 的面积等于三角形ABC 面积的14; (3)如图3,当P 点到达C 点时,P 、Q 两点都停止运动,试求当t 为何值时,线段AQ 的长度等于线段BP 的长的145.某高校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有名;(2)把条形统计图补充完整;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校18000名学生一餐浪费的食物可供多少人食用一餐?6.为了解某种品牌小汽车的耗油量,我们对这种车在高速公路上做了耗油试验,并把试验的数据记录下来,制成下表:汽车行驶时间t0 1 2 3 …(h)油箱剩余油量Q100 94 88 82 …(L)①根据上表的数据,请你写出Q与t的关系式;②汽车行驶5h后,油箱中的剩余油量是多少;③该品牌汽车的油箱加满50L,若以100km/h的速度匀速行驶,该车最多能行驶多远.参考答案一、选择题(本大题共10小题,每题3分,共30分) 1、D2、A3、C4、B5、C6、D7、B8、D9、C10、C二、填空题(本大题共6小题,每小题3分,共18分) 1、1.2、-13、180°4、1-(答案不唯一)5、-1或-46、PN, 垂线段最短三、解答题(本大题共6小题,共72分)1、(1)1x =-;(2) 1.65x =2、0,1,2.3、(1)①7;②12a;(2)略.4、(1) 4s;(2) 9s;(3) t=323s 或16s5、(1)1000;(2)图形见解析;(3)该校18000名学生一餐浪费的食物可供3600人食用一餐.25003km.6、①Q=100﹣6t;② 10L;③。
人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷一、选择题:(每题3分,共30分)1. 如图,点E 在CD 的延长线上,下列条件中不能判定AB ∥CD 的是( )A. ∠1=∠2B. ∠3=∠4C. ∠5=∠BD. ∠B +∠BDC =180° 2. 图所示,150∠=︒,34180∠+∠=︒,则 2∠=( )︒A. 130B. 140C. 50D. 40 3. 点P 是直线l 外一点,A 为垂足,PA l ⊥,且5cm PA =,则点P 到直线l 的距离( ) A . 小于5cm PA = B. 等于5cm PA = C. 大于5cm PA = D. 不确定 4. 下列图形中1∠与2∠是同位角是( )AB. C. D.5. 某数x 的两个不同的平方根是23a +与15a -,则x 的值是( )A. 11B. 121C. 4D. 11±6. –27的立方根与81的平方根之和是 A. 0B. –6C. 0或–6D. 67. 下列命题中,真命题有( ).(1)有且只有一条直线与已知直线平行,(2)垂直于同一条直线的两条直线互相垂直,(3)两条直线被第三条直线所截,内错角相等,(4)在平面内过一点有且只有一条直线与已知直线垂直.A. 1个B. 2个C. 3个D. 4个8. 若点M 的坐标是(a ,b),且a>0,b<0,则点M 在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 9. 若22x y =⎧⎨=⎩是方程1x my -=的一个解,则m 的值为( ) A. 1B. 12C. 14D. 12- 10. 若方程组4314(1)6x y kx k y +=⎧⎨+-=⎩的解中x 与y 的值相等,则k 为( ) A. 4 B. 3 C. 2 D. 1二、填空题:(每题3分,共30分)11. 如图所示,直线AB ,CD ,EF 相交于点O ,且AB CD ⊥,135∠=︒,则 2∠=________ .12. 如图,直线a ∥b ,则∠ACB =______13. 比较大小:12π-________1214. 已知|a -5|3b +=0,那么a -b =_______.15. 81的算术平方根是________,25-的相反数是________.16. 若点(1,26)P a a +-在x 轴上,则点P 的坐标为________.17. 已知点P(2-a ,3a+6),且点P 到两坐标轴的距离相等,则点P 的坐标是_____.18. 若方程4x m-n -5y m+n =6是二元一次方程,则m=______,n=______.19. 某次足球比赛的记分规则如下:胜一场得3分,平一场得1分, 负一场是0分.某队踢了14场,其中负5场,共得19分.若设胜了x 场,平了y 场,则可列出方程组:_____________. 20. 若(5x +2y -12)2+|3x +2y -6|=0,则2x +4y =__________.三、解答题(共60分)21. 