【配套K12】江苏省2019高考数学二轮复习 专题三 不等式 第1讲 不等式的解法与三个“二次”的关系学案
- 格式:doc
- 大小:176.00 KB
- 文档页数:14
2019高考数学(理)二轮练习讲解--不等式选讲【2018年高考会这样考】 1、考查含绝对值不等式的解法、 2、考查有关不等式的证明、 3、利用不等式的性质求最值、 【复习指导】 本讲复习时,紧紧抓住含绝对值不等式的解法,以及利用重要不等式对一些简单的不等式进行证明、该部分的复习以基础知识、基本方法为主,不要刻意提高难度,以课本难度为宜,关键是理解有关内容本质.基础梳理1、含有绝对值的不等式的解法 (1)|f (x )|>a (a >0)⇔f (x )>a 或f (x )<-a ; (2)|f (x )|<a (a >0)⇔-a <f (x )<a ; (3)对形如|x -a |+|x -b |≤c ,|x -a |+|x -b |≥c 的不等式,可利用绝对值不等式的几何意义求解、2、含有绝对值的不等式的性质 |a |-|b |≤|a ±b |≤|a |+|b |.3、基本不等式定理1:设a ,b ∈R ,那么a 2+b 2≥2ab .当且仅当a =b 时,等号成立、定理2:如果a 、b 为正数,那么a +b2≥ab ,当且仅当a =b 时,等号成立、定理3:如果a 、b 、c 为正数,那么a +b +c3≥3abc ,当且仅当a =b =c 时,等号成立、定理4:(一般形式的算术-几何平均值不等式)如果a 1、a 2、…、a n 为n 个正数,那么a 1+a 2+…+a nn≥n a 1a 2…a n ,当且仅当a 1=a 2=…=a n 时,等号成立、 5、不等式的证明方法证明不等式常用的方法有比较法、综合法、分析法、反证法、放缩法等、双基自测1、不等式1<|x +1|<3的解集为________、 答案(-4,-2)∪(0,2)2、不等式|x -8|-|x -4|>2的解集为________、解析令:f (x )=|x -8|-|x -4|=⎩⎨⎧4,x ≤4,-2x +12,4<x ≤8,-4,x >8,当x ≤4时,f (x )=4>2;当4<x ≤8时,f (x )=-2x +12>2,得x <5, ∴4<x <5;当x >8时,f (x )=-4>2不成立、 故原不等式的解集为:{x |x <5}、4.柯西不等式(1)柯西不等式的代数形式:设a ,b ,c ,d 为实数,则(a 2+b 2)·(c 2+d 2)≥(ac +bd )2,当且仅当ad =bc 时等号成立. (2)若a i ,b i (i ∈N *)为实数,则(∑i =1n a 2i )(∑i =1n b 2i )≥(∑i =1na ib i )2,当且仅当b i =0(i =1,2,…,n )或存在一个数k ,使得a i =k b i (i =1,2,…,n )时,等号成立.(3)柯西不等式的向量形式:设α,β为平面上的两个向量,则|α|·|β|≥|α·β|,当且仅当这两个向量同向或反向时等号成立.答案{x |x <5}3、关于x 的不等式|x -1|+|x |≤k 无解,那么实数k 的取值范围是________、 解析∵|x -1|+|x |≥|x -1-x |=1,∴当k <1时,不等式|x -1|+|x |≤k 无解,故k <1. 答案k <14、假设不等式|3x -b |<4的解集中的整数有且仅有1,2,3,那么b 的取值范围为________、解析由|3x -b |<4,得b -43<x <b +43,即⎩⎪⎨⎪⎧0≤b -43<1,3<b +43≤4,解得5<b <7.答案(5,7)5、(2017·南京模拟)如果关于x 的不等式|x -a |+|x +4|≥1的解集是全体实数,那么实数a 的取值范围是________、解析在数轴上,结合实数绝对值的几何意义可知a ≤-5或a ≥-3. 答案(-∞,-5]∪[-3,+∞)考向一含绝对值不等式的解法【例1】►设函数f (x )=|2x +1|-|x -4|. (1)解不等式f (x )>2;(2)求函数y =f (x )的最小值、[审题视点]第(1)问:采用分段函数解不等式;第(2)问:画出函数f (x )的图象可求f (x )的最小值、解(1)f (x )=|2x +1|-|x -4|=⎩⎪⎨⎪⎧-x -5 ⎝ ⎛⎭⎪⎫x <-12,3x -3 ⎝ ⎛⎭⎪⎫-12≤x <4,x + 5 x ≥4.当x <-12时,由f (x )=-x -5>2得,x <-7.∴x <-7;当-12≤x <4时,由f (x )=3x -3>2,得x >53, ∴53<x <4;当x ≥4时,由f (x )=x +5>2,得x >-3,∴x ≥4.故原不等式的解集为 ⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <-7或x >53.(2)画出f (x )的图象如图: ∴f (x )min =-92.(1)用零点分段法解绝对值不等式的步骤:①求零点;②划区间、去绝对值号;③分别解去掉绝对值的不等式;④取每个结果的并集,注意在分段时不要遗漏区间的端点值、(2)用图象法,数形结合可以求解含有绝对值的不等式,使得代数问题几何化,即通俗易懂,又简洁直观,是一种较好的方法、 【训练1】设函数f (x )=|x -1|+|x -a |. (1)假设a =-1,解不等式f (x )≥3;(2)如果∀x ∈R ,f (x )≥2,求a 的取值范围、 解(1)当a =-1时,f (x )=|x -1|+|x +1|,f (x )=⎩⎨⎧-2x , x <-1,2, -1≤x ≤1,2x , x >1.作出函数f (x )=|x -1|+|x +1|的图象、由图象可知,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |x ≤-32或x ≥32.(2)假设a =1,f (x )=2|x -1|,不满足题设条件;假设a <1,f (x )=⎩⎨⎧ -2x +a +1, x ≤a ,1-a , a <x <1,2x -a +1, x ≥1,f (x )的最小值为1-a .假设a >1,f (x )=⎩⎨⎧-2x +a +1,x ≤1,a -1,1<x <a ,2x -a +1,x ≥a ,f (x )的最小值为a -1.∴对于∀x ∈R ,f (x )≥2的充要条件是|a -1|≥2, ∴a 的取值范围是(-∞,-1]∪[3,+∞)、考向二不等式的证明【例2】►证明以下不等式:(1)设a ≥b >0,求证:3a 3+2b 3≥3a 2b +2ab 2; (2)a 2+4b 2+9c 2≥2ab +3ac +6bc ;(3)a 6+8b 6+127c 6≥2a 2b 2c 2.[审题视点](1)作差比较;(2)综合法;(3)利用柯西不等式、 证明(1)3a 3+2b 3-(3a 2b +2ab 2)=3a 2(a -b )-2b 2(a -b ) =(a -b )(3a 2-2b 2)、∵a ≥b >0,∴a -b ≥0,3a 2-2b 2>0. ∴(a -b )(3a 2-2b 2)≥0. ∴3a 2+2b 3≥3a 2b +2ab 2.(2)∵a 2+4b 2≥2a 2·4b 2=4ab , a 2+9c 2≥2a 2·9c 2=6ac , 4b 2+9c 2≥24b 2·9c 2=12bc ,∴2a 2+8b 2+18c 2≥4ab +6ac +12bc , ∴a 2+4b 2+9c 2≥2ab +3ac +6bc .(3)a 6+8b 6+127c 6≥33827a 6b 6c 6=3×23a 2b 2c 2=2a 2b 2c 2,∴a 6+8b 6+127c 6≥2a 2b 2c 2.(1)作差法应该是证明不等式的常用方法、作差法证明不等式的一般步骤是:①作差;②分解因式;③与0比较;④结论、关键是代数式的变形能力、 (2)注意观察不等式的结构,利用基本不等式或柯西不等式证明、【训练2】(2017·辽宁)a ,b ,c 均为正数,证明:a 2+b 2+c 2+⎝ ⎛⎭⎪⎫1a +1b +1c 2≥63,并确定a ,b ,c 为何值时,等号成立、证明法一因为a ,b ,c 均为正数,由基本不等式得,a 2+b 2+c 2≥3(abc )23,① 1a +1b +1c ≥3(abc )-13,所以⎝ ⎛⎭⎪⎫1a +1b +1c 2≥9(abc )-23,②故a 2+b 2+c 2+⎝ ⎛⎭⎪⎫1a +1b +1c 2≥3(abc )23+9(abc )-23.又3(abc )23+9(abc )-23≥227=63,③ 所以原不等式成立、当且仅当a =b =c 时,①式和②式等号成立、当且仅当3(abc )23=9(abc )-23时,③式等号成立、故当且仅当a =b =c =314时,原不等式等号成立、法二因为a ,b ,c 均为正数,由基本不等式得a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ac .所以a 2+b 2+c 2≥ab +bc +ac .①同理1a 2+1b 2+1c 2≥1ab +1bc +1ac ,②故a 2+b 2+c 2+⎝ ⎛⎭⎪⎫1a +1b +1c 2≥ab +bc +ac +3ab +3bc +3ac ≥6 3.③所以原不等式成立、当且仅当a =b =c 时,①式和②式等号成立,当且仅当a =b =c ,(ab )2=(bc )2=(ac )2=3时,③式等号成立、故当且仅当a =b =c =314时,原不等式等号成立、考向三利用基本不等式或柯西不等式求最值【例3】►a ,b ,c ∈R +,且a +b +c =1,求3a +1+3b +1+3c +1的最大值、 [审题视点]先将(3a +1+3b +1+3c +1)平方后利用基本不等式;还可以利用柯西不等式求解、 解法一利用基本不等式∵(3a +1+3b +1+3c +1)2=(3a +1)+(3b +1)+(3c +1)+23a +1·3b +1+23b +1·3c +1+23a +1·3c +1≤(3a +1)+(3b +1)+(3c +1)+[(3a +1)+(3b +1)]+[(3b +1)+(3c +1)]+[(3a +1)+(3c +1)]=3[(3a +1)+(3b +1)+(3c +1)]=18, ∴3a +1+3b +1+3c +1≤32, ∴(3a +1+3b +1+3c +1)max =3 2. 法二利用柯西不等式∵(12+12+12)[(3a +1)2+(3b +1)2+(3c +1)2]≥(1·3a +1+1·3b +1+1·3c +1)2∴(3a +1+3b +1+3c +1)2≤3[3(a +b +c )+3]、 又∵a +b +c =1,∴(3a +1+3b +1+3c +1)2≤18, ∴3a +1+3b +1+3c +1≤3 2.当且仅当3a +1=3b +1=3c +1时,等号成立、 ∴(3a +1+3b +1+3c +1)max =3 2.利用基本不等式或柯西不等式求最值时,首先要观察式子特点,构造出基本不等式或柯西不等式的结构形式,其次要注意取得最值的条件是否成立、 【训练3】a +b +c =1,m =a 2+b 2+c 2,求m 的最小值、 解法一∵a +b +c =1,∴a 2+b 2+c 2+2ab +2bc +2ac =1,又∵a 2+b 2≥2ab ,a 2+c 2≥2ac ,b 2+c 2≥2bc , ∴2(a 2+b 2+c 2)≥2ab +2ac +2bc ,∴1=a 2+b 2+c 2+2ab +2bc +2ac ≤3(a 2+b 2+c 2)、∴a 2+b 2+c 2≥13.当且仅当a =b =c 时,取等号,∴m min =13. 法二利用柯西不等式∵(12+12+12)(a 2+b 2+c 2)≥(1·a +1·b +1·c )=a +b +c =1.∴a 2+b 2+c 2≥13,当且仅当a =b =c 时,等号成立、∴m min =13如何求解含绝对值不等式的综合问题从近两年的新课标高考试题可以看出,高考对《不等式选讲》的考查难度要求有所降低,重点考查含绝对值不等式的解法(可能含参)或以函数为背景证明不等式,题型为填空题或解答题、【例如】►(此题总分值10分)(2017·新课标全国)设函数f (x )=|x -a |+3x ,其中a >0.(1)当a =1时,求不等式f (x )≥3x +2的解集;(2)假设不等式f (x )≤0的解集为{x |x ≤-1},求a 的值、第(2)问解不等式|x -a |+3x ≤0的解集,结果用a 表示,再由{x |x ≤-1}求a .[解答示范](1)当a =1时,f (x )≥3x +2可化为|x -1|≥2. 由此可得x ≥3或x ≤-1. (3分)故不等式f (x )≥3x +2的解集为{x |x ≥3或x ≤-1}、(5分) (2)由f (x )≤0得,|x -a |+3x ≤0.此不等式化为不等式组⎩⎨⎧ x ≥a ,x -a +3x ≤0或⎩⎨⎧x ≤a ,a -x +3x ≤0,即⎩⎨⎧x ≥a ,x ≤a 4或⎩⎨⎧x ≤a ,x ≤-a 2.(8分)因为a >0,所以不等式组的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≤-a 2. 由题设可得-a2=-1,故a =2.(10分)此题综合考查了含绝对值不等式的解法,属于中档题、解含绝对值的不等式主要是通过同解变形去掉绝对值符号转化为一元一次和一元二次不等式(组)进行求解、含有多个绝对值符号的不等式,一般可用零点分段法求解,对于形如|x -a |+|x -b |>m 或|x -a |+|x -b |<m (m 为正常数),利用实数绝对值的几何意义求解较简便、【试一试】(2017·辽宁)函数f (x )=|x -2|-|x -5|. (1)证明:-3≤f (x )≤3;(2)求不等式f (x )≥x 2-8x +15的解集、[尝试解答](1)f (x )=|x -2|-|x -5|=⎩⎨⎧-3,x ≤2,2x -7,2<x <5,3,x ≥5.当2<x <5时,-3<2x -7<3.所以-3≤f (x )≤3.(2)由(1)可知,当x ≤2时,f (x )≥x 2-8x +15的解集为空集;当2<x <5时,f (x )≥x 2-8x +15的解集为{x |5-3≤x <5};当x ≥5时,f (x )≥x 2-8x +15的解集为{x |5≤x ≤6}、 综上,不等式f (x )≥x 2-8x +15的解集为{x |5-3≤x ≤6}.。
目录第1讲集合.......................................................................................................................................... - 2 -第2讲命题(微课) ............................................................................................................................. - 2 -第3讲命题的四种形式及其关系(微课) ........................................................................................... - 2 -第4讲充要条件(微课) ....................................................................................................................... - 2 -第5讲函数及其性质(一) ................................................................................................................... - 2 -第6讲函数及其性质(二) ................................................................................................................... - 3 -第7讲函数的图象变换...................................................................................................................... - 3 -第8讲函数综合问题.......................................................................................................................... - 4 -第9讲平面向量的线性运算与基本定理(一) .............................................................................. - 4 -第10讲平面向量的线性运算与基本定理(二) .............................................................................. - 4 -第11讲平面向量的数量积及综合...................................................................................................... - 6 -第12讲同角三角函数的基本关系及诱导公式 .................................................................................. - 6 -第13讲正弦型函数的图象与性质(一)(微课) .......................................................................... - 7 -第14讲正弦型函数的图象与性质(二)(微课) .......................................................................... - 7 -第15讲余弦、正切函数的图象与性质.............................................................................................. - 7 -第16讲三角函数的恒等变换.............................................................................................................. - 8 -第17讲三角函数的综合应用.............................................................................................................. - 9 -第18讲正弦定理和余弦定理.............................................................................................................. - 9 -第19讲解三角形(一)(微课)........................................................................................................ - 10 -第20讲解三角形(二).....................................................................................................................- 11 -第21讲不等关系与不等式(微课).....................................................................................................- 11 -第22讲不等式的解法(一)(微课).................................................................................................... - 12 -第23讲不等式的解法(二)................................................................................................................ - 12 -第24讲基本不等式............................................................................................................................ - 12 -第25讲线性规划(一).................................................................................................................... - 13 -第26讲线性规划(二).................................................................................................................... - 13 -第27讲数列的求和............................................................................................................................ - 14 -第28讲数列的通项公式.................................................................................................................... - 15 -第29讲数列综合(一)........................................................................................................................ - 16 -第30讲数列综合(二)........................................................................................................................ - 17 -第31讲导数的运算知识串讲(微课)............................................................................................ - 18 -第32讲导数的概念及其应用(一).................................................................................................... - 19 -第33讲导数的概念及其应用(二).................................................................................................... - 19 -第34讲导数的概念及其应用(三).................................................................................................... - 20 -第35讲空间几何体的三视图与直观图............................................................................................ - 21 -第36讲空间几何体的表面积和体积................................................................................................ - 23 -第37讲空间点、直线、平面之间的位置关系(一)(微课) .................................................... - 23 -第38讲空间点、直线、平面之间的位置关系(二) .................................................................... - 24 -第39讲直线与圆综合(一)............................................................................................................ - 25 -第40讲直线与圆综合(二)............................................................................................................ - 26 -第41讲椭圆及其性质........................................................................................................................ - 26 -第42讲双曲线及其性质.................................................................................................................... - 27 -第43讲抛物线及其性质.................................................................................................................... - 27 -第44讲椭圆与直线的位置关系(微课)........................................................................................ - 28 -第45讲抛物线与直线的位置关系.................................................................................................... - 28 -第46讲圆锥曲线综合问题之椭圆.................................................................................................... - 29 -第47讲圆锥曲线综合问题之抛物线................................................................................................ - 30 -第48讲统计综合................................................................................................................................ - 31 -第49讲概率综合................................................................................................................................ - 31 -第50讲复数经典精讲........................................................................................................................ - 32 -第51讲算法经典精讲(微课) ............................................................................................................. - 33 -讲义参考答案.......................................................................................................................................... - 35 -第1讲 集合金题精讲题一:已知集合{1,2,3,6}=-A ,{23}B x x =-<<,则=A B _______.题二:已知集合{1,2,3}A =,{(1)(2)0,}B x x x x Z =+-<∈,则A B =_______.题三:设集合{}|(2)(3)0S x x x =--≥,{}|0T x x =>,则S T =_____.题四:已知集合{}{}23,4P x x Q x x =∈≤≤=∈≥R |1R |, 则()Q P =ðR ________第2讲 命题 (微课)题一:给定下列命题:① 若k > 0,则方程x 2 + 2x − k = 0有实根;② 若a > b ,则a + c > b + c ;③ 对角线相等的四边形是矩形;④ 若xy = 0,则x 、y 中至少有一个为0.其中真命题的序号是________________.第3讲 命题的四种形式及其关系(微课)题一:给出下列命题:① 命题“若b 2 − 4ac < 0,则方程ax 2 + bx + c = 0 (a ≠0) 无实根”的否命题;② 命题“△ABC 中,AB = BC = CA ,那么△ABC 为等边三角形”的逆命题;③ 命题“若a > b > 0,则3a > 3b > 0 ”的逆否命题.其中真命题的序号为____________.第4讲 充要条件(微课)题一:对于实数x 、y ,“8≠+y x ”是“2≠x或6≠y ”的___________条件.第5讲 函数及其性质(一) 题一:已知4213532,4,625a b c ===,则,,a b c 的大小关系为________.题二:若01c <<,则下列正确的是______.①32c c < ②32c c < ③log 3log 2c c <题三:设函数()e x f x x =+,则使得(1)(2)f x f x ->成立的x 的取值范围是_____第6讲 函数及其性质(二)题一:下列函数中,具有奇偶性的是_____.①21y x =+ ②ln y x = ③233x y x x -=- ④11221x y =+- 题二:若定义在R 上的函数()f x 满足:x ∀∈R ,()()f x f x -=-,且当0x ≥时,(1)(1)f x f x +=-,求(6)f =_________. 第7讲 函数的图象变换题一:为了得到函数()lg 31y x =+-的图象,只需把函数lg y x =的图象上所有的点____.题二:由函数lg y x =的图象变换得到()lg 23y x =+的图象,以下有三种方法,请根据你的喜好排个序.(1)()()lg lg 2lg 23y x y x y x =→=→=+(2)()3lg lg lg 232y x y x y x ⎛⎫=→=+→=+ ⎪⎝⎭(3)()()lg lg 3lg 23y x y x y x =→=+→=+题三:函数()f x 的图象向右平移1个单位长度,所得函数e x y -=的图象,则()f x =____.题四:函数()21y f x =-是偶函数,则函数()y f x =的图象的对称轴一定可以为_____.①1-=x ②1=x ③21=x ④21-=x第8讲 函数综合问题题一:已知0,0a b >>,1a b +=,则11a b +的最小值为________. 题二:已知2110,0,2x ax x ⎡⎤++≥∀∈⎢⎥⎣⎦恒成立, 则a 的最小值为________. 题三:已知()()R f x x ∈满足()()f x f x -=-,若函数1y x =与()y f x =图象的交点为1122(,),(,),x y x y 则1122()+()=x y x y ++___________.第9讲 平面向量的线性运算与基本定理(一)题一:向量a ,b ,c 在正方形网格中的位置如图所示, 若()c a b λμλμ=+∈R ,, 则λμ= .题二:(1)若向量a =(2,1),b =(x ,2), u =2a b +,v =a b -,且u //v ,则x = .(2)已知向量(3,1)a =,(0,1)b =-,(,3)c k =,若2a b -与c 共线,则k = .第10讲 平面向量的线性运算与基本定理(二)题一:已知:平行四边形ABCD ,对角线AC ,BD 交于点O ,点E 为线段OB 中点, 完成下列各题.(用于填空的向量为图中已有线段所表示的向量)题二:在平行四边形ABCD中,===,M为BC的中点,,,3AB a AD b AN NC则MN=_______(用a b、表示)题三:若D 在△ABC的BC边上,且==+,则3r+s=______. CD DB r AB sAC4题四:已知向量OA=(k,12),OB = (4,5),OC= (-k,10),则向量AC=,若A、B、C三点共线,则k= .题五:已知点A(1,-2),若向量AB与a =(2,3)同向,AB =2,则点B 的坐标为 .第11讲 平面向量的数量积及综合题一:已知a 、b 均为单位向量,它们的夹角为60°,那么|a +3b |= .