计算: (1)3352335(2)|232+(32339718111682⎛⎫--- ⎪⎝⎭22. 解方程: (1)代入法:23328y x x y =-⎧⎨+=⎩(2)加减法:25324x y x y -=⎧⎨+=⎩ 23. 在如图的直角坐标系中,将三角形ABC 平移后得到三角形111A B C ,他们的对应点坐标如下表所示: ABC(,0)A a (3,0)B (5,5)C 111A B C △ 1(4,2)A 1(7,)B b1(,)C c d (1)观察表中各对应点坐标变化,写出平移规律:________.(2)在坐标系中画出两个三角形.(3)求出111A B C △面积.24. 如图,直线AB ,CD 相交于点O ,EO AB ⊥,垂足为O ,35EOC ∠=︒,求AOD ∠的度数.25. 如图,CD 平分∠ACB ,DE ∥BC ,∠AED =80°,求∠EDC 的度数.26. 用白铁皮做罐头盒,每张铁皮可制盒身25个或制盒底40个,一个盒身与两个盒底配成一套,现有36张白铁皮,用多少张制盒身,多少张制盒底,可使盒身与盒底正好配套?27. 在新冠疫情期间,为支援武汉,现将我市大米运往武汉.有大小两种货车,2辆大货车与3辆小货车一次可以运货15.5吨,5辆大货车与6辆小货车一次可以运货35吨.那么3辆大货车与5辆小货车一次可以运货多少吨.28. 新冠疫情过后,海伦市第三中学七年级学生将外出进行社会实践活动,从学校出发骑自行车去实践基地,中途因道路施工步行一段路,1.5小时后到达实践基地,他骑车平均速度是15千米/时,步行的平均速度是5千米/时,路程全长20千米,他骑车和步行各用了多少时间?29. 如图,AD∥BC,BE平分∠ABC交AD于点E,BD平分∠EBC.(1)若∠DBC=30°,求∠A的度数;(2)若点F在线段AE上,且7∠DBC-2∠ABF=180°,请问图中是否存在与∠DFB相等的角?若存在,请写出这个角,并说明理由;若不存在,请说明理由.答案与解析一、选择题:(每题3分,共30分)1. 如图,点E 在CD 的延长线上,下列条件中不能判定AB ∥CD 的是( )A. ∠1=∠2B. ∠3=∠4C. ∠5=∠BD. ∠B +∠BDC =180°【答案】A【解析】【分析】 运用平行线的判定方法进行判定即可.【详解】解:选项A 中,∠1=∠2,只可以判定AC//BD (内错角相等,两直线平行),所以A 错误; 选项B 中,∠3=∠4,可以判定AB//CD (内错角相等,两直线平行),所以正确;选项C 中,∠5=∠B ,AB//CD (内错角相等,两直线平行),所以正确;选项D 中,∠B +∠BDC =180°,可以判定AB//CD (同旁内角互补,两直线平行),所以正确; 故答案为A.【点睛】本题考查平行的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键. 2. 图所示,150∠=︒,34180∠+∠=︒,则 2∠=( )︒A. 130B. 140C. 50D. 40【答案】C【解析】【分析】先由已知与平角定义推出∠3=∠5,利用同位角相等,两直线平行得a ∥b ,在利用平行线的性质即可求出∠2.【详解】根据平角定义得∠4+∠5=180º,又∵34180∠+∠=︒,∴∠3=∠5,∴a ∥b ,∴∠1=∠2,∵∠1=50º,∴∠2=50º,故选择:C .【点睛】本题考查平行线的判定与性质,以及平角定义,掌握平角定义与平行线的判定和性质是解题关键. 3. 点P 是直线l 外一点,A 为垂足,PA l ⊥,且5cm PA =,则点P 到直线l 的距离( )A. 小于5cm PA =B. 等于5cm PA =C. 大于5cm PA =D. 不确定【答案】B【解析】【分析】根据点到直线的距离的定义得出即可.【详解】解:根据点到直线的距离的定义得出P 到直线l 的距离是等于5cm PA =,故选:B .【点睛】本题考查了点到直线的距离的定义,能熟记点到直线的距离的定义的内容是解此题的关键,注意:从直线外一点到这条直线的垂线段的长度,叫点到直线的距离.4. 下列图形中1∠与2∠是同位角的是( ) A. B. C. D.【答案】C同位角的定义:在截线的同侧,并且在被截线的同一方的两个角是同位角,据此进行判断即可.【详解】解:A 图不符合同位角定义,故此选项错误;B 图不符合同位角定义,故此选项错误;C 图符合同位角定义,可知答案是C ;D 图不符合同位角定义,故此选项错误.故选:C .【点睛】本题考查了同位角,解答此类题确定三线八角是关键,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.5. 