题二:已知向量a 与b 的夹角为120o , 3,13,a a b =+=则b 等于 .题三:已知平面上三点A 、B 、C 满足||3,||4,||5AB BC CA ===,则AB BC BC CA CA AB ⋅+⋅+⋅= .题四:在△ABC 中,O 为中线AM 上一个动点,若AM =2,则()OA OB OC ⋅+的最小值为 .第12讲同角三角函数的基本关系及诱导公式 题一:(1)已知sin α =45,并且tan α<0, 求α的其它三角函数值.(2)已知sin α =45,求α的其它三角函数值.题二:化简求值sin 31π6⎛⎫- ⎪⎝⎭-cos 10π3⎛⎫- ⎪⎝⎭-sin 19π4题三:已知π2ππcos()(0)633m m αα<<+=≠,,2πtan()3α-求的值.第13讲正弦型函数的图象与性质(一)(微课) 题一:已知函数g (x )=sin(3π-2x ). (1)函数g (x )的周期为__________;(如没有特殊说明,写出该函数的最小正周期即可)(2)写出函数g (x )的单调减区间___________;(3)只需将函数y =cos2x 的图象向________平移________单位,就可以得到函数g (x )的图象.第14讲 正弦型函数的图象与性质(二)(微课) 题一:已知函数π()2sin(2)3f x x =-. (1)该函数的周期为__________;(2)在坐标系中作出(五点法)该函数一个周期上的简图;(3)写出该函数在区间[0,2π]内的单调减区间_________;(4)将函数y =2sin2x 的图象向______移动_______个单位可以得到函数()f x 的图象;(5)若3π[,2π]2x ∈,函数()f x 的最大值为M , 最小值为N ,则M -N = .第15讲余弦、正切函数的图象与性质1、余弦函数cos x 的性质题一:当ππ,63x ⎡⎤∈⎢⎥⎣⎦时,则函数 πcos(2)6y x =-的值域为_________. 2、正切函数tan x 的性质 定义域:ππ()2x k k ≠+∈Z 值域:(,)-∞+∞周期:πT =奇偶性:奇函数tan()tan x x -=- . 单调性:ππ[π,π]()22k k k -++∈Z 单调递增. 第16讲 三角函数的恒等变换题一:求值(1)sin75︒ (2)sin13︒cos17︒+cos13︒sin17︒题二:函数sin cos (0)y a x b x a b =+⋅≠的最大值、最小值和周期.题三:求函数22cos sin 2y x x =+的最小值.题四:求函数2()sin cos f x x x x = 在区间π,42π⎡⎤⎢⎥⎣⎦上的最大值.题五:求值(1)tan 42tan181tan 42tan18+-(2)1tan 751tan 75+-(3)tan17︒+tan28︒+tan17︒tan28︒第17讲三角函数的综合应用 题一:已知344αππ<<,04βπ<<, 3cos()45απ+=-,35sin()413βπ+=, 求cos(α + β)的值.题二:已知函数(sin cos )sin 2()sin x x x f x x-=. (1)求()f x 的定义域及最小正周期;(2)求()f x 的单调递增区间.题三:已知向量(cos ,sin ),[0,]a θθθ=∈π, 向量(3,1)b =-(1)当a b ∥,求θ;(2)当a b ⊥时,求θ;(3)求|2|a b -的最大和最小值.第18讲 正弦定理和余弦定理题一:已知4,cos ,35B A b π===求ABC S △.题二:ABC ∆的内角,,A B C 的对边分别是,,a b c ,若o 120c b B ==,求a .题三:在ABC ∆中,若()()3a b c a b c ab +++-=且sin 2sin cos C A B =,判断ABC ∆的形状.第19讲解三角形(一)(微课)题一:ABC ∆中,222a c b -=, sin cos 3cos sin A C A C =,求b .题二:设ABC ∆的内角,,A B C 的对边长分别为,,a b c ,3cos()cos 2A CB -+=,2b ac =, 求B .第20讲解三角形(二)题一:在△ABC中,BC AC=3,sin C=2sin A.(1) 求AB的值;(2) 求πsin24A⎛⎫-⎪⎝⎭的值.题二:在四边形ABCD中,已知AD⊥CD,AD=10,AB=14,∠BDA=60°,∠BCD=135°,求BC的长.题三:如图所示,海中小岛A周围38海里内有暗礁,一船正向南航行,在B处测得小岛A 在船的南偏东30°,航行30海里后,在C处测得小岛在船的南偏东45°,如果此船不改变航向,继续向南航航行,有无触礁的危险?第21讲不等关系与不等式(微课)题一:判断下列命题的正误:(1)当ab ≠0时,若a <b ,则ba ab 2211>; (2)设a ,b ∈R ,若ab ≠0, b a <1,则a b >1.第22讲不等式的解法(一)(微课)题一:解下列关于x 的不等式: (1) 9x 2-6x +1>0 (2) x 2-4x +5>0(3) -2x 2+x +1>0 (4) -x 2+4x -4>0题二:不等式21134x x->-的解集为__________. 第23讲 不等式的解法(二)题一:解关于x 的不等式:ax 2+(1-a )x -1<0.题二:已知集合A ={x |x 2+3x -18>0},B ={x |x 2-(k +1)x -2k 2+2k ≤0},若AB ≠∅,则实数k 的取值范围是_______. 第24讲 基本不等式 题一:设π02x <<,则2sin sin y x x=+的值 域为_________.题二:已知正数x ,y 满足x +2y =1,求11x y+ 的最小值.题三:(1)y =e x +e -x 有最_____值,为_____,此时x =_______.(2)当0<x <9时,y =x (9-x )的最大值为______,x =_____. (3) 13y x x =+-(x >3)的最小值是_______, 此时x =____.第25讲 线性规划(一)题二:若x ,y 满足约束条件20204,x y x y x x y +-≥⎧⎪+-≥⎪⎨≤⎪⎪∈⎩N , 则2z x y =+的最小值为______________,最大值为________________.题三:已知y x ,满足条件⎪⎩⎪⎨⎧≥++≤-+≤--,0104,0117,02357y x y x y x求:(1)y x 34-的最大值和最小值;(2)22y x +的最大值和最小值;(3)58-+x y 的最大值和最小值.第26讲线性规划(二)题一:已知实数x ,y 满足下列条件4335251x y x y x -≤-⎧⎪+≤⎨⎪≥⎩,设y t x =,则t 的最小值为________. 题二:要将甲、乙两种长短不同的钢管截成A 、B 、C 三种规格,每根钢管可同时截得三种规格的短钢管的根数如下表所示:今需A 、B 、C 三种规格的钢管各13、16、18根,问各截这两种钢管多少根可得所需三种规格钢管,且使所用钢管根数最少.第27讲数列的求和 数列求和的基本方法:1. 公式法:2. 分组求和法:3. 错位相减法:4. 裂项求和法:易错小题考考你题一: 求1111132435(2)S n n =++++⨯⨯⨯+的值.金题精讲题一:数列{}n a 中,,2,841==a a 且满足 0212=+-++n n n a a a ,求n n a a a S +++= 21.第28讲数列的通项公式 易错小题考考你题一:数列{}n a 的前n 项和n S , n n S a a 2,111==+(n +∈N ).求数列{}n a 的通项公式.金题精讲题一:{}n a 是首项为1的正项数列, 且1()1n n a n n a n ++=∈+N ,求它的通项公式.题二:已知数列{}n a 满足:1a a =,1n n a ka b +=+ (,,0,1,0k b R k b ∈≠≠),n +∈N ,求数列{}n a 的 通项公式.题三:在数列{}n a 中,n S 是其前n 项和,由下面给出的n S ,求n a .(1) n S =223n n -;(2) n S =23log n +题四:已知各项均为正数的数列{}n a 的 前n 项和为n S ,满足11S >,且6(1)(2)n n n S a a =++,*n ∈N ,求数列{}n a 的通项公式.题五:已知数列{}n a 满足122(1)(2)n a a na n n n ++=++…+, 求{}n a 的通项公式.第29讲数列综合(一) 题一:设正项数列{a n }的前n 项和为S n , 且12+=n n a S .(1)求{a n }的通项公式;(2)设11+⋅=n n n a a b ,求数列{b n }的前n 项和为 B n .第30讲数列综合(二)易错小题考考你 题一:设{}n a 为首项为正数的等比数列,它的 前n 项之和为80,前2n 项之和为6560,且前 n 项中数值最大的项为54,则{}n a 的通项公式 为 .金题精讲题一:设正项等比数列{}n a 的首项211=a , 前n 项和为n S ,且 10103020102(21)0S S S -++=.(1)求{}n a 的通项公式;(2)求{}n nS 的前n 项和n T .题二:设函数f (x ) = log 2x - log x 2(0<x <1), 数列{a n }满足(2)2()n a f n n +=∈N .(1)求数列{a n }的通项公式;(2)判断数列{a n }是递增数列还是递减数列.题三:数列{a n }中,a 1=8, a 4=2,且满足a n +2-2a n +1+a n =0 (n ∈Z),设1()(12)n n b n n a +=∈-N , 12()n n T b b b n +=++⋅⋅⋅+∈N ,是否存在最大的整数m ,使得任意的n +∈N 总有32n m T >成 立?若存在,求出m 的值;若不存在,说明理由.第31讲导数的运算知识串讲(微课)重难点易错点梳理 '________;c =(c 为常数)()'________;(0,0Q)n x x n n =>≠∈且________;1()'________;(e )'________;x x=== ()'________;x a =(01)a a >≠且(ln )'________;x =(log )'________.a x =(0 ,0x a >>且1a ≠)[()()]'_____________;[()()]'_____________;()[]'_____________(()0).()f xg x f x g x f x g x g x ±=⋅==≠ 题一:求导:()()211ln 2f x x ax a x =-+- ()()ln 1f x x x ax =-- x xx f ln )(=题二:求下列函数的导数(1)x y tan =(2)4cos 4sin 44x x y += (3))4cos 21(2sin 2x x y --=第32讲导数的概念及其应用(一) 题一:函数3211()232f x x ax bx =++,极大值点在(0,1)内,极小值点在(1,2)内,则21b a --的 取值范围是___________.题二:当x > 0时,求证:212e x x +<.题三:已知函数()ln f x x x =,2()e ex x g x =-. 求证:对任意,(0,)m n ∈+∞, 都有()()f m g n ≥.第33讲导数的概念及其应用(二) 题一:设函数323()(1)132a f x x x a x =-+++, a ∈R .(1)函数()f x 在1x =处能取得极小值吗?为什么?(2)已知不等式2()1f x x x a '>--+对(0,)a ∀∈+∞都成立,求实数x 的取值范围.题二:已知函数2ln ,,()23,,x x x a f x x x x a >⎧⎪=⎨-+-≤⎪⎩ 其中0a ≥.(1)当0a =时,求函数()f x 的图象在点(1, f (1))处的切线方程;(2)如果对于任意12,x x ∈R ,且12x x <,都有12()()f x f x <,求a 的取值范围.题三:已知函数12e ()44x f x ax x +=++, 其中a ∈R .(1)若0a =,求函数()f x 的极值;(2)当1a >时,试确定函数()f x 的单调区间.第34讲导数的概念及其应用(三)题一:已知曲线:e ax C y =. (1)若曲线C 在点(0,1)处的切线为2y x m =+,求实数a 和m 的值;(2)对任意实数a ,曲线C 总在直线l :y ax b =+的上方,求实数b 的取值范围.题二:已知()21()ln ,2f x xg x x a ==+ (a 为常数),直线l 与()(),f x g x 的图象都相切,且l 与()f x 的切点横坐标为1.(1)求l 的方程及a 的值;(2)当0k >时,讨论()()21f x g x k +-=的解的个数.题三:已知函数()()e x f x x a =+,其中e 是自然对数的底数,a ∈R .(1)求函数()f x 的单调区间;(2)当1a <时,试确定函数 2()()g x f x a x =--的零点个数,并说明理由.第35讲 空间几何体的三视图与直观图题一:一个几何体的三视图如图,请说出它对应的几何体的名称.侧视图俯视图正视图 (1)(2)(3)(4)第36讲 空间几何体的表面积和体积题一: 已知某几何体的三视图如图,求该几何体的表面积.(单位:cm)题二:已知棱长为a 的正方体ABCD -A 1B 1C 1D 1,O 为上底面A 1B 1C 1D 1的中心,E 为棱A 1B 1上一点,则AE +EO 的长度的最小值是___________.第37讲 空间点、直线、平面之间的位置关系(一)(微课)题一:正方体ABCD A B C D ''''-中,(1)哪些棱所在直线与直线B A '是异面直线?(2)直线B A '和CC '的夹角是多少?第38讲空间点、直线、平面之间的位置关系(二)-中,底面题一:如图,在四棱锥P ABCDABCD是菱形,PA PB=,且侧面PAB⊥平面ABCD,点E是棱AB的中点.CD平面PAB;(Ⅰ)求证://⊥;(Ⅱ)求证:PE AD=,(Ⅲ)若CA CB求证:平面PEC⊥平面PAB.题二:如图,在多面体ABCDEF 中,底面ABCD是边长为2的正方形,四边形BDEF 是矩形,平面BDEF ⊥平面ABCD ,BF =3,G 和H 分别是CE 和CF 的中点.(Ⅰ)求证:AC ⊥平面BDEF ;(Ⅱ)求证:平面BDGH //平面AEF ;(Ⅲ)求多面体ABCDEF 的体积.第39讲直线与圆综合(一)题一:过点(-4,0)作直线l 与圆 x 2+y 2+2x -4y -20=0交于A 、B 两点,如果|AB |=8,求直线l 的方程.FBCG EAHD题二:求圆心在直线10x y --=上,与直线4340x y ++=相切,且在直线3450x y +-=上截得弦长为.第40讲直线与圆综合(二) 题一:已知圆C :x 2+y 2-4x -6y +12=0,点A (3, 5),求过点A 的圆的切线方程.第41讲 椭圆及其性质题一:焦距为10的椭圆上一点P 到两焦点的距离和为26,求椭圆方程.题二:求过点A (,0),且与椭圆9x 2+5y 2 = 45有共同焦点的椭圆方程. 题三:椭圆22192x y +=的焦点为F 1、F 2, 点P 在椭圆上. 若|PF 1|=4,则|PF 2|=______, ∠F 1PF 2的大小为________.题四:P 是椭圆22143x y +=上的点,F 1和F 2是 该椭圆的焦点,则k =|PF 1|·|PF 2|的最大值是______,最小值是______.题五:点F 1、F 2为椭圆的两个焦点,以F 2为圆心的圆经过椭圆中心,且与椭圆的一个交点为M ,若直线MF 1恰与⊙F 2相切,则椭圆的离心率为______. 题六:已知F 1、F 2是椭圆的两个焦点,满足120MF MF ⋅=的点M 总在椭圆内部,则椭圆离心率的取值范围是_________.第42讲双曲线及其性质 题一:双曲线22221x y a b-=(a > 0,b > 0), F 1,F 2为焦点,弦AB 过F 1且在双曲线的一支 上,若222AF BF AB +=,则AB =_______. 题二:F 1、F 2是双曲线221916x y -=的两个焦点,P 在双曲线上且满足|PF 1|·|PF 2|=32, 则∠F 1PF 2=____________.题三:焦点在x 轴上的双曲线,它的两条渐近线的夹角为3π,焦距为12,求此双曲线的方程及离心率.题四:已知椭圆C 1的方程为1422=+y x ,双曲线C 2的左、右焦点分别为C 1的左、右顶点,而C 2的左、右顶点分别是C 1的左、右焦点,求双曲线C 2的方程.第43讲抛物线及其性质题一:抛物线x 2+12y =0的准线方程是__________. 题二:设F 为抛物线24y x =的焦点,A 、B 、 C 为该抛物线上三点,若0FA FB FC ++=, 则||||||FA FB FC ++= .题三:过抛物线x 2=2py (p >0)的焦点F 作倾斜角为30°的直线,与抛物线分别交于A 、B 两点 (点A 在y 轴的左侧),则||||AF FB =________.题四:已知抛物线22y x =的焦点是F , 点P 是抛物线上的动点,点(3,2)A ,则||||PA PF +的最小值为____________, 此时P 点的坐标为______________.第44讲 椭圆与直线的位置关系(微课)题一:若直线1y k x=+和椭圆22125x y m+=恒有公共点, 则实数m 的取值范围为 .第45讲 抛物线与直线的位置关系题一:过抛物线22(0)y px p =>的焦点作直线 l 与抛物线交于A 、B 两点(点A 在x 轴上方), 若3AF FB =,则直线l 的斜率为____________.题二:判断抛物线x y 22=与直线y kx k =-公 共点的个数.题三:过点Q (4,1)作y 2 = 8x 的弦AB 恰被点 Q 平分,则AB 的方程为____________.第46讲 圆锥曲线综合问题之椭圆题一:在平面直角坐标系xOy 中,经过点斜率为k 的直线l 与椭圆22x +y 2=1有两个不同的交点P 和Q . (1) 求k 的取值范围;(2) 设椭圆与x 轴正半轴、y 轴正半轴的交点分 别为A 、B ,是否存在常数k ,使得向量OP OQ + 与AB 共线? 如果存在,求k 值;如果不存在, 请说明理由.题二:已知椭圆C 的中心在原点,焦点在x 轴 上,左、右焦点分别为F 1、F 2,且12||2F F =, 点(1,32) 在椭圆C 上. (1) 求椭圆C 的方程;(2) 过F1的直线l与椭圆C相交于A,B两点,且△AF2B l的方程.第47讲圆锥曲线综合问题之抛物线题一:斜率为1的直线l经过抛物线y2=4x的焦点F,且与抛物线相交于A,B两点,求线段AB的长.题二:已知抛物线的一条弦过焦点,求证:以此弦为直径的圆必与抛物线的准线相切.题三:已知直线y=k(x+2)(k≠0)与抛物线C:y2=8x相交于A(x1,y1)、B(x2,y2)两点,求证:x1x2为定值.第48讲统计综合题一:已知某次期中考试中,甲、乙两组学生的数学成绩如下:甲:88 100 95 86 95 91 84 74 92 83 乙:93 89 81 77 96 78 77 85 89 86 则下列结论正确的是( ) A .x -甲>x -乙,s 甲>s 乙B .x -甲>x -乙,s 甲<s 乙C .x -甲<x -乙,s 甲>s 乙D .x -甲<x -乙,s 甲<s 乙题二:某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案.使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270;使用系统抽样时,将学生统一随机编号为1,2,…,270,并将整个编号依次分为10段.如果抽得号码有下列四种情况:①7, 34, 61, 88, 115, 142, 169, 196, 223, 250; ②5, 9, 100, 107, 111, 121, 180, 195, 200, 265; ③11, 38, 65, 92, 119, 146, 173, 200, 227, 254; ④30, 57, 84, 111, 138, 165, 192, 219, 246, 270. 关于上述样本的下列结论中,正确的是( ) A .②、③都不能为系统抽样 B .②、④都不能为分层抽样C .①、④都可能为系统抽样D .①、③都可能为分层抽样题三:设有两组数据x 1,x 2,…,x n 与y 1,y 2,…,y n ,它们的平均数分别是x -和y -,则新的一组数据2x 1-3y 1+1,2x 2-3y 2+1,…, 2x n -3y n +1的平均数是( )A .2x --3y -B .2x --3y -+1C .4x --9y -D .4x --9y -+1题四:在发生某公共卫生事件期间,有专业机构认为该事件在一段时间没有发生大规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是( ) A .甲地:总体均值为3,中位数为4 B .乙地:总体均值为1,总体方差大于0 C .丙地:中位数为2,众数为3 D .丁地:总体均值为2,总体方差为3第49讲 概率综合题一:在一次教师联欢会上,到会的女教师比男教师多12人,从到会教师中随机挑选一人表演节目.如果每位教师被选到的概率相等,而且选到男教师的概率为920,那么参加这次联欢会的教师共有( )A.360人B.240人C.144人D.120人题二:某学习小组有3名男生和2名女生,从中任取2人去参加演讲比赛,事件A=“至少一名男生”,B=“恰有一名女生”,C=“全是女生”,D=“不全是男生”,那么下列运算结果不正确的是()A.A∩B=B B.B∪C=DC.A∩D=B D.A∪D=C题三:现有8名奥运会志愿者,其中志愿者A1、A2、A3通晓日语,B1、B2、B3通晓俄语,C1、C2通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组.(1)求A1被选中的概率;(2)求B1和C1不全被选中的概率.题四:某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:(1)由表中数据直观分析,收看新闻节目的观众是否与年龄有关?(2)用分层抽样方法在收看新闻节目的观众中随机抽取5名,大于40岁的观众应该抽取几名?(3)在上述抽取的5名观众中任取2名,求恰有1名观众的年龄为20至40岁的概率.第50讲复数经典精讲题一:已知复数222761(56)i()z a a a a a a =-+-+--∈R .实数a 取什么值时,z 是(1) 实数?(2)虚数?(3)纯虚数?题二:计算:(1)(3+4i)(3-4i); (2)2(1i)+.题三:已知函数223()1x x f x x -+=+,求(1i)f +和(1i)f -的值.第51讲 算法经典精讲(微课)题一:如图所示程序输出的结果是________.题二:执行如图所示的程序框图后,输出的值 为4,则P 的取值范围是__________.讲义参考答案第1讲 集合金题精讲题一:{-1,2}.题二:{}0,1,2,3题三:(0,2][3,)+∞.题四:()1,+-∞ 题五:(2,3]-第2讲 命题 (微课)题一:①②④第3讲 命题的四种形式及其关系 (微课)题一:①②③第4讲 充要条件(微课)题一:充分不必要第5讲 函数及其性质(一)题一:c >a >b . 题二:①③. 题三:1(,)3-∞ 第6讲 函数及其性质(二)题一:①④. 题二:0.第7讲 函数的图象变换题一:纵坐标不变,向左平移3个单位, 再横坐标不变,向下平移1个单位. 题二:(1)lg y x =的图象纵坐标不变, 横坐标压缩为来的12倍,得到()lg 2y x =的图象; ()lg 2y x =的图象纵坐标不变,横坐标向左平移32个单位,得到()3lg 2()lg 232y x x ⎛⎫=+=+ ⎪⎝⎭的图 象.(2)lg y x =的图象先纵坐标不变,横坐标向左平移32个单位,得到3lg 2y x ⎛⎫=+ ⎪⎝⎭的图象; 3lg 2y x ⎛⎫=+ ⎪⎝⎭的图象纵坐标不变,横坐标先压缩为原来的12倍,得到3lg 22y x ⎛⎫=+ ⎪⎝⎭的图象; 再纵坐标不变,向左平移34个单位, 得到()33lg 2()lg 2342y x x ⎛⎫=++=+ ⎪⎝⎭的图象. (3)lg y x =的图象纵坐标不变,横坐标左平移3个单位,得到()lg 3y x =+的图象;()lg 3y x =+的图象纵坐标不变,横坐标压缩为原来的12倍,得到()lg 23y x =+的图象. 题三:1ex --.题四:①.第8讲 函数综合问题题一:4. 题二:52-. 题三:0. 第9讲 平面向量的线性运算与基本定理(一)题一:4. 题二:(1)4 (2)1第10讲 平面向量的线性运算与基本定理(二)题一:(1),,,,,0DE DO DC DC CD u u u r u u u r u u u r u u u r u u u r r (2)14-(3)D..题二:1144a b -+. 题三:85. 题四:(-2k ,-2),23k =-. 题五:(5,4).第11讲 平面向量的数量积及综合.. 题二:4. 题三:-25. 题四:-2.第12讲 同角三角函数的基本关系及诱导公式题一:(1)cos α =35-,tan α =43- (2)当α是第Ⅰ象限角时,cos α =35,tan α =43; 当α是第Ⅱ象限角时,cos α =35-,tan α =43-.题二:1- 题三:第13讲 正弦型函数的图象与性质(一)(微课)题一:(1)π(2)π5π[π,π],1212k k k -+∈Z (3)左;π12. 第14讲 正弦型函数的图象与性质(二) (微课)题一:(1)π(2)略(3)5π11π[,]1212,17π23π[,]1212(4)右,π6. 第15讲 余弦、正切函数的图象与性质题一:. 第16讲 三角函数的恒等变换题一:(2)12.周期为2π.题三:1 题四:32.题五:(12)3)1第17讲 三角函数的综合应用题一:1665-. 题二:(1){|π,}x x k k ≠∈z ,πT =.(2)π[π,π)8k k -和3π(π,π]8k k + 题三:(1)5π6 (2)π3(3)最大值:4.第18讲 正弦定理和余弦定理题三:等边三角形第19讲 解三角形(一)(微课)题一:b =4 题二:B =π3. 第20讲 解三角形(二)题一:(1) (2)题二: 题三:点A 到直线BC 的距离约为40.98海里, 没有触礁危险第21讲 不等关系与不等式(微课)题一:(1)错误 (2)错误第22讲 不等式的解法(一)(微课)题一:(1)13x ≠(2)x ∈R(3)1(,1)2x ∈- (4) ∅ 题二:23(,)34第23讲 不等式的解法(二)题一:当a =0时,x ∈(-∞,1);当a >0时,1(,1)x a ∈-;当a =-1时,x ∈(-∞,1)∪(1,+ ∞);当-1<a <0时,x ∈(-∞,1) ∪(1a -,+∞); 当a <-1时,x ∈(-∞,1a -) ∪(1,+∞) 题二:k >32或k <-2. 第24讲 基本不等式题一:(3,)+∞题二:3+题三:(1)小,2,0 (2)814,92(3)5,4 第25讲 线性规划(一)题一:-9. 题二:3;16.题三:(1)最大值为14;最小值为-18;(2)最大值为37;最小值为0;(3)最大值为-13;最小值为-9. 第26讲 线性规划(二) 题一:25题二:设截甲种钢管x 根,乙种钢管y 根,则,2213316418x y x y x y x y ∈⎧⎪+≥⎪⎨+≥⎪+≥⎪⎩N ,目标函数为z =x +y ,做出可行域 如下图阴影部分内的整点:由316418x y x y +=⎧⎪⎨+=⎪⎩可求得点3846(,)1111A , 但其不是最优解,在其附近可寻找到与其最近的整点为(4,4)B ,它是最优解.所以各截这两种钢管4、4根可得所需三种规格钢管,且使所用钢管根数最少.第27讲 数列的求和易错小题考考你题一:32342(1)(2)n n n +-++. 金题精讲题一:229-,(5)-940,(5)n n n n S n n n ⎧≤=⎨+>⎩. 第28讲 数列的通项公式易错小题考考你题一:211232n n n a n -=⎧=⎨⋅≥⎩,,. 金题精讲 题一:1n a n=. 题二:1()11n n b b a a k k k -=+---. 题三:(1)45n a n =-;(2)231log 21n n a n n n =⎧⎪=⎨≥⎪-⎩,,. 题四:31n a n =-.题五:33n a n =+.第29讲 数列综合(一)题一:(1) a n =2n -1 (2) B n =21n n + 第30讲 数列综合(二)题一:123n n a -=⨯.金题精讲题一:(1)12n n a =; (2)1(1)12222n n n n n n T -+=++-. 题二:(1)a n =2)递增数列.题三:存在,m =7.第31讲 导数的运算知识串讲重难点易错点梳理0;1n nx -21x -;e x ;ln x a a ;1x ;1ln x a ; ()'()'f x g x ±;()'()()()'f x g x f x g x +; 2()'()()()'()f x g x f x g x g x - 题一:(1)(1)()(0)x x a f x x x -+-'=>()'ln 1f x x a =+-()2ln 1'ln x f x x -=题二:(1)21cos x(2)1sin 4x - (3)1cos 2x 第32讲 导数的概念及其应用(一) 题一:1(,1)4题二:令2()12e x F x x =+-,则22'()22e 2(1e )x x F x =-=-,∵ x > 0,∴2e x > 1,∴'()0F x <,∴F (x )在(0,)+∞上是减函数,又∵F (x )在x = 0处连续,∴F (x )在[0,)+∞上是减函数.∴对于任意x > 0,总有F (x ) < F (0)=0, 即212e0x x +-<,∴212e x x +<.题三:①因为()ln f x x x =, 所以()ln 1f x x '=+,令()0f x '=,解得1x =,所以min 11()()e e f x f ==-,所以当(0,)m ∈+∞时,有1()e f m ≥-.②因为2()ee x x g x =-,所以2e (1)1()e ex x x x x g x --'==,令()0g x '=,所以max ()(1)e g x g ==-,所以当(0,)n ∈+∞时,有1()eg n ≤-.由①②可得,对任意,(0,)m n ∈+∞,都有()()f m g n ≥成立. 第33讲 导数的概念及其应用(二)题一:(1)不能,理由如下:2()3(1)f x ax x a '=-++,若()f x 在1x =处能取得极小值,则(1)01f a '=⇒=,当1a =,()(1)(2)f x x x '=--,可知函数()f x 在1x =处取得极大值,矛盾.(2)20x -≤≤.题二:(1)1y x =-;(2)1,e [1].题三:(1)函数()f x 有极小值e (0)4f =; (2)当12a <<时,函数()f x 的单调减区间为4(2,0)a -,单调增区间为4(,2)a-∞-,(0,)+∞; 当2a =时,210x x ==,函数()f x 在R 单调递增;当2a >时,函数()f x 的单调减区间为4(0,2)a -,单调增区间为(,0)-∞,4(2,)a-+∞. 第34讲 导数的概念及其应用(三)题一 (1)2a =,1m =;(2)(,1)b ∈-∞.题二:(1)10x y --=;12a =- (2)当ln 2k >时,方程有0个解;当ln 2k =或102k <<时,方程有2个解;当12k =时,方程有3个解; 当1ln 22k <<时,方程有4个解. 题三:(1)()f x 的单调减区间为(,1)a -∞--;单调增区间为(1,)a --+∞.(2)()g x 有且仅有一个零点.理由见详解.详解:由2()()0g x f x a x =--=,得方程2e x a x x -=,显然0x =为此方程的一个实数解.所以0x =是函数()g x 的一个零点.当0x ≠时,方程可化简为e x a x -=.设函数()e x a F x x -=-,则()e 1x a F x -'=-,令()0F x '=,得x a =.当x 变化时,()F x 和()F x '的变化情况如下:单调减区间为(,)a -∞.所以()F x 的最小值min ()()1F x F a a ==-.因为1a <,所以min ()()10F x F a a ==->,所以对于任意x ∈R ,()0F x >,因此方程e x ax -=无实数解.所以当0x ≠时,函数()g x 不存在零点.综上,函数()g x 有且仅有一个零点.第35讲 空间几何体的三视图与直观图题一:(1)圆台(2)底面为等腰直角三角形的直三棱柱.(3) 四棱锥(4)倒放的直四棱柱第36讲 空间几何体的表面积和体积题一:48+ 题二: 第37讲 空间点、直线、平面之间的位置关系(一)(微课)题一:(1),,,,,CD C D DD CC A D BC '''''' (2)45°第38讲 空间点、直线、平面之间的位置关系(二)第39讲 直线与圆综合(一)题一:5x +12y +20=0或x +4=0题二:22(2)(1)9x y -+-=第40讲 直线与圆综合(二)题一:x =3或y =34x +114. 第41讲 椭圆及其性质 题一:221169144x y +=或221144169x y +=. 题二:2211216x y += 题三:2,120°. 题四:4,3.1 题六:(0, 第42讲 双曲线及其性质题一:4a . 题二:90°. 题三:此双曲线的方程为221279x y -=,; 或者此双曲线的方程为221927x y -=,离心率为2. 题四:2213x y -=. 第43讲 抛物线及其性质题一:3y =. 题二:6. 题三:13. 题四: 72, (2,2). 第44讲 椭圆与直线的位置关系题一:1m ≥且25m ≠.第45讲 抛物线与直线的位置关系题二:k = 0时,有一个公共点;k ≠ 0时,有两个公共点.题三:4x - y - 15 = 0.第46讲 圆锥曲线综合问题之椭圆题一:(1) (−∞,− )∪+∞); (2)不存在常数k ,使得向量OP OQ +与AB 共线,理由如下:设P (x 1,y 1) ,Q (x 2,y 2) ,则OP +OQ =(x 1+x 2,y 1+y 2),由已知条件知,直线l 的方程为y =kx代入椭圆方程得22x +(kx 2=1,整理得2212k x ⎛⎫+ ⎪⎝⎭+1=0 ①由方程①得x 1 + x 2 ②又y 1 + y 2 = k (x 1 + x 2 ③而A 0) ,B (0,1) ,AB 1) .所以OP +OQ 与AB 共线等价于x 1 + x 2 y 1 + y 2),将②③代入上式,解得k .由(1) 知k 或k , 故没有符合题意的常数k .题二:(1) 22143x y +=;(2)(1)y x =±+. 第47讲 圆锥曲线综合问题之抛物线题一:8.题二:已知:抛物线y 2=2px (p >0),弦AB 过焦点F .求证:以AB 为直径的圆与抛物线的准线2p x =-相切. 证明:取线段AB 的中点M ,分别过点A 、B 、M 作准线的垂线AS 、BT 、MN 交点为S 、T 、N . 因为弦AB 过焦点F ,所以|AS |=|AF |,|BT |=|BF |,故|AB |=|AF |+|BF |=|AS |+|BT |,因为在梯形ASTB 中,AS 、MN 、BT 均与2p x =-垂直,所以AS //MN //BT , 因为M 是线段AB 的中点,所以MN 为梯形中位线,故|MN |=12(|AS |+|BT |)=12|AB |, 即圆心M 到直线2p x =-的距离等于圆的半径, 故以AB 为直径的圆与抛物线的准线2p x =-相切,此题得证. 题三:证明:联立直线与抛物线的方程()228y k x y x⎧=+⎪⎨=⎪⎩,消去y 得()222=8k x x +, 化简为()222248+40k x k x k +-=,。