某数x 的两个不同的平方根是23a +与15a -,则x 的值是( )A. 11B. 121C. 4D. 11±【答案】B【解析】【分析】利用正数的平方根有两个,它们是互为相反数,列出方程,解方程求出4a =,再求某数即可.【详解】某数x 的两个不同的平方根是23a +与15a -,列方程得:23a ++15a -=0,合并得:3120a -=,解得:4a =,当4a =时,23=24311a +⨯+=,则()223=121x a =+.故选择:B .【点睛】本题考查正数的平方根问题,掌握数的平方根的性质,会用正数两个平方根构造方程是解题关键. 6. –27A. 0B. –6C. 0或–6D. 6 【答案】C根据立方根的定义求得-27的立方根是-3,±3,由此即可得到它们的和.【详解】∵-27的立方根是-3,9的平方根是±3,所以它们的和为0或-6.故选C.【点睛】此题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.7. 下列命题中,真命题有().(1)有且只有一条直线与已知直线平行,(2)垂直于同一条直线的两条直线互相垂直,(3)两条直线被第三条直线所截,内错角相等,(4)在平面内过一点有且只有一条直线与已知直线垂直.A. 1个B. 2个C. 3个D. 4个【答案】A【解析】【分析】利于平行线的定义、平行公理、平行线的性质及垂直的定义分别判断后即可确定正确的选项.【详解】解:(1)过直线外一点有且只有一条直线与已知直线平行,故错误,是假命题;(2)垂直于同一条直线的两条直线平行,故错误,是假命题;(3)两条平行直线被第三条直线所截,内错角相等,故错误,是假命题;(4)在平面内过一点有且只有一条直线与已知直线垂直,正确,是真命题.故选A.【点睛】本题考查了命题与定理的知识,解题的关键是了解平行线的定义、平行公理、平行线的性质及垂直的定义等知识,难度不大.8. 若点M的坐标是(a,b),且a>0,b<0,则点M在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D【解析】根据各象限内点的坐标符号特征判定,:∵a>0,b<0,∴点M (a ,b )在第四象限,故选D9. 若22x y =⎧⎨=⎩是方程1x my -=的一个解,则m 的值为( ) A. 1 B. 12 C. 14 D. 12- 【答案】B【解析】【分析】 把22x y =⎧⎨=⎩代入1x my -=,得到关于m 的方程,解方程即可得到结论. 【详解】解:把22x y =⎧⎨=⎩代入1x my -=得,2-2m=1, 解得:m=12, 故选:B .【点睛】本题主要考查的是二元一次方程的解,得到关于m 的方程是解题的关键. 10. 若方程组4314(1)6x y kx k y +=⎧⎨+-=⎩的解中x 与y 的值相等,则k 为( ) A. 4B. 3C. 2D. 1【答案】C【解析】由题意得:x=y ,∴4x+3x=14,∴x=2,y=2,把它代入方程kx+(k-1)y=6得2k+2(k-1)=6,解得k=2.故选C . 二、填空题:(每题3分,共30分)11. 如图所示,直线AB ,CD ,EF 相交于点O ,且AB CD ⊥,135∠=︒,则 2∠=________ .【答案】55︒【解析】【分析】根据题意由对顶角相等先求出∠ FOD ,然后根据AB⊥CD ,∠2与∠ FOD 互为余角,求出即可.【详解】∵CD 、EF 相交于点O ,∴∠FOD=∠1=35︒,∵AB⊥CD ,∴∠2=90︒−∠FOD=903555︒-︒=︒,故答案为:55︒.【点睛】本题考察对顶角相等和垂线的定义及性质,熟练掌握基础知识是解题的关键.12. 如图,直线a ∥b ,则∠ACB =______【答案】78°【解析】如图,延长BC 与a 相交,已知a ∥b ,根据两直线平行,内错角相等可得∠1=∠50°;再由三角形的外角的性质可得∠ACB =∠1+28°=50°+28°=78°.点睛:本题主要考查平行线的性质和三角形外角性质,较为简单,属于基础题.13. 比较大小:12π-________12-【答案】<【解析】【分析】利用估值比较法322π>>,再利用不等式的性质3,不等式两边都乘以-1,不等式方向改变2π-<,最后利用不等式性质1,不等式两边都加1,不等号方向不变即可确定大小.【详解】∵322π>3=222<,∴2π>,∴2π-<,∴12π-<1.故答案为:<.【点睛】本题考查无理数的比较大小问题,掌握不等式的性质,会用不等式的性质比较大小,用估值法比较大小是解题关键.14. 已知|a -5|=0,那么a -b =_______.【答案】8【解析】【分析】利用非负数性质得:a-5=0,b+3=0,可求a,b.