第1讲 不等式的解法与三个“二次”的关系[考情考向分析] 不等式是数学解题的重要工具,一元二次不等式是江苏考试说明中的C 级内容,高考会重点考查.主要考查方向是一元二次不等式的解法及恒成立问题,其次考查不等式与其他知识的综合运用.热点一 不等式解法例1 (1)(2018·江苏兴化一中模拟)已知定义在区间[-2,2]上的函数f (x )满足f (x +2)=12f (x ),当-2≤x <0时,f (x )=x 2-x ,则不等式f (x )≤x 的解集为_________.答案 [1,2]解析 当-2≤x <0时,解f (x )≤x 即x 2-x ≤x 得0≤x ≤2,舍去; 当0≤x <2时,f (x )=12f (x -2)=12(x -2)2-12(x -2),解f (x )≤x 得x 2-7x +6≤0, 所以1≤x ≤6 ,因此1≤x <2; 当x =2时,f (2)=12f (0)=14f (-2)=32<2.综上,不等式f (x )≤x 的解集为[]1,2. (2)解关于x 的不等式(x -2)(ax -2)>0.解 当a =0时,原不等式可化为x -2<0,所以x <2.当a ≠0时,原不等式化为a (x -2)⎝⎛⎭⎪⎫x -2a >0,①当a >1时,2a<2,原不等式化为(x -2)⎝ ⎛⎭⎪⎫x -2a >0,所以x <2a或x >2.②当a =1时,2a=2,原不等式化为(x -2)2>0,所以x ∈R 且x ≠2.③当0<a <1时,2a>2,原不等式化为(x -2)·⎝ ⎛⎭⎪⎫x -2a >0,则x <2或x >2a.④当a <0时,2a<2,原不等式化为(x -2)⎝ ⎛⎭⎪⎫x -2a <0,所以2a<x <2.综上所述,当a =0时,原不等式的解集为{x |x <2};当a >1时,原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <2a 或x >2; 当a =1时,原不等式的解集为{x |x ∈R 且x ≠2};当0<a <1时,原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <2或x >2a ; 当a <0时,原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2a <x <2. 思维升华 不等式的解法主要是两种:一种是直接利用其解法直接求解,含参数的一元二次不等式要讨论二次项系数,判别式符号及两根大小;另一种方法是利用函数图象及性质求解.跟踪演练1 (1) 已知函数f (x )=⎩⎪⎨⎪⎧x +2,x ≤0,-x +2,x >0,则不等式f (x )≥x 2的解集是________. 答案 [-1,1]解析 依题意得⎩⎪⎨⎪⎧x ≤0,x +2≥x 2或⎩⎪⎨⎪⎧x >0,-x +2≥x 2⇒-1≤x ≤0或0<x ≤1⇒-1≤x ≤1.(2)在R 上定义运算⊙:a ⊙b =ab +2a +b ,则不等式x ⊙(x -2)<0的解集是____________. 答案()-2,1解析 由题意得,x ⊙(x -2)=x (x -2)+2x +x -2, 解x (x -2)+2x +x -2<0,得-2<x <1. 热点二 三个“二次”之间的关系例2 已知函数f (x )=x |x -a |,a ∈R ,g (x )=x 2-1. (1)当a =1时,解不等式f (x )≥g (x );(2)记函数f (x )在区间[0,2]上的最大值为F (a ), 求F (a )的表达式.解 (1)由f (x )≥g (x ),当a =1时, 即解不等式x |x -1|≥x 2-1. 当x ≥1时,不等式为x 2-x ≥x 2-1, 解得x ≤1,所以x =1;当x <1时,不等式为x -x 2≥x 2-1, 解得-12≤x ≤1,所以-12≤x <1.综上,不等式f (x )≥g (x )的解集为⎣⎢⎡⎦⎥⎤-12,1.(2)因为x ∈[0,2],当a ≤0时,f (x )=x 2-ax ,则f (x )在区间[0,2]上是增函数,所以F (a )=f (2)=4-2a .当0<a <2时,f (x )=⎩⎪⎨⎪⎧-x 2+ax ,0≤x <a ,x 2-ax ,a ≤x ≤2,则f (x )在区间⎣⎢⎡⎦⎥⎤0,a 2上是增函数,在区间⎣⎢⎡⎦⎥⎤a2,a 上是减函数,在区间[a,2]上是增函数,所以F (a )=max ⎩⎨⎧⎭⎬⎫f ⎝ ⎛⎭⎪⎫a 2,f (2), 而f ⎝ ⎛⎭⎪⎫a 2=a 24,f (2)=4-2a ,令f ⎝ ⎛⎭⎪⎫a 2<f (2),即a 24<4-2a ,解得-4-42<a <-4+42, 所以当0<a <42-4时,F (a )=4-2a ;令f ⎝ ⎛⎭⎪⎫a 2≥f (2),即a 24≥4-2a , 解得a ≤-4-42或a ≥-4+42, 所以当42-4≤a <2时,F (a )=a 24.当a ≥2时,f (x )=-x 2+ax ,当1≤a 2<2,即2≤a <4时,f (x )在区间⎣⎢⎡⎦⎥⎤0,a 2上是增函数,在⎣⎢⎡⎦⎥⎤a2,2上是减函数,则F (a )=f ⎝ ⎛⎭⎪⎫a 2=a 24; 当a2≥2,即a ≥4时,f (x )在区间[0,2]上是增函数, 则F (a )=f (2)=2a -4.综上,F (a )=⎩⎪⎨⎪⎧4-2a ,a <42-4,a24,42-4≤a <4,2a -4,a ≥4.思维升华 三个“二次”的关系是解一元二次不等式的理论基础,一般可把a <0的情况转化为a >0时的情形.跟踪演练2 (1)已知m ,n 为实数,若关于x 的不等式x 2+mx +n <0的解集为(-1,3),则m +n 的值为____________________________________________________________________. 答案 -5解析 由题意得,-1,3为方程x 2+mx +n =0的两根,因此⎩⎪⎨⎪⎧1-m +n =0,9-3m +n =0,解得m =-2,n =-3,m +n =-5.(2)(2018·江苏徐州三中月考)已知函数f (x )=-x 2+ax +b ()a ,b ∈R 的值域为(]-∞,0,若关于x 的不等式f (x )>c -1的解集为()m -4,m +1,则实数c 的值为________.答案 -214解析 由题意得Δ=0,a 2+4b =0,∴f (x )=-⎝ ⎛⎭⎪⎫x -a 22 ,由f (x )>c -1有解得c <1,即⎝ ⎛⎭⎪⎫x -a 22<1-c ,a2-1-c <x <a2+1-c ,因此a 2-1-c =m -4,a2+1-c =m +1,∴21-c =5,c =-214.热点三 一元二次不等式的综合问题例3 (1)(2018·镇江期末)已知函数f (x )=x 2-kx +4对任意的x ∈[]1,3,不等式f (x )≥0恒成立,则实数k 的最大值为________. 答案 4解析 ∵函数f (x )=x 2-kx +4对任意的x ∈[]1,3,不等式f (x )≥0恒成立,∴x 2-kx +4≥0,化简可得k ≤x +4x.∵x +4x≥2x ×4x=4,当且仅当x =2时取等号, ∴k ≤4,∴实数k 的最大值为4.(2)已知函数f (x )=log a (x 2-a |x |+3)(a >0,且a ≠1).若对于-1≤x 1<x 2≤-12的任意实数x 1,x 2都有f (x 1)-f (x 2)<0成立,则实数a 的范围是________________________________________. 答案 (0,1)∪[2,4)解析 易知已知函数为偶函数,则当x ∈⎣⎢⎡⎦⎥⎤12,1时为减函数. 对于x ∈⎣⎢⎡⎦⎥⎤12,1, f (x )=log a (x 2-ax +3)(a >0,且a ≠1),设g (x )=x 2-ax +3,由题意得⎩⎪⎨⎪⎧a >1,1≤a2,g (1)>0或⎩⎪⎨⎪⎧0<a <1,a 2≤12,g ⎝ ⎛⎭⎪⎫12>0,则2≤a <4或0<a <1.思维升华 (1)二次不等式在R 上的恒成立问题,可以利用判别式的符号解决;在某个区间上的恒成立问题,可以利用最值或者参变量分离解决.(2)含多个变量的恒成立问题首先要清楚选谁为主元,一般地,求谁的范围,谁就是参数. 跟踪演练 3 (1)若不等式x 2-kx +k -1>0对x ∈(1,2)恒成立,则实数k 的取值范围是________. 答案 (-∞,2]解析 不等式x 2-kx +k -1>0对x ∈(1,2)恒成立可化为(1-x )k >1-x 2对x ∈(1,2)恒成立, 即k <1+x 对x ∈(1,2)恒成立,而函数y =1+x 在(1,2)上为单调递增函数, 所以k ≤1+1=2,即实数k 的取值范围是(-∞,2].(2)若关于x 的不等式ax 2-|x |+2a <0的解集为空集,则实数a 的取值范围为________. 答案 ⎣⎢⎡⎭⎪⎫24,+∞ 解析 方法一 设f (x )=a |x |2-|x |+2a ,原不等式ax 2-|x |+2a <0的解集为∅,即f (x )≥0恒成立,令t =|x |,即g (t )=at 2-t +2a在[0,+∞)上恒有g (t )≥0,则⎩⎪⎨⎪⎧a >0,Δ≤0或⎩⎪⎨⎪⎧a >0,12a <0,g (0)≥0,解得a ≥24. 方法二 当a =0时,-|x |<0,不等式解集为{x |x ≠0},不满足题意;当a ≠0时,根据题意得⎩⎪⎨⎪⎧a >0,1-8a 2≤0,解得a ≥24. 综上所述,a 的取值范围是⎣⎢⎡⎭⎪⎫24,+∞.1.(2018·江苏)函数f (x )=log 2x -1的定义域为________. 答案 {x |x ≥2}解析 由log 2x -1≥0,即log 2x ≥log 22,解得x ≥2, 满足x >0,所以函数f (x )=log 2x -1的定义域为{x |x ≥2}.2.已知函数f (x )=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f (x )<0成立,则实数m 的取值范围是________. 答案 ⎝ ⎛⎭⎪⎫-22,0 解析 作出二次函数f (x )的图象,对于任意x ∈[m ,m +1],都有f (x )<0,则有⎩⎪⎨⎪⎧f (m )<0,f (m +1)<0,即⎩⎪⎨⎪⎧m 2+m 2-1<0,(m +1)2+m (m +1)-1<0,解得-22<m <0. 3.已知a ∈R ,关于x 的一元二次不等式2x 2-17x +a ≤0的解集中有且仅有3个整数,则实数a 的取值范围为________. 答案 (30,33]解析 二次函数f (x )=2x 2-17x +a 的对称轴为x =174,所以3个整数为3,4,5.所以⎩⎪⎨⎪⎧f (3)≤0,f (6)>0,解得30<a ≤33.4.已知函数f (x )=x +1|x |+1,x ∈R ,则不等式f (x 2-2x )<f (3x -4)的解集是________.答案 (1,2)解析 由题意得f (x )=⎩⎪⎨⎪⎧1,x ≥0,-2x -1-1,x <0,作出其图象如图所示.∵f (x 2-2x )<f (3x -4),∴⎩⎪⎨⎪⎧x 2-2x <0,x 2-2x <3x -4,解得⎩⎪⎨⎪⎧0<x <2,1<x <4,∴1<x <2.5.(2018·江苏省南京市金陵中学月考)已知0≤x ≤2时,不等式-1≤tx 2-2x ≤1恒成立,则t 的取值范围是________.答案 ⎣⎢⎡⎦⎥⎤1,54 解析 当x =0时, -1<0<1成立;当0<x ≤2时,有2x -1x 2≤t ≤2x +1x2在(0,2]上恒成立,因为2x -1x2=-⎝ ⎛⎭⎪⎫1x -12+1,所以⎝ ⎛⎭⎪⎫2x -1x 2max =1,则t ≥1;①因为2x +1x 2=⎝ ⎛⎭⎪⎫1x +12-1在⎣⎢⎡⎭⎪⎫12,+∞上单调递增, 所以⎝⎛⎭⎪⎫2x +1x 2min =⎝ ⎛⎭⎪⎫12+12-1=54,则t ≤54;② 由①②可得, 1≤t ≤54.A 组 专题通关1.已知函数f (x )=x 2-2ax +a 2-1的定义域为A,2∉A ,则a 的取值范围是________. 答案 (1,3)解析 ∵2∉A ,∴4-4a +a 2-1<0, 即a 2-4a +3<0,解得1<a <3.2.若a <0,则关于x 的不等式x 2-4ax -5a 2>0的解集是________. 答案 (-∞,5a )∪(-a ,+∞)解析 由x 2-4ax -5a 2>0,得(x -5a )(x +a )>0, 因为a <0,所以x <5a 或x >-a .3.函数y =kx 2+4kx +(k +3)的定义域是R ,则实数k 的取值范围为________. 答案 [0,1]解析 由题意知,kx 2+4kx +(k +3)≥0的解集为R . (1)当k =0时,不等式为3≥0,成立.(2)当k ≠0时,kx 2+4kx +(k +3)≥0的解集为R 等价于函数y =kx 2+4kx +(k +3)的图象与x 轴至多有一个公共点,且图象上的其他点总在x 轴上方,所以⎩⎪⎨⎪⎧k >0,Δ=16k 2-4k (k +3)≤0,解得0<k ≤1.综上,实数k 的取值范围是[0,1].4.如果关于x 的不等式5x 2-a ≤0的正整数解是1,2,3,4,那么实数a 的取值范围是________. 答案 [80,125) 解析 由5x 2-a ≤0,得-a5≤x ≤a5, 而正整数解是1,2,3,4, 则4≤a5<5,∴80≤a <125. 5.若存在实数x ∈[1,2]满足2x 2-ax +2>0,则实数a 的取值范围是________. 答案 (-∞,5)解析 令f (x )=2x 2-ax +2,若存在实数x ∈[1,2]满足2x 2-ax +2>0,则f (1)>0或f (2)>0,即4-a >0或10-2a >0,即a <4或a <5,故a <5,即实数a 的取值范围是(-∞,5).6.已知函数 f (x )=⎩⎪⎨⎪⎧-x 2,x ≥0,x 2+2x ,x <0,则不等式f (f (x ))≤3的解集为________.答案 (-∞,3]解析 由题意得f (f (x ))≤3⇒f (x )≥0或⎩⎪⎨⎪⎧f (x )<0,f 2(x )+2f (x )≤3⇒f (x )≥-3⇒x <0或⎩⎪⎨⎪⎧x ≥0,-x 2≥-3⇒x ≤ 3.7.关于x 的不等式x 2-4ax +4a 2+a +1a -1≤0对任意x ∈R 都不成立,则实数a 的取值范围是________. 答案 (1,+∞)解析 由题意,不等式x 2-4ax +4a 2+a +1a -1≤0的解集为∅, 则x 2-4ax +4a 2+a +1a -1>0对任意x ∈R 恒成立, ∴Δ=16a 2-4⎝⎛⎭⎪⎫4a 2+a +1a -1<0, 即a +1a -1>0,∴a 2-a +1a -1>0.又∵a 2-a +1=⎝ ⎛⎭⎪⎫a -122+34>0恒成立,∴a -1>0,即a >1.8.已知对于任意的x ∈(-∞,1)∪(5,+∞),都有x 2-2(a -2)x +a >0,则实数a 的取值范围是________.答案 (1,5]解析 令f (x )=x 2-2(a -2)x +a ,则当Δ=4(a -2)2-4a <0,即1<a <4时,f (x )>0在R 上恒成立,符合题意;当Δ≥0,即a ≤1或a ≥4时,函数f (x )的两个零点都在[1,5]上,则⎩⎪⎨⎪⎧a ≤1或a ≥4,1≤a -2≤5,f (1)=1-2(a -2)+a ≥0,f (5)=25-10(a -2)+a ≥0,解得4≤a ≤5.综上,实数a 的取值范围是(1,5].9.已知集合A ={x |(x -6)(x -2a -5)>0},集合B ={x |[(a 2+2)-x ]·(2a -x )<0}. (1)若a =5,求集合A ∩B ;(2)已知a >12,且“x ∈A ”是“x ∈B ”的必要不充分条件,求实数a 的取值范围.解 (1)由集合A 中的不等式(x -6)(x -15)>0, 解得x <6或x >15,即A =(-∞,6)∪(15,+∞),集合B 中的不等式为(27-x )·(10-x )<0, 即(x -27)(x -10)<0,解得10<x <27, 即B =(10,27),∴A ∩B =(15,27). (2)当a >12时,2a +5>6,∴A =(-∞,6)∪(2a +5,+∞),a 2+2>2a ,∴B =(2a ,a 2+2),∵x ∈A ”是“x ∈B ”的必要不充分条件,∴B ⊆A , ∴a 2+2≤6,∴12<a ≤2.即实数a 的取值范围是⎝ ⎛⎦⎥⎤12,2.10.解关于x 的不等式:x 2-(3a +1)x +3a >0(a ∈R ).解 x 2-(3a +1)x +3a >0(a ∈R )等价于(x -3a )(x -1)>0(a ∈R ). (1)当a <13时,3a <1,∴x <3a 或x >1;(2)当a =13时,3a =1,∴x ≠1;(3)当a >13时,3a >1,∴x <1或x >3a ;综上,原不等式的解集(1)当a <13时为(-∞,3a )∪(1,+∞); (2)当a =13时为(-∞,1)∪(1,+∞); (3)当a >13时为(-∞,1)∪(3a ,+∞). B 组 能力提高11.对任意x ∈[-1,1],函数f (x )=x 2+(a -4)x +4-2a 的值恒大于零,则a 的取值范围为________.答案 (-∞,1)解析 函数f (x )=x 2+(a -4)x +4-2a 的对称轴为 x =-a -42=4-a 2. ①当4-a 2<-1,即a >6时,f (x )在[-1,1]上单调递增, f (x )的值恒大于零等价于f (-1)=1+(a -4)×(-1)+4-2a >0,解得a <3,故有a ∈∅;②当-1≤4-a 2≤1,即2≤a ≤6时,f (x )在[-1,1]上的最小值为f ⎝ ⎛⎭⎪⎫4-a 2, 只要f ⎝⎛⎭⎪⎫4-a 2=⎝ ⎛⎭⎪⎫4-a 22+(a -4)×4-a 2+4-2a >0, 即a 2<0,故有a ∈∅;③当4-a 2>1,即a <2时,f (x )在[-1,1]上单调递减, 只要f (1)=1+(a -4)+4-2a >0,即a <1,故有a <1.综上,a 的取值范围是(-∞,1).12.已知函数f (x )=log a ⎝ ⎛⎭⎪⎫ax 2-x +12(a >0且a ≠1)在⎣⎢⎡⎦⎥⎤1,32上恒为正,则实数a 的取值范围是________.答案 ⎝ ⎛⎭⎪⎫12,89∪⎝ ⎛⎭⎪⎫32,+∞ 解析 设g (x )=ax 2-x +12,x ∈⎣⎢⎡⎦⎥⎤1,32,需满足g (x )=ax 2-x +12>0,即a >1x -12x ,设h (x )=1x -12x 2,则h ′(x )=1x 2·⎝ ⎛⎭⎪⎫1x -1, ∵x ∈⎣⎢⎡⎦⎥⎤1,32,∴h ′(x )≤0,h (x )在⎣⎢⎡⎦⎥⎤1,32上单调递减,∴⎝ ⎛⎭⎪⎫1x -12x 2max =12, 从而a >12,可得函数g (x )=ax 2-x +12的对称轴为 x =12a<1, 从而函数g (x )=ax 2-x +12在⎣⎢⎡⎦⎥⎤1,32上单调递增, 当a >1时,函数f (x )在⎣⎢⎡⎦⎥⎤1,32上单调递增, ∴f (1)=log a ⎝⎛⎭⎪⎫a -1+12>0⇒a >32, 当12<a <1时,函数f (x )在⎣⎢⎡⎦⎥⎤1,32上单调递减, ∴f ⎝ ⎛⎭⎪⎫32=log a ⎝ ⎛⎭⎪⎫a ·94-32+12>0⇒49<a <89, 即12<a <89, 故答案为⎝ ⎛⎭⎪⎫12,89∪⎝ ⎛⎭⎪⎫32,+∞. 13.已知函数f (x )=|x |+|x -4|,则不等式f (x 2+2)>f (x )的解集用区间表示为________. 答案 (-∞,-2)∪(2,+∞)解析 函数f (x )的图象如图,可知图象关于直线x =2对称.因为x 2+2>0且f (x 2+2)>f (x ),则必有 ⎩⎪⎨⎪⎧ x 2+2>4,x ≥0,x 2+2>x 或⎩⎪⎨⎪⎧ x 2+2>4,x <0,(x 2+2)+x >4,解得x ∈(-∞,-2)∪(2,+∞).14.设函数f (x )=x 2+ax +b (a ,b ∈R ).(1)当b =a 24+1时,求函数f (x )在区间[-1,1]上的最小值g (a )的表达式; (2)已知函数f (x )在区间[-1,1]上存在零点,且0≤b -2a ≤1,求实数b 的取值范围. 解 (1)当b =a 24+1时,函数f (x )=⎝ ⎛⎭⎪⎫x +a 22+1,故其图象的对称轴为直线x =-a 2. 当-a 2≥1,即a ≤-2时,f (x )在[-1,1]上单调减, g (a )=f (1)=a 24+a +2; 当-1≤-a 2<1,即-2<a ≤2时,g (a )=f ⎝ ⎛⎭⎪⎫-a 2=1; 当-a 2<-1,即a >2时,f (x )在[-1,1]上单调增, g (a )=f (-1)=a 24-a +2. 综上,g (a )=⎩⎪⎨⎪⎧ a 24+a +2,a ≤-2,1,-2<a ≤2,a 24-a +2,a >2.(2)设s ,t 为方程f (x )=0的解,且-1≤t ≤1,则⎩⎪⎨⎪⎧ s +t =-a ,st =b .因为0≤b -2a ≤1,所以-2t t +2≤s ≤1-2t t +2(-1≤t ≤1). 当0≤t ≤1时,-2t 2t +2≤st ≤t -2t 2t +2, 设g (t )=-2t 2t +2,则g ′(t )=-2t (t +4)(t +2)2,当t ∈[0,1]时,g ′(t )≤0,设h (t )=t -2t 2t +2,则h ′(t )=-2t 2-8t +2(t +2)2, 当t ∈[0,5-2)时,h ′(t )>0,当t ∈(5-2,1]时,h ′(t )<0.所以-23≤-2t 2t +2≤0,-13≤t -2t 2t +2≤9-45, 所以-23≤b ≤9-4 5. 当-1≤t <0时,t -2t 2t +2≤st ≤-2t 2t +2, 因为当t ∈[-1,0)时,g ′(t )>0,h ′(t )>0,所以-2≤-2t 2t +2<0和-3≤t -2t 2t +2<0, 所以-3≤b <0.故b 的取值范围是[-3,9-45].。
第2讲 线性规划与基本不等式[考情考向分析] 1.线性规划的要求是A 级,主要考查线性目标函数在给定区域上的最值.2.基本不等式是江苏考试说明中的C 级内容,高考会重点考查.主要考查运用基本不等式求最值及其在实际问题中的运用,试题难度中档以上.热点一 简单的线性规划问题例1 (1)(2017·全国Ⅰ)设x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y ≤1,2x +y ≥-1,x -y ≤0,则z =3x -2y 的最小值为________. 答案 -5解析 作出约束条件所表示的可行域如图中阴影部分(含边界)所示,由z =3x -2y 得y =32x -z 2,求z 的最小值,即求直线y =32x -z2在y 轴上的截距的最大值,当直线y =32x -z2过图中点A 时,其在y 轴上的截距最大,由⎩⎪⎨⎪⎧2x +y =-1,x +2y =1解得A 点坐标为(-1,1),此时z =3×(-1)-2×1=-5.(2)已知实数x ,y 满足⎩⎪⎨⎪⎧y ≤x -1,x ≤3,x +y ≥2,则yx的取值范围是________.答案 ⎣⎢⎡⎦⎥⎤-13,23 解析 不等式组对应的平面区域是以点(3,-1),(3,2)和⎝ ⎛⎭⎪⎫32,12为顶点的三角形及其内部,设z =y x ,则z 表示平面区域内的点与原点连线所在直线的斜率,则当z =y x经过(3,-1)时取得最小值-13,经过点(3,2)时取得最大值23,故y x 的取值范围是⎣⎢⎡⎦⎥⎤-13,23. 思维升华 线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是: 画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较;一般情况下,目标函数的最值会在可行域的端点或边界上取得.跟踪演练1 (1)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤4,y ≥x ,x ≥1,若目标函数z =ax +y 的最小值为-2,则a =________. 答案 -2解析 约束条件对应的可行域是以点(1,1),(1,3)和(2,2)为顶点的三角形及其内部.当a ≥-1时,当目标函数所在直线y =-ax +z 经过点(1,1)时,z 取得最小值,则z min =a +1=-2,即a =-3(舍去);当a <-1时,当目标函数所在直线y =-ax +z 经过点(2,2)时,z 取得最小值,则z min =2a +2=-2,即a =-2,符合题意,故a =-2. (2)甲、乙两种食物的维生素含量如下表:分别取这两种食物若干并混合,且使混合物中维生素A ,B 的含量分别不低于100,120单位,则混合物重量的最小值为________ kg. 答案 30解析 设甲食物重x kg ,乙食物重y kg ,∵维生素A ,B 的含量分别不低于100,120单位, ∴⎩⎪⎨⎪⎧3x +4y ≥100,5x +2y ≥120,x >0,y >0,由⎩⎪⎨⎪⎧3x +4y =100,5x +2y =120,得⎩⎪⎨⎪⎧x =20,y =10,A (20,10),混合物重z =x +y ,平移直线z =x +y ,由图知,当直线过A (20,10)时,z 取最小值为20+10=30. 热点二 利用基本不等式求最值例2 (1)(2018·苏北六市模拟)已知a ,b ,c 均为正数,且abc =4(a +b ),则a +b +c 的最小值为________. 答案 8解析 ∵abc =4(a +b ), ∴c =4()a +b ab,∴a +b +c =a +b +4()a +b ab =a +b +4b +4a≥2a ·4a+2b ·4b=4+4=8.(当且仅当a =b =2时,等号成立)(2)设△ABC 的BC 边上的高AD =BC ,a ,b ,c 分别表示角A ,B ,C 对应的三边,则b c +cb的取值范围是____________________. 答案 [2,5]解析 因为BC 边上的高AD =BC =a , 所以S △ABC =12a 2=12bc ·sin A ,所以sin A =a 2bc.又因为cos A =b 2+c 2-a 22bc =12⎝ ⎛⎭⎪⎫b c +c b -a 2bc ,所以b c +c b =2cos A +sin A ≤5,同时b c +c b ≥2(当且仅当b =c 时,等号成立), 所以b c +c b∈[2,5].思维升华 用基本不等式求函数的最值,关键在于将函数变形为两项和或积的形式,然后用基本不等式求出最值.在求条件最值时,一种方法是消元,转化为函数最值;另一种方法是将要求最值的表达式变形,然后用基本不等式将要求最值的表达式放缩为一个定值,但无论哪种方法在用基本不等式解题时都必须验证等号成立的条件.跟踪演练2 (1)设a ,b >0,a +b =5,则a +1+b +3的最大值为________. 答案 3 2解析 ∵a ,b >0,a +b =5,∴(a +1+b +3)2=a +b +4+2a +1b +3≤a +b +4+(a +1)2+(b +3)2=a +b +4+a +b +4=18,当且仅当a =72,b =32时,等号成立,则a +1+b +3≤32,即a +1+b +3最大值为3 2.(2)(2018·兴化三校联考)已知函数f (x )=e x -e -x +x 3+3x ,若正数a ,b 满足f (2a -1)+f (b -1)=0,则2a 2a +1+b 2+1b 的最小值为________.答案 94解析 由题意得f (-x )=-f (x ),且f (x )为单调增函数,最多有一个零点, 所以f (2a -1)+f (b -1)=0,即f (2a -1)=-f (b -1), 所以2a -1=1-b ,即 2a +b =2,所以 2a 2a +1+b 2+1b =2()a +12-4()a +1+2a +1+b +1b=2()a +1+b +2a +1+1b -4=2a +1+1b. 又2a +1+1b =⎝ ⎛⎭⎪⎫2a +1+1b []2()a +1+b ×14=14⎝ ⎛⎭⎪⎫4+1+2b a +1+2()a +1b ≥94, 当且仅当a =13,b =43时取等号.所以2a 2a +1+b 2+1b 的最小值为94.热点三 基本不等式的实际运用例3 (2018·苏州期末)如图,长方形材料ABCD 中,已知AB =23,AD =4.点P 为材料ABCD 内部一点,PE ⊥AB 于E ,PF ⊥AD 于F ,且PE =1,PF = 3.现要在长方形材料ABCD 中裁剪出四边形材料AMPN ,满足∠MPN =150°,点M ,N 分别在边AB ,AD 上.(1)设∠FPN =θ,试将四边形材料AMPN 的面积表示为θ的函数,并指明θ的取值范围; (2)试确定点N 在AD 上的位置,使得四边形材料AMPN 的面积S 最小,并求出其最小值.解 (1)在Rt△NFP 中,因为PF =3,∠FPN =θ, 所以NF =3tan θ,所以S △NAP =12NA ·PF =12()1+3tan θ×3,在Rt△MEP 中,因为PE =1,∠EPM =π3-θ,所以ME =tan ⎝ ⎛⎭⎪⎫π3-θ, 所以S △AMP =12AM ·PE =12⎣⎢⎡⎦⎥⎤3+tan ⎝ ⎛⎭⎪⎫π3-θ×1, 所以S =S △NAP +S △AMP =32tan θ+12tan ⎝ ⎛⎭⎪⎫π3-θ+3,θ∈⎣⎢⎡⎦⎥⎤0,π3.(2)因为S =32tan θ+12tan ⎝ ⎛⎭⎪⎫π3-θ+ 3=32tan θ+3-tan θ2()1+3tan θ+3,令t =1+3tan θ,由θ∈⎣⎢⎡⎦⎥⎤0,π3,得t ∈[]1,4,所以S =3+3t 2-4t +423t=32⎝ ⎛⎭⎪⎫t +43t +33 ≥32×2×t ×43t +33=2+33,当且仅当t =43t ,即t =233时,即tan θ=2-33时等号成立,此时,AN =233,S min =2+33.答案 当AN =233时,四边形材料AMPN 的面积S 最小,最小值为2+33.思维升华 利用基本不等式求解实际应用题的方法(1)解题时需认真阅读,从中提炼出有用信息,建立数学模型.(2)注意当运用基本不等式求最值时,若等号成立的自变量不在定义域内时,就不能使用基本不等式求解,此时可根据变量的范围用对应函数的单调性求解.跟踪演练3 一批救灾物资随26辆汽车从某市以v km/h 的速度匀速直达400 km 外的灾区,为了安全起见,两辆汽车的间距不得小于⎝ ⎛⎭⎪⎫v 202km ,则这批物资全部运送到灾区最少需____ h.答案 10解析 时间最短,则两车之间的间距最小,且要安全,则时间t =400+25×⎝ ⎛⎭⎪⎫v 202v =400v +25v400≥225=10,当且仅当v =80时等号成立.1.(2017·江苏)某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和最小,则x 的值是________. 答案 30解析 一年的总运费为6×600x =3 600x(万元),一年的总存储费用为4x 万元, 总运费与总存储费用的和为⎝ ⎛⎭⎪⎫3 600x +4x 万元.因为3 600x+4x ≥23 600x·4x =240,当且仅当3 600x=4x ,即x =30时取得等号,所以当x =30时,一年的总运费与总存储费用之和最小.2.(2018·江苏)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,∠ABC =120°,∠ABC 的平分线交AC 于点D ,且BD =1,则4a +c 的最小值为________. 答案 9解析 方法一 如图,∵S △ABC =S △ABD +S △BCD ,∴12ac ·sin 120°=12c ×1×sin 60°+12a ×1×sin 60°, ∴ac =a +c ,∴1a +1c=1.∴4a +c =(4a +c )⎝ ⎛⎭⎪⎫1a +1c =c a+4ac+5≥2c a ·4ac+5=9. 当且仅当⎩⎪⎨⎪⎧1a +1c =1,c a =4ac ,即⎩⎪⎨⎪⎧c =3,a =32时取等号.方法二 如图,以B 为原点,BD 所在直线为x 轴建立平面直角坐标系,则D (1,0),A ⎝ ⎛⎭⎪⎫c2,-32c ,C ⎝ ⎛⎭⎪⎫a2,32a .又A ,D ,C 三点共线, ∴c2-1-32c =a2-132a ,∴ac =a +c .以下同方法一.3.已知正实数x ,y 满足向量a =(x +y,2),b =(xy -2,1)共线,c =⎝ ⎛⎭⎪⎫m ,32,且a ·(a -c )≥0恒成立,则实数m 的取值范围是________. 