【详解】因为|a -5|=0,|a -5|≥0≥0,所以,a-5=0,b+3=0,所以,a=5,b=-3.所以,a-b=8.故答案为8点睛】本题考核知识点:非负数性质. 解题关键点:利用非负数性质.15. ________,2________.【答案】 (1). 3; (2).2.【解析】【分析】根据平方运算,可得一个数的算术平方根,根据相反数的性质在这个数前加一“-”化简即可.9=3=;= ∴3,∵(222--=-=,∴22,故答案为:2.【点睛】本题考查了算术平方根和相反数的性质,9的算术平方根,熟悉相关性质是解题的关键.16. 若点(1,26)P a a +-在x 轴上,则点P 的坐标为________.【答案】(4,0).【解析】【分析】根据点在x 轴上的特点解答即可.【详解】解:∵点P (a+1,2a-6)x 轴上, ∴2a-6=0,解得,a=3,∴a+1=4∴点P 的坐标是(4,0);故答案为:(4,0).【点睛】本题主要考查了点在x 轴上时纵坐标是0的特点.17. 已知点P(2-a ,3a+6),且点P 到两坐标轴的距离相等,则点P 的坐标是_____. 【答案】(33)P ,或(66)P -, 【解析】【分析】根据点坐标到x 轴的距离即是点的纵坐标的绝对值,点到y 轴距离,即点的横坐标的绝对值,据此解题.【详解】(236)P a a -+,到两坐标轴的距离相等,236a a ∴-=+236a a ∴-=+或236a a -=--解得:1a ∴=-或4a =-当1a =-时,点P 的坐标为(33)P ,当4a =-时,点P 的坐标为(66)P -, 故答案:(33)P ,或(66)P -, 【点睛】本题考查直角坐标系中,各象限点坐标的特征,是重要考点,难度较易,掌握相关知识是解题关键.18. 若方程4x m-n -5y m+n =6是二元一次方程,则m=______,n=______.【答案】 (1). 1 (2). 0【解析】【分析】【详解】解:根据题意,得1{1m n m n -=+= 解,得m=1,n=0.故答案是1,0.考点:二元一次方程的定义.19. 某次足球比赛的记分规则如下:胜一场得3分,平一场得1分, 负一场是0分.某队踢了14场,其中负5场,共得19分.若设胜了x 场,平了y 场,则可列出方程组:_____________.【答案】514319x y x y ++=+=⎧⎨⎩ 【解析】【分析】根据比赛总场数和总分数可得相应的等量关系:胜的场数+平的场数+负的场数=14;胜的积分+平的积分=19,把相关数值代入即可.【详解】∵共踢了14场,其中负5场,∴x+y+5=14;∵胜一场得3分,平一场得1分,负一场是0分,共得19分.∴3x+y=19,故列的方程组为514 319x yx y++=+=⎧⎨⎩,故答案为514 319 x yx y++=+=⎧⎨⎩【点睛】此题考查由实际问题抽象出二元一次方程组,解题关键在于列出方程20. 若(5x+2y-12)2+|3x+2y-6|=0,则2x+4y=__________.【答案】0【解析】【分析】根据非负数的性质列出方程组,求出x、y的值代入所求代数式计算即可.【详解】解:由题意得52120 3260 x yx y+-=⎧⎨+-=⎩两个方程相减得:2x=6,解得x=3.把x=3代入5x+2y-12=0得,5×3+2y-12=0,解得32 y=-把33,2x y==-代入2x+4y得:323402⎛⎫⨯+⨯-=⎪⎝⎭故答案为:0【点睛】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0,还考查了解二元一次方程组.三、解答题(共60分)21. 计算:(1)(2)|+(31 12 -【答案】(1;(2(3)52 -.【解析】【分析】(1)合并同类项计算即可;(2(3)根据绝对值的性质、开平方及开立方的方法化简计算即可.【详解】解:(1)原式==(2)原式=; (3)原式=313135212424422-+=-++-=-. 【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式的混合运算法则是解题的关键.22. 解方程: (1)代入法:23328y x x y =-⎧⎨+=⎩(2)加减法:25324x y x y -=⎧⎨+=⎩ 【答案】(1)21x y =⎧⎨=⎩;(2)21x y =⎧⎨=-⎩【解析】【分析】(1)运用代入消元法求解即可;(2)运用加减消元法求解即可.【详解】解:(1)23328y x x y =-⎧⎨+=⎩①② ① 代入②得,32(23)8x x +-=,解得,x=2,把x=2代入①得,y=1,所以,方程组的解为:21x y =⎧⎨=⎩;(2)25 324 x yx y-=⎧⎨+=⎩①②①×2+②得,7x=14解得,x=2把x=2代入①得,4-y=5,解得,y=-1∴方程组的解为:21 xy=⎧⎨=-⎩【点睛】此题主要考查了解二元一次方程组,解二元一次方程组的方法有:代入消元法和加减消元法.23. 