答案 ⎝ ⎛⎦⎥⎤-∞,174 解析 由a =(x +y,2),b =(xy -2,1)共线得 x +y =2(xy -2),则x +y +4=2xy ≤(x +y )22,即(x +y )2-2(x +y )-8≥0,当且仅当x =y 时等号成立. 又由x ,y 是正实数,得x +y ≥4. 不等式a ·(a -c )≥0,即a 2≥a ·c , 所以(x +y )2+4≥m (x +y )+3,即(x +y )2-m (x +y )+1≥0,令x +y =t ,t ≥4, 则t 2-mt +1≥0,t ∈[4,+∞)(*)恒成立. 对于方程t 2-mt +1=0,当Δ=m 2-4≤0,即-2≤m ≤2时,(*)恒成立;当m <-2时,相应二次函数y =t 2-mt +1的对称轴t =m2<-1,(*)恒成立;当m >2时,由相应二次函数y =t 2-mt +1的对称轴t =m 2<4,且16-4m +1≥0,得2<m ≤174.综上可得,当m ≤174时,(*)恒成立,则实数m 的取值范围是⎝⎛⎦⎥⎤-∞,174.4.某单位决定投资3 200元建一仓库(长方体状),高度恒定,它的后墙利用旧墙不花钱,正面用铁栅,每米长造价40元,两侧墙砌砖,每米长造价45元,顶部每平方米造价20元,则仓库面积S 的最大允许值是________平方米. 答案 100解析 设铁栅长为x 米,一堵砖墙长为y 米,则顶部面积为S =xy , 依题意得40x +2×45y +20xy =3 200, 由基本不等式得3 200≥240x ×90y +20xy =120xy +20xy =120S +20S .所以S +6S -160≤0,即(S -10)(S +16)≤0, 故0<S ≤10,从而0<S ≤100,当且仅当⎩⎪⎨⎪⎧40x =90y ,xy =100,即x =15,y =203时等号成立.所以S 的最大允许值是100平方米.A 组 专题通关1.(2018·江苏无锡一中期末)已知实数x ,y 满足⎩⎪⎨⎪⎧y ≥x ,x +y ≤2,x ≥0,则z =9x ·3y的最大值是________. 答案 27解析 由题意得z =9x·3y=32x·3y =32x +y.不等式组对应的可行域如图所示的△OAB 及其内部,设u =2x +y ,则y =-2x +u ,当直线y =-2x +u 经过点A (1,1)时,直线在y 轴上的截距最大,u max =2×1+1=3, 所以z max =33=27.2.(2018·连云港期末)已知实数x ,y 满足⎩⎪⎨⎪⎧x ≥-1,y ≤3,x -y +1≤0,则z =x 2+y 2的最小值为________. 答案 12解析 先根据实数x ,y 满足不等式组⎩⎪⎨⎪⎧x ≥-1,y ≤3,x -y +1≤0,画出可行域,如图中阴影部分(含边界)所示,z =x 2+y 2表示可行域内点到原点的距离的平方,由图可知,z =x 2+y 2的最小值就是直线x -y +1=0与原点的距离的平方, 所以最小值为⎝⎛⎭⎪⎫|0-0+1|22=12. 3.已知x >1,则函数y =2x +42x -1的最小值为________.答案 5解析 ∵x >1,∴2x -1>0, ∴y =2x -1+42x -1+1≥2(2x -1)·42x -1+1=5, 当且仅当2x -1=42x -1,即x =32时,等号成立.4.(2018·常州期末)各项均为正数的等比数列{}a n 中,若a 2a 3a 4=a 2+a 3+a 4,则a 3的最小值为________. 答案3解析 因为{}a n 是各项均为正数的等比数列,且a 2a 3a 4=a 2+a 3+a 4,所以a 33-a 3=a 2+a 4,则a 33-a 3=a 2+a 4≥2a 2a 4=2a 3,(当且仅当a 2=a 4,即数列{a n }为正数常数列时取等号)即()a 23-3a 3≥0,即a 23≥3,a 3≥3,即a 3的最小值为 3.5.若点A (m ,n )在第一象限,且在直线x 3+y4=1上,则mn 的最大值是________.答案 3解析 点A (m ,n )在第一象限,且在直线x 3+y4=1上,所以m ,n >0,且m 3+n4=1,所以m 3·n 4≤⎝⎛⎭⎪⎪⎫m 3+n 422,⎝ ⎛⎭⎪⎫当且仅当m 3=n 4=12,即m =32,n =2时,取“=”, 所以m 3·n 4≤⎝ ⎛⎭⎪⎫122=14,即mn ≤3,所以mn 的最大值为3.6.设P 是函数y =x (x +1)图象上异于原点的动点,且该图象在点P 处的切线的倾斜角为θ,则θ的取值范围是________.答案 ⎣⎢⎡⎭⎪⎫π3,π2 解析 因为y ′=12x (x +1)+x =3x +12x=32x +12x ≥232x ·12x=3, 当且仅当32x =12x,即x =13时“=”成立. 所以切线的斜率k =tan θ≥3,又θ∈[0,π),所以θ∈⎣⎢⎡⎭⎪⎫π3,π2. 7.已知正数a ,b ,满足1a +9b=ab -5,则ab 的最小值为________. 答案 36 解析 ∵正数a ,b 满足1a +9b=ab -5, ∴ab -5≥21a ×9b , 化为(ab )2-5ab -6≥0,解得ab ≥6,当且仅当1a =9b ,1a +9b=ab -5,即a =2,b =18时取等号,解得ab ≥36. 8.(2018·扬州期末)已知正实数x ,y 满足x +y =xy ,则3x x -1+2y y -1的最小值为________. 答案 5+2 6解析 正实数x ,y 满足x +y =xy ,1x +1y=1, 3x x -1+2y y -1=31-1x +21-1y, 故得到3x x -1+2y y -1=⎝ ⎛⎭⎪⎪⎫31-1x +21-1y ⎝ ⎛⎭⎪⎫1x +1y =5+3⎝ ⎛⎭⎪⎫1-1y 1-1x +2⎝ ⎛⎭⎪⎫1-1x 1-1y≥5+26, 等号成立的条件为1-1x =1-1y,即x =y =2. 9.若△ABC 的内角满足sin A +2sin B =2sin C ,则cos C 的最小值是________.答案 6-24 解析 由sin A +2sin B =2sin C ,及正弦定理得a +2b =2c .又由余弦定理得cos C =a 2+b 2-c 22ab=a 2+b 2-(a +2b )242ab =34a 2+12b 2-2ab 22ab ≥2⎝ ⎛⎭⎪⎫34a 2⎝ ⎛⎭⎪⎫12b 2-2ab 22ab=6-24, 当且仅当34a 2=b 22时等号成立, 故6-24≤cos C <1,故cos C 的最小值为6-24. 10.某工厂利用辐射对食品进行灭菌消毒,现准备在该厂附近建一职工宿舍,并对宿舍进行防辐射处理,建造宿舍的费用与宿舍到工厂的距离有关.若建造宿舍的所有费用p (万元)和宿舍与工厂的距离x (km)的关系式为p =k 3x +5(0≤x ≤8),若距离为1 km 时,测算宿舍建造费用为100万元.为了交通方便,工厂与宿舍之间还要修一条道路,已知购置修路设备需5万元,铺设路面每千米的成本为6万元.设f (x )为建造宿舍与修路费用之和.(1)求f (x )的表达式; (2)宿舍应建在离工厂多远处,可使总费用f (x )最小,并求最小值.解 (1)根据题意得100=k3×1+5,所以k =800, 故f (x )=8003x +5+5+6x (0≤x ≤8). (2)因为f (x )=8003x +5+2(3x +5)-5≥80-5=75, 当且仅当8003x +5=2(3x +5),即当x =5时f (x )min =75. 所以宿舍应建在离工厂5 km 处,可使总费用f (x )最小,最小为75万元.B 组 能力提高11.已知x >0,y >0,x ,a ,b ,y 成等差数列,x ,c ,d ,y 成等比数列,则(a +b )2cd的最小值为________.答案 4解析 由题意知,⎩⎪⎨⎪⎧ a +b =x +y ,cd =xy , 所以(a +b )2cd =(x +y )2xy =x 2+y 2+2xy xy=x 2+y 2xy+2≥2+2=4, 当且仅当x =y 时,等号成立.12.已知二次函数f (x )=ax 2-x +c (x ∈R )的值域为[0,+∞),则c +2a +a +2c 的最小值为________.答案 10解析 由f (x )的值域为[0,+∞)可知该二次函数的图象开口向上,且函数的最小值为0,因此有4ac -14a =0,从而c =14a>0, 所以c +2a +a +2c =⎝ ⎛⎭⎪⎫2a +8a +⎝ ⎛⎭⎪⎫14a 2+4a 2≥2×4+2=10, 当且仅当⎩⎪⎨⎪⎧ 2a =8a ,14a 2=4a 2,即a =12时取等号. 故所求的最小值为10.13.(2018·江苏如东高级中学等五校联考)已知a ,b ,c ∈(0,+∞),则(a 2+b 2+c 2)2+52bc +ac的最小值为________.答案 4 解析 a 2+b 2+c 2=⎝⎛⎭⎪⎫a 2+15c 2+⎝ ⎛⎭⎪⎫b 2+45c 2 ≥25ac +45bc ,即ac +2bc ≤52()a 2+b 2+c 2,当且仅当a =c 5,b =2c 5时等号成立, 则()a 2+b 2+c 22+5ac +2bc ≥()a 2+b 2+c 22+552()a 2+b 2+c 2≥25()a 2+b 2+c 252()a 2+b 2+c 2=4(经验证两次等号可同时取得),所以 ()a 2+b 2+c 22+52bc +ac 的最小值为4.14.已知函数f (x )=|x -2|.(1)解不等式f (x )+f (2x +1)≥6;(2)已知a +b =1(a ,b >0),且对于∀x ∈R ,f (x -m )-f (-x )≤4a +1b恒成立,求实数m 的取值范围.解 (1)f (x )+f (2x +1)=|x -2|+|2x -1|=⎩⎪⎨⎪⎧3-3x ,x <12,x +1,12≤x ≤2,3x -3,x >2, 当x <12时,由3-3x ≥6,解得x ≤-1; 当12≤x ≤2时,x +1≥6不成立; 当x >2时,由3x -3≥6,解得x ≥3. ∴不等式的解集为(-∞,-1]∪[3,+∞). (2)∵a +b =1(a ,b >0), ∴4a +1b =(a +b )⎝ ⎛⎭⎪⎫4a +1b =5+4b a +a b ≥5+24b a ·a b=9, 当且仅当a =23,b =13时等号成立, ∴对于∀x ∈R ,f (x -m )-f (-x )≤4a +1b恒成立等价于对∀x ∈R ,|x -2-m |-|-x -2|≤9, 即[|x -2-m |-|-x -2|]max ≤9,∵|x -2-m |-|-x -2|≤|(x -2-m )-(x +2)|=|-4-m |,∴-9≤m +4≤9,∴-13≤m ≤5.。
【理科附加】专题03 不等式选讲【母题来源一】【2019年高考江苏卷数学】设x ∈R ,解不等式||+|2 1|>2x x -.【答案】1{|1}3x x x <->或.【解析】当x <0时,原不等式可化为122x x -+->,解得x <13-; 当0≤x ≤12时,原不等式可化为x +1–2x >2,即x <–1,无解; 当x >12时,原不等式可化为x +2x –1>2,解得x >1. 综上,原不等式的解集为1{|1}3x x x <->或.【名师点睛】本题主要考查解不等式等基础知识,考查运算求解和推理论证能力.【母题来源二】【2018年高考江苏卷数学】若x ,y ,z 为实数,且x +2y +2z =6,求222x y z ++的最小值. 【答案】222x y z ++的最小值为4.【解析】由柯西不等式,得2222222()(122)(22)x y z x y z ++++≥++. 因为22=6x y z ++,所以2224x y z ++≥, 当且仅当122x y z ==时,不等式取等号,此时244333x y z ===,,, 所以222x y z ++的最小值为4.【母题来源三】【2017年高考江苏卷数学】已知,,,a b c d 为实数,且22224,16,a b c d +=+=证明:8.ac bd +≤ 【答案】见解析【解析】由柯西不等式可得22222()()()ac bd a b c d +≤++, 因为22224,16a b c d +=+=,所以2()64ac bd +≤,因此8ac bd +≤.【名师点睛】柯西不等式的一般形式:设a 1,a 2,…,a n ,b 1,b 2,…,b n 为实数,则(22212n a a a +++)(22212n b b b +++)≥(a 1b 1+a 2b 2+…+a n b n )2,当且仅当b i =0或存在一个数k ,使a i =kb i (i =1,2,…,n )时,等号成立.本题中,由柯西不等式可得22222()()()ac bd a b c d +≤++,代入即得结论.【命题意图】1.理解绝对值的几何意义,并能求解以下类型的不等式: ; ; ax b c ax b c x a x b c +≤+≥-+-≥. 2.了解下列柯西不等式的几种不同形式,并会应用: (1)22222()(+)()a b c d ac bd +≥+.(2)一般形式:设a 1,a 2,…,a n ,b 1,b 2,…,b n 为实数,则(22212na a a +++)(22212nb b b +++)≥(a 1b 1+a 2b 2+…+a n b n )2,当且仅当b i =0或存在一个数k ,使a i =kb i (i =1,2,…,n )时,等号成立..3.主要考查逻辑推理能力、运算求解能力,考查分类讨论、数形结合思想方法,考查逻辑推理、数学运算等核心素养. 【命题规律】从近三年高考情况来看,此类知识点以解答题的形式出现,主要考查绝对值不等式的解法、不等式的证明、求最值问题等. 【方法总结】(一)解绝对值不等式的常用方法有:(1)公式法:对于形如|f (x )|>g (x )或|f (x )|<g (x ),利用公式|x|<a ⇔−a<x<a (a>0)和|x|>a ⇔x>a 或x<−a (a>0)直接求解不等式;(2)平方法:对于形如|f (x )|≥|g (x )|,利用不等式两边平方的技巧,去掉绝对值,需保证不等式两边同正或同负,即|f (x )|≥|g (x )|⇔f (x )2≥g 2(x );(3)零点分段法:对于形如|f (x )|±|g (x )|≥a ,|f (x )|±|g (x )|≤a ,利用零点分区间法脱去绝对值符号,将其转化为与之等价的不含绝对值符号的不等式(组)求解;(4)几何法:对于形如|x±a|±|x±b|≤c ,|x±a|±|x±b|≥c ,利用绝对值三角不等式的性质求解,即①定理1:如果a ,b 是实数,则|a+b|≤|a|+|b|,当且仅当ab ≥0时,等号成立.②定理2:如果a ,b ,c 是实数,那么|a −c|≤|a −b|+|b −c|,当且仅当(a −b )(b −c )≥0时,等号成立. ③推论1:||a|−|b||≤|a+b|. ④推论2:||a|−|b||≤|a −b|.(5)图象法:对于形如|f (x )|+|g (x )|≥a 可构造y=|f (x )|+|g (x )|−a 或y=|f (x )|+|g (x )|与y=a ,在直角坐标系中作出不等式两边所对应的两个函数的图象,利用函数图象求解或通过移项构造一个函数. (二)含绝对值不等式的恒成立问题的常见类型及其解法:(1)分享参数法运用“max min ()(),()()f x a f x a f x a f x a ≤⇔≤≥⇔≥”可解决恒成立中的参数范围问题. 求最值的思路:利用基本不等式和不等式的相关性质解决;将函数解析式用分段函数形式表示,作出函数图象,求得最值;利用性质“||||||||||||a b a b a b -≤±≤+”求最值. (2)更换主元法不少含参不等式恒成立问题,若直接从主元入手非常困难或不可能解决时,可转换思维角度,将主元与参数互换,常可得到简捷的解法. (3)数形结合法在研究曲线交点的恒成立问题时,若能数形结合,揭示问题所蕴含的几何背景,发挥形象思维和抽象思维各自的优势,可直接解决问题. (三)不等式的证明(1)比较法证明不等式最常用的是差值比较法,其基本步骤是:作差—变形—判断差的符号—下结论.其中“变形”是证明的关键,一般通过因式分解或配方将差式变形为几个因式的积或配成几个代数式平方和的形式,当差式是二次三项式时,有时也可用判别式来判断差值的符号.个别题目也可用柯西不等式来证明.(2)基本不等式:如果a ,b>0,那么2a b+≥,当且仅当a=b 时,等号成立.用语言可以表述为:两个正数的算术平均数不小于(即大于或等于)它们的几何平均数.(3)算术平均—几何平均定理(基本不等式的推广):对于n 个正数a 1,a 2,…,a n ,它们的算术平均数不小于它们的几何平均数,即12na a a n+++≥a 1=a 2=…=a n 时,等号成立.(4)柯西不等式①二维形式的柯西不等式:若a ,b ,c ,d 都是实数,则(a 2+b 2)(c 2+d 2)≥(ac+bd )2,当且仅当ad=bc 时,等号成立.②柯西不等式的向量形式:设α,β是两个向量,则|α·β|≤|α||β|,当且仅当α是零向量或β是零向量或存在实数k 使α=k β时,等号成立.③二维形式的三角不等式:设x 1,y 1,x 2,y 2∈R ,≥.④一般形式的柯西不等式:设a 1,a 2,…,a n ,b 1,b 2,…,b n 是实数,则( +…+)( +…+ )≥(a 1b 1+a 2b 2+…+a n b n )2,当且仅当a i =0或b i =0(i=1,2,…,n )或存在一个数k 使得a i =kb i (i=1,2,…,n )时,等号成立.1.【江苏省徐州市2018-2019学年高三考前模拟检测数学试题】设正数,,a b c 满足1a b c ++=,求证:32a b c b c c a a b ++≥+++.2.【江苏省南通市2019届高三模拟练习卷(四模)数学试题】已知实数,,x y z 满足222491212x y z ++=.证明:22222111323x y y z z ++≥++.3.【江苏省镇江市2019届高三考前模拟(三模)数学试题】已知,0x y >,且1x y +=,求证:4.【江苏省南通市2019届高三适应性考试数学试题】已知关于x 的不等式20x mx n -+<的解集为{|12}x x <<,其中,m n ∈R .求证:((m n --≤.5.【江苏省苏州市2019届高三高考模拟最后一卷数学试题】已知函数()2f x x =-,()1g x x x =+-.若存在实数x ,使不等式()()()m g x f x x m -≥+∈R 成立,求实数m 的最小值.6.【江苏省七市(南通、泰州、扬州、徐州、淮安、宿迁、连云港)2019届高三第三次调研考试数学试题】已知a ∈R ,若关于x 的方程2410x x a a ++-+=有实根,求a 的取值范围.7.【江苏省苏锡常镇四市2019届高三教学情况调查(二)数学试题】已知正数a ,b ,c 满足a +b +c =2,求证:2221a b c b c c a a b++≥+++.8.【江苏省南通市2019届高三下学期4月阶段测试数学试题】已知,,a b c 均为正数,且243a b c ++=,求111111a b c +++++的最小值,并指出取得最小值时,,a b c 的值.9.【江苏省苏州市2019届高三下学期阶段测试数学试题】已知,,a b c 为正数,且满足22cos sin a b c θθ+<,22θθ+<10.【江苏省南通、扬州、泰州、苏北四市七市2019届高三第一次(2月)模拟数学试题】已知实数,,a b c 满足2221a b c ++≤,求证:22211191114a b c ++≥+++.11.【江苏省七市2019届(南通、泰州、扬州、徐州、淮安、宿迁、连云港)高三第二次调研考试数学试题】已知x ,y ,z 均是正实数,且222416x y z ,++=求证:6x y z ++≤.。