在如图的直角坐标系中,将三角形ABC平移后得到三角形111A B C,他们的对应点坐标如下表所示:ABC(,0)A a(3,0)B(5,5)C111A B C△1(4,2)A1(7,)B b1(,)C c d(1)观察表中各对应点坐标变化,写出平移规律:________.(2)在坐标系中画出两个三角形.(3)求出111A B C△面积.【答案】(1)先向上平移2 个单位,再向右平移4个点位.(2)画图见详解(3)7.5.【解析】【分析】(1)由A到A1纵坐标变化,说明向上平移2个单位,由B到B1横坐标变化说明向右平移4个单位,规律即可发现;(2)利用平移的特征先求出A、B1、C1三点坐标,然后在平面直角坐标系中描点A、B、C、A1、B1、C1,再顺次连结AB、BC、CA;A1B1、B1C1、C1A1;则△ABC为原图,△A1B1C1为平移后的图形;(3)先求△A 1B 1C 1的底113A B =,再求底边上的高长为5;利用面积公式求即可.【详解】(1)由A 到A 1纵坐标变化为由0到2,说明向上平移2个单位,由B 到B 1横坐标变化为由3到7说明向右平移4个单位,平移的规律为先向上平移2 个单位,再向右平移4个点位;故答案为:先向上平移2 个单位,再向右平移4个点位.(2)440a a +==,,022b b +==,,549c c +==,,527d d +==,,则A 、B 1、C 1三点坐标分别为()00A ,,()172B ,,()197C ,,如图 描点:A 、B 、C 、A 1、B 1、C 1,连线:顺次连结AB 、BC 、CA ;A 1B 1、B 1C 1、C 1A 1,结论:则△ABC 为原图,△A 1B 1C 1为平移后的图形.(3)11743A B =-=,11A B 边上的高为725-=,111115357.522A B C S ∆=⨯⨯==. 【点睛】本题考查平移规律,画图和三角形面积问题,掌握平移规律发现的方法,画图的步骤与要求,会求钝角三角形的面积是解题关键.24. 如图,直线AB ,CD 相交于点O ,EO AB ⊥,垂足为O ,35EOC ∠=︒,求AOD ∠的度数.【答案】125°.【解析】【分析】由两直线垂直,求得∠AOE=90°;由∠AOC与∠EOC互余,∠EOC=35°,即可得到∠AOC的度数;再由∠AOD 与∠AOC互补,即可得出∠AOD的度数.【详解】∵EO⊥AB,∴∠AOE=90°,又∵∠EOC=35°,∴∠AOC=∠AOE-∠EOC=90°-35°= 55°,∴∠AOD=180°-∠AOC=180°-55°=125°.【点睛】本题主要考查补角、余角和垂直的定义.解题的关键是熟练利用补角、余角关系求角的度数.25. 如图,CD平分∠ACB,DE∥BC,∠AED=80°,求∠EDC的度数.【答案】40°【解析】【分析】根据平行线的性质可得∠ACB=∠AED=80°,∠EDC=∠BCD,然后根据角平分线的定义可得∠BCD=12∠ACB=40°,从而求出结论.【详解】解:∵DE∥BC,∠AED=80°∴∠ACB=∠AED=80°,∠EDC=∠BCD ∵CD平分∠ACB,∴∠BCD=12∠ACB=40°∴∠EDC=40°【点睛】此题考查的是平行线的性质和角平分线的定义,掌握平行线的性质是解决此题的关键.26. 用白铁皮做罐头盒,每张铁皮可制盒身25个或制盒底40个,一个盒身与两个盒底配成一套,现有36张白铁皮,用多少张制盒身,多少张制盒底,可使盒身与盒底正好配套?【答案】需要16张白铁皮做盒身,20张白铁皮做盒底【解析】【分析】可设用x 张制盒身,则(36-x )张制盒底,可使盒身与盒底正好配套,根据等量关系:一个盒身与两个盒底配成一套.列出方程求解即可.【详解】解:设用x 张制盒身,则(36-x )张制盒底,根据题意,得到方程:2×25x =40(36-x ), 解得:x =16,36-x =36-16=20.答:用16张制盒身,20张制盒底,可使盒身与盒底正好配套.【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.27. 在新冠疫情期间,为支援武汉,现将我市大米运往武汉.有大小两种货车,2辆大货车与3辆小货车一次可以运货15.5吨,5辆大货车与6辆小货车一次可以运货35吨.那么3辆大货车与5辆小货车一次可以运货多少吨.【答案】24.5【解析】【分析】本题等量关系比较明显:2辆大车运载吨数+3辆小车运载吨数=15.5;5辆大车运载吨数+6辆小车运载吨数=35,算出1辆大车与1辆小车一次可以运货多少吨后,即可计算出3辆大车与5辆小车一次可以运货多少吨.【详解】设大货车每辆装x 吨,小货车每辆装y 吨,根据题意列出方程组为:2315.55635x y x y +=⎧⎨+=⎩, 解这个方程组得:42.5x y =⎧⎨=⎩,∴3x+5y=24.5.答:3辆大车与5辆小车一次可以运货24.5吨.【点睛】本题考察二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.28. 新冠疫情过后,海伦市第三中学七年级学生将外出进行社会实践活动,从学校出发骑自行车去实践基地,中途因道路施工步行一段路,1.5小时后到达实践基地,他骑车的平均速度是15千米/时,步行的平均速度是5千米/时,路程全长20千米,他骑车和步行各用了多少时间?【答案】骑车用1.25小时,步行用0.25小时.【解析】【分析】首先设他骑车用了x小时,根据骑车时间+步行时间=1.5小时表示出步行时间,再由骑车路程+步行路程=20千米,根据等量关系列出方程组,解方程组即可.【详解】设骑自行车的时间为x小时,步行的时间为y小时,根据题意得:1.5 15520 x yx y+=⎧⎨+=⎩,解得1.250.25 xy=⎧⎨=⎩,答:骑车用1.25小时,步行用0.25小时.【点睛】本题考查二元一次方程组的应用,关键是弄懂题意,根据题目中的等量关系列出方程组.29. 如图,AD∥BC,BE平分∠ABC交AD于点E,BD平分∠EBC.(1)若∠DBC=30°,求∠A的度数;(2)若点F在线段AE上,且7∠DBC-2∠ABF=180°,请问图中是否存在与∠DFB相等的角?若存在,请写出这个角,并说明理由;若不存在,请说明理由.【答案】(1)∠A=60°;(2)存在,∠DFB=∠DBF.【解析】【分析】(1)根据角平分线的定义得到∠EBC=2∠DBC=60°,∠ABC=2∠EBC=120°,根据平行线的性质得到∠A+∠ABC=180°,于是得到结论;(2)设∠DBC=x°,则∠ABC=2∠ABE=(4x)°,根据已知条件得到∠ABF=(72x-90)°,求得∠DBF=(90-12x)°,根据平行线的性质得到∠DFB+∠CBF=180°,于是得到∠DFB=(90-12x)°,即可得到结论.【详解】解:(1)∵BD平分∠EBC,∠DBC=30°,∴∠EBC=2∠DBC=60°.∵BE平分∠ABC,∴∠ABC=2∠EBC=120°.∵AD∥BC,∴∠A+∠ABC=180°,∴∠A=60°.(2)存在∠DFB=∠DBF.理由如下:设∠DBC=x°,则∠ABC=2∠ABE=(4x)°.∵7∠DBC-2∠ABF=180°,∴(7x)°-2∠ABF=180°,∴∠ABF=(72x-90)°,∴∠CBF=∠ABC-∠ABF=(12x+90)°,∠DBF=∠ABC-∠ABF-∠DBC=(90-12 x)°.∵AD∥BC,∴∠DFB+∠CBF=180°,∴∠DFB=(90-12 x)°,∴∠DFB=∠DBF.【点睛】本题考查了平行线的性质,角平分线的定义,熟练掌握平行线的性质是解题的关键.平行线的性质:①两直线平行同位角相等;②两直线平行内错角相等;③两直线平行同旁内角互补.。
新人教版七年级数学下册期中测试卷(及答案)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知|x|=5,|y|=2,且|x+y|=﹣x﹣y,则x﹣y的值为()A.±3B.±3或±7C.﹣3或7D.﹣3或﹣7 2.如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为A.32B.3 C.1 D.433.已知|m-2|+(n-1)2=0,则关于x的方程2m+x=n的解是()A.x=-4 B.x=-3 C.x=-2 D.x=-14.如图,直线a,b被直线c所截,下列条件中,不能判定a∥b()A.∠2=∠4 B.∠1+∠4=180° C.∠5=∠4 D.∠1=∠35.已知a b3132==,,则a b3+的值为()A.1 B.2 C.3 D.276.某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是()A.厉B.害C.了D.我7.如图,两条直线l 1∥l 2,Rt △ACB 中,∠C=90°,AC=BC ,顶点A 、B 分别在l 1和l 2上,∠1=20°,则∠2的度数是( )A .45°B .55°C .65°D .75°8.设[x]表示最接近x 的整数(x ≠n+0.5,n 为整数),则[1]+[2]+[3]+…+[36]=( )A .132B .146C .161D .6669.如图,直线l 1∥l 2 ,且分别与直线l 交于C,D 两点,把一块含30°角的三角尺按如图所示的位置摆放.若∠1=52°,则∠2的度数为( )A .92°B .98°C .102°D .108°10.一商店在某一时间以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,在这次买卖中,这家商店( )A .不盈不亏B .盈利20元C .亏损10元D .亏损30元二、填空题(本大题共6小题,每小题3分,共18分)1.4的算术平方根是________.2.如图,将长方形纸片ABCD 的∠C 沿着GF 折叠(点F 在BC 上,不与B,C 重合),使点C 落在长方形内部的点E 处,若FH 平分∠BFE,则∠GFH 的度数是________.3.若2a b +=,3ab =-,则代数式32232a b a b ab ++的值为__________.4.已知4x =,12y =,且0xy <,则x y 的值等于_________. 5.若x=2是关于x 的方程2x+3m ﹣1=0的解,则m 的值等于_________.6.若323m x --21n y - =5是二元一次方程,则m =________,n =________.三、解答题(本大题共6小题,共72分)1.解下列方程组:(1)430210x y x y -=⎧⎨-=-⎩ (2)134342x y x y ⎧-=⎪⎨⎪-=⎩2.先化简,再求值:(x +2y )(x ﹣2y )+(20xy 3﹣8x 2y 2)÷4xy ,其中x =2018,y =2019.3.已知△ABC 中,∠A =60°,∠ACB =40°,D 为BC 边延长线上一点,BM 平分∠ABC ,E 为射线BM 上一点.(1)如图1,连接CE ,①若CE ∥AB ,求∠BEC 的度数;②若CE 平分∠ACD ,求∠BEC 的度数.(2)若直线CE 垂直于△ABC 的一边,请直接写出∠BEC 的度数.4.如图1,P点从点A开始以2厘米/秒的速度沿A→B→C的方向移动,点Q从点C开始以1厘米/秒的速度沿C→A→B的方向移动,在直角三角形ABC中,∠A=90°,若AB=16厘米,AC=12厘米,BC=20厘米,如果P、Q同时出发,用t(秒)表示移动时间,那么:(1)如图1,若P在线段AB上运动,Q在线段CA上运动,试求出t为何值时,QA=AP(2)如图2,点Q在CA上运动,试求出t为何值时,三角形QAB的面积等于三角形ABC面积的14;(3)如图3,当P点到达C点时,P、Q两点都停止运动,试求当t为何值时,线段AQ的长度等于线段BP的长的1 45.“校园手机”现象越来越受到社会的关注.“寒假”期间,某校小记者随机调查了某地区若干名学生和家长对中学生带手机现象的看法,统计整理并制作了如下的统计图:(1)求这次调查的家长人数,并补全图1;(2)求图2中表示家长“赞成”的圆心角的度数;(3)已知某地区共6500名家长,估计其中反对中学生带手机的大约有多少名家长?6.为提高市民的环保意识,倡导“节能减排,绿色出行”,某市计划在城区投放一批“共享单车”这批单车分为A,B两种不同款型,其中A型车单价400元,B型车单价320元.(1)今年年初,“共享单车”试点投放在某市中心城区正式启动.投放A,B 两种款型的单车共100辆,总价值36800元.试问本次试点投放的A型车与B 型车各多少辆?(2)试点投放活动得到了广大市民的认可,该市决定将此项公益活动在整个城区全面铺开.按照试点投放中A,B两车型的数量比进行投放,且投资总价值不低于184万元.请问城区10万人口平均每100人至少享有A型车与B型车各多少辆?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、A3、B4、D5、B6、D7、C8、B9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)1、2.2、90°3、-124、8-5、﹣16、2 1三、解答题(本大题共6小题,共72分)1、(1)1010xy=⎧⎨=⎩(2)64xy=⎧⎨=⎩2、(x﹣y)2;1.3、(1)①40°;②30°;(2)50°,130°,10°4、(1) 4s;(2) 9s;(3) t=323s或16s5、(1)答案见解析(2)36°(3)4550名6、(1)本次试点投放的A型车60辆、B型车40辆;(2)3辆;2辆。
RN 七年级数学 -1- (共 6页)
2017年平塘三中期中测试卷
七 年 级 数 学(下)
一、选择题.(每空3分,共30分)
1. 如图,直线AB 、CD 相交于点O,若∠1+∠2=100°, 则∠BOC 等于 ( )
A.130°
B.140°
C.150°
D.160°
2.如图,把一块含有45°角的直角三角板的两个顶点放在
直尺的对边上,如果∠1=20°,那么∠2等于( )
A .30° B.25° C.20° D.15° 3.如图,若在中国象棋盘上建立平面直角坐标系,使“帅”位于点(-1,-2),“马”位于点(2,-2),则“兵”位
于点( )
A .(-1,1)
B .(-2,-1)
C .(-3,1)
D .(1,-2)
4.下列现象属于平移的是( )
A .冷水加热过程中小气泡上升成为大气泡
B 急刹车时汽车在地面上的滑动
C .投篮时的篮球运动
D .随风飘动的树叶在空中的运动
5.下列各数中,是无理数的为( ) A .3
9 B. 3.14 C. 4 D. 722-
6.若a 2=9, 3b =-2,则a+b=( )
A. -5
B. -11
C. -5 或 -11
D. ±5或±11 7.若2m ﹣4与3m ﹣1是同一个数的平方根,则m 的值是( ) A .﹣3 B .﹣1 C .1 D .﹣3或1
8.点B (m 2+1,﹣1)一定在( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
9.如图,下列说法正确的是( )
A .如果∠1和∠2互补,那么l 1∥l 2
B .如果∠2=∠3,那么l 1∥l 2
C .如果∠1=∠2,那么l 1∥l 2
D .如果∠1=∠3,那么l 1∥l 2
10.如图所示,在灌溉农田时,要把河(直线l 表示一条河)中的水引到农田P 处,设计了四条路线PA ,PB ,PC ,PD (其中PB ⊥l ),你选择哪条路线挖渠才能使渠道最短( ) A .PA B .PB C .PC D .PD 二、填空.(每小题3分,共24分) 11.16的算术平方根是
12.把命题“平行于同一条直线的两条直线平行”改写成“如果……那么……”的形
式:_____________________________________________________________ 13.一大门的栏杆如右图所示,BA ⊥AE ,若CD ∥AE , 则∠ABC+∠BCD=____度.
14.如右图,有下列判断:①∠A 与∠1是同位角;
②∠A 与∠B 是同旁内角;③∠4与∠1是内错角;④∠1与∠3是同位角。
其中正确的是______(填序号).
15.已知7的整数部分是a ,小数部分是b 。
则a+b=_____________. 16.第二象限内的点P(x,y),满足|x |=9,y 2=4,则点P 的坐标是______.
17.若x 3m-2-2y n-1=5 是二元一次方程,则m n =__________
18.平方根节是数学爱好者的节日,这一天的月份和日期的数字正好是当年年份最后两位数字的平方根,例如2009年的3月3日,2016年的4月4日,请你写出本世纪内你喜欢的一个平方根节:_______年_____月_____日.(题中所举例子除外) 三、解答题.(共70分)
19. 计算(每小题4分,共16分) |1﹣|-|
﹣
| 33641441--25++
RN 七年级数学 -2- (共 6页)
⎩⎨⎧=-=+152y x y x ⎩
⎨⎧=-=+623432y x y x
20.(4分)如右图,先填空后证明. 已知: ∠1+∠2=180° 求证:a ∥b
证明:∵ ∠1=∠3( ),
∠1+∠2=180°( ) ∴ ∠3+∠2=180°( ) ∴ a ∥b ( )
21.(6分)在平面直角坐标系中, △ABC 三个顶点的位置如图(每个小正方形的边长均为1).
(1)请画出△ABC 沿x 轴向右平移3个单位长度,再沿y 轴向上平移2个单位长度后的△A ′B ′C ′(其中A ′、B ′、C ′分别是A 、B 、C 的对应点,不写画法)
(2)直接写出A ′、B ′、C ′三点的坐标: A ′(_____,______); B ′(_____,______); C ′(_____,______)。
(3)求△ABC 的面积。
22. (6分)如图,直线AB 、CD 相交于点O ,OF ⊥CO,∠AOF 与∠BOD 的度数之比为 3∶2,求∠AOC 的度数.
23. (8分)
一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货车,已知过去两次租用这两种货车的情况如下表所示
第一次 第二次
甲种货车辆数(单位:辆) 2 5 乙种货车辆数(单位:辆) 3 6 累计运货物吨数(单位:吨)
15.5
35
现租用该公司3辆甲种货车及5辆乙种货车一次刚好运完这批货,如果按每吨付运费30元计算,问货主应付运费多少元?
24.(6分)如图,若∠ADE=∠ABC ,BE ⊥AC 于E ,MN ⊥AC 于N ,试判断∠1与∠2的关系,并说明理由.。