第1讲 不等式的解法与三个“二次”的关系[考情考向分析] 不等式是数学解题的重要工具,一元二次不等式是江苏考试说明中的C 级内容,高考会重点考查.主要考查方向是一元二次不等式的解法及恒成立问题,其次考查不等式与其他知识的综合运用.热点一 不等式解法例1 (1)(2018·江苏兴化一中模拟)已知定义在区间[-2,2]上的函数f (x )满足f (x +2)=12f (x ),当-2≤x <0时,f (x )=x 2-x ,则不等式f (x )≤x 的解集为_________.答案 [1,2]解析 当-2≤x <0时,解f (x )≤x 即x 2-x ≤x 得0≤x ≤2,舍去; 当0≤x <2时,f (x )=12f (x -2)=12(x -2)2-12(x -2),解f (x )≤x 得x 2-7x +6≤0, 所以1≤x ≤6 ,因此1≤x <2; 当x =2时,f (2)=12f (0)=14f (-2)=32<2.综上,不等式f (x )≤x 的解集为[]1,2. (2)解关于x 的不等式(x -2)(ax -2)>0.解 当a =0时,原不等式可化为x -2<0,所以x <2.当a ≠0时,原不等式化为a (x -2)⎝⎛⎭⎪⎫x -2a >0,①当a >1时,2a<2,原不等式化为(x -2)⎝ ⎛⎭⎪⎫x -2a >0,所以x <2a或x >2.②当a =1时,2a=2,原不等式化为(x -2)2>0,所以x ∈R 且x ≠2.③当0<a <1时,2a>2,原不等式化为(x -2)·⎝ ⎛⎭⎪⎫x -2a >0,则x <2或x >2a.④当a <0时,2a<2,原不等式化为(x -2)⎝ ⎛⎭⎪⎫x -2a <0,所以2a<x <2.综上所述,当a =0时,原不等式的解集为{x |x <2};当a >1时,原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <2a 或x >2; 当a =1时,原不等式的解集为{x |x ∈R 且x ≠2};当0<a <1时,原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <2或x >2a ; 当a <0时,原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2a <x <2. 思维升华 不等式的解法主要是两种:一种是直接利用其解法直接求解,含参数的一元二次不等式要讨论二次项系数,判别式符号及两根大小;另一种方法是利用函数图象及性质求解.跟踪演练1 (1) 已知函数f (x )=⎩⎪⎨⎪⎧x +2,x ≤0,-x +2,x >0,则不等式f (x )≥x 2的解集是________. 答案 [-1,1]解析 依题意得⎩⎪⎨⎪⎧x ≤0,x +2≥x 2或⎩⎪⎨⎪⎧x >0,-x +2≥x 2⇒-1≤x ≤0或0<x ≤1⇒-1≤x ≤1.(2)在R 上定义运算⊙:a ⊙b =ab +2a +b ,则不等式x ⊙(x -2)<0的解集是____________. 答案()-2,1解析 由题意得,x ⊙(x -2)=x (x -2)+2x +x -2, 解x (x -2)+2x +x -2<0,得-2<x <1. 热点二 三个“二次”之间的关系例2 已知函数f (x )=x |x -a |,a ∈R ,g (x )=x 2-1. (1)当a =1时,解不等式f (x )≥g (x );(2)记函数f (x )在区间[0,2]上的最大值为F (a ), 求F (a )的表达式.解 (1)由f (x )≥g (x ),当a =1时, 即解不等式x |x -1|≥x 2-1. 当x ≥1时,不等式为x 2-x ≥x 2-1, 解得x ≤1,所以x =1;当x <1时,不等式为x -x 2≥x 2-1, 解得-12≤x ≤1,所以-12≤x <1.综上,不等式f (x )≥g (x )的解集为⎣⎢⎡⎦⎥⎤-12,1.(2)因为x ∈[0,2],当a ≤0时,f (x )=x 2-ax ,则f (x )在区间[0,2]上是增函数,所以F (a )=f (2)=4-2a .当0<a <2时,f (x )=⎩⎪⎨⎪⎧-x 2+ax ,0≤x <a ,x 2-ax ,a ≤x ≤2,则f (x )在区间⎣⎢⎡⎦⎥⎤0,a 2上是增函数,在区间⎣⎢⎡⎦⎥⎤a2,a 上是减函数,在区间[a,2]上是增函数,所以F (a )=max ⎩⎨⎧⎭⎬⎫f ⎝ ⎛⎭⎪⎫a 2,f (2), 而f ⎝ ⎛⎭⎪⎫a 2=a 24,f (2)=4-2a ,令f ⎝ ⎛⎭⎪⎫a 2<f (2),即a 24<4-2a ,解得-4-42<a <-4+42, 所以当0<a <42-4时,F (a )=4-2a ;令f ⎝ ⎛⎭⎪⎫a 2≥f (2),即a 24≥4-2a , 解得a ≤-4-42或a ≥-4+42, 所以当42-4≤a <2时,F (a )=a 24.当a ≥2时,f (x )=-x 2+ax ,当1≤a 2<2,即2≤a <4时,f (x )在区间⎣⎢⎡⎦⎥⎤0,a 2上是增函数,在⎣⎢⎡⎦⎥⎤a2,2上是减函数,则F (a )=f ⎝ ⎛⎭⎪⎫a 2=a 24; 当a2≥2,即a ≥4时,f (x )在区间[0,2]上是增函数, 则F (a )=f (2)=2a -4.综上,F (a )=⎩⎪⎨⎪⎧4-2a ,a <42-4,a24,42-4≤a <4,2a -4,a ≥4.思维升华 三个“二次”的关系是解一元二次不等式的理论基础,一般可把a <0的情况转化为a >0时的情形.跟踪演练2 (1)已知m ,n 为实数,若关于x 的不等式x 2+mx +n <0的解集为(-1,3),则m +n 的值为____________________________________________________________________. 答案 -5解析 由题意得,-1,3为方程x 2+mx +n =0的两根,因此⎩⎪⎨⎪⎧1-m +n =0,9-3m +n =0,解得m =-2,n =-3,m +n =-5.(2)(2018·江苏徐州三中月考)已知函数f (x )=-x 2+ax +b ()a ,b ∈R 的值域为(]-∞,0,若关于x 的不等式f (x )>c -1的解集为()m -4,m +1,则实数c 的值为________.答案 -214解析 由题意得Δ=0,a 2+4b =0,∴f (x )=-⎝ ⎛⎭⎪⎫x -a 22 ,由f (x )>c -1有解得c <1,即⎝ ⎛⎭⎪⎫x -a 22<1-c ,a2-1-c <x <a2+1-c ,因此a 2-1-c =m -4,a2+1-c =m +1,∴21-c =5,c =-214.热点三 一元二次不等式的综合问题例3 (1)(2018·镇江期末)已知函数f (x )=x 2-kx +4对任意的x ∈[]1,3,不等式f (x )≥0恒成立,则实数k 的最大值为________. 答案 4解析 ∵函数f (x )=x 2-kx +4对任意的x ∈[]1,3,不等式f (x )≥0恒成立,∴x 2-kx +4≥0,化简可得k ≤x +4x.∵x +4x≥2x ×4x=4,当且仅当x =2时取等号, ∴k ≤4,∴实数k 的最大值为4.(2)已知函数f (x )=log a (x 2-a |x |+3)(a >0,且a ≠1).若对于-1≤x 1<x 2≤-12的任意实数x 1,x 2都有f (x 1)-f (x 2)<0成立,则实数a 的范围是________________________________________. 答案 (0,1)∪[2,4)解析 易知已知函数为偶函数,则当x ∈⎣⎢⎡⎦⎥⎤12,1时为减函数. 对于x ∈⎣⎢⎡⎦⎥⎤12,1, f (x )=log a (x 2-ax +3)(a >0,且a ≠1),设g (x )=x 2-ax +3,由题意得⎩⎪⎨⎪⎧a >1,1≤a2,g (1)>0或⎩⎪⎨⎪⎧0<a <1,a 2≤12,g ⎝ ⎛⎭⎪⎫12>0,则2≤a <4或0<a <1.思维升华 (1)二次不等式在R 上的恒成立问题,可以利用判别式的符号解决;在某个区间上的恒成立问题,可以利用最值或者参变量分离解决.(2)含多个变量的恒成立问题首先要清楚选谁为主元,一般地,求谁的范围,谁就是参数. 跟踪演练 3 (1)若不等式x 2-kx +k -1>0对x ∈(1,2)恒成立,则实数k 的取值范围是________. 答案 (-∞,2]解析 不等式x 2-kx +k -1>0对x ∈(1,2)恒成立可化为(1-x )k >1-x 2对x ∈(1,2)恒成立, 即k <1+x 对x ∈(1,2)恒成立,而函数y =1+x 在(1,2)上为单调递增函数, 所以k ≤1+1=2,即实数k 的取值范围是(-∞,2].(2)若关于x 的不等式ax 2-|x |+2a <0的解集为空集,则实数a 的取值范围为________. 答案 ⎣⎢⎡⎭⎪⎫24,+∞ 解析 方法一 设f (x )=a |x |2-|x |+2a ,原不等式ax 2-|x |+2a <0的解集为∅,即f (x )≥0恒成立,令t =|x |,即g (t )=at 2-t +2a在[0,+∞)上恒有g (t )≥0,则⎩⎪⎨⎪⎧a >0,Δ≤0或⎩⎪⎨⎪⎧a >0,12a <0,g (0)≥0,解得a ≥24. 方法二 当a =0时,-|x |<0,不等式解集为{x |x ≠0},不满足题意;当a ≠0时,根据题意得⎩⎪⎨⎪⎧a >0,1-8a 2≤0,解得a ≥24. 综上所述,a 的取值范围是⎣⎢⎡⎭⎪⎫24,+∞.1.(2018·江苏)函数f (x )=log 2x -1的定义域为________. 答案 {x |x ≥2}解析 由log 2x -1≥0,即log 2x ≥log 22,解得x ≥2, 满足x >0,所以函数f (x )=log 2x -1的定义域为{x |x ≥2}.2.已知函数f (x )=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f (x )<0成立,则实数m 的取值范围是________. 答案 ⎝ ⎛⎭⎪⎫-22,0 解析 作出二次函数f (x )的图象,对于任意x ∈[m ,m +1],都有f (x )<0,则有⎩⎪⎨⎪⎧f (m )<0,f (m +1)<0,即⎩⎪⎨⎪⎧m 2+m 2-1<0,(m +1)2+m (m +1)-1<0,解得-22<m <0. 3.已知a ∈R ,关于x 的一元二次不等式2x 2-17x +a ≤0的解集中有且仅有3个整数,则实数a 的取值范围为________. 答案 (30,33]解析 二次函数f (x )=2x 2-17x +a 的对称轴为x =174,所以3个整数为3,4,5.所以⎩⎪⎨⎪⎧f (3)≤0,f (6)>0,解得30<a ≤33.4.已知函数f (x )=x +1|x |+1,x ∈R ,则不等式f (x 2-2x )<f (3x -4)的解集是________.答案 (1,2)解析 由题意得f (x )=⎩⎪⎨⎪⎧1,x ≥0,-2x -1-1,x <0,作出其图象如图所示.∵f (x 2-2x )<f (3x -4),∴⎩⎪⎨⎪⎧x 2-2x <0,x 2-2x <3x -4,解得⎩⎪⎨⎪⎧0<x <2,1<x <4,∴1<x <2.5.(2018·江苏省南京市金陵中学月考)已知0≤x ≤2时,不等式-1≤tx 2-2x ≤1恒成立,则t 的取值范围是________.答案 ⎣⎢⎡⎦⎥⎤1,54 解析 当x =0时, -1<0<1成立;当0<x ≤2时,有2x -1x 2≤t ≤2x +1x2在(0,2]上恒成立,因为2x -1x2=-⎝ ⎛⎭⎪⎫1x -12+1,所以⎝ ⎛⎭⎪⎫2x -1x 2max =1,则t ≥1;①因为2x +1x 2=⎝ ⎛⎭⎪⎫1x +12-1在⎣⎢⎡⎭⎪⎫12,+∞上单调递增, 所以⎝⎛⎭⎪⎫2x +1x 2min =⎝ ⎛⎭⎪⎫12+12-1=54,则t ≤54;② 由①②可得, 1≤t ≤54.A 组 专题通关1.已知函数f (x )=x 2-2ax +a 2-1的定义域为A,2∉A ,则a 的取值范围是________. 答案 (1,3)解析 ∵2∉A ,∴4-4a +a 2-1<0, 即a 2-4a +3<0,解得1<a <3.2.若a <0,则关于x 的不等式x 2-4ax -5a 2>0的解集是________. 答案 (-∞,5a )∪(-a ,+∞)解析 由x 2-4ax -5a 2>0,得(x -5a )(x +a )>0, 因为a <0,所以x <5a 或x >-a .3.函数y =kx 2+4kx +(k +3)的定义域是R ,则实数k 的取值范围为________. 答案 [0,1]解析 由题意知,kx 2+4kx +(k +3)≥0的解集为R . (1)当k =0时,不等式为3≥0,成立.(2)当k ≠0时,kx 2+4kx +(k +3)≥0的解集为R 等价于函数y =kx 2+4kx +(k +3)的图象与x 轴至多有一个公共点,且图象上的其他点总在x 轴上方,所以⎩⎪⎨⎪⎧k >0,Δ=16k 2-4k (k +3)≤0,解得0<k ≤1.综上,实数k 的取值范围是[0,1].4.如果关于x 的不等式5x 2-a ≤0的正整数解是1,2,3,4,那么实数a 的取值范围是________. 答案 [80,125) 解析 由5x 2-a ≤0,得-a5≤x ≤a5, 而正整数解是1,2,3,4, 则4≤a5<5,∴80≤a <125. 5.若存在实数x ∈[1,2]满足2x 2-ax +2>0,则实数a 的取值范围是________. 答案 (-∞,5)解析 令f (x )=2x 2-ax +2,若存在实数x ∈[1,2]满足2x 2-ax +2>0,则f (1)>0或f (2)>0,即4-a >0或10-2a >0,即a <4或a <5,故a <5,即实数a 的取值范围是(-∞,5).6.已知函数 f (x )=⎩⎪⎨⎪⎧-x 2,x ≥0,x 2+2x ,x <0,则不等式f (f (x ))≤3的解集为________.答案 (-∞,3]解析 由题意得f (f (x ))≤3⇒f (x )≥0或⎩⎪⎨⎪⎧f (x )<0,f 2(x )+2f (x )≤3⇒f (x )≥-3⇒x <0或⎩⎪⎨⎪⎧x ≥0,-x 2≥-3⇒x ≤ 3.7.关于x 的不等式x 2-4ax +4a 2+a +1a -1≤0对任意x ∈R 都不成立,则实数a 的取值范围是________. 答案 (1,+∞)解析 由题意,不等式x 2-4ax +4a 2+a +1a -1≤0的解集为∅, 则x 2-4ax +4a 2+a +1a -1>0对任意x ∈R 恒成立, ∴Δ=16a 2-4⎝⎛⎭⎪⎫4a 2+a +1a -1<0, 即a +1a -1>0,∴a 2-a +1a -1>0.又∵a 2-a +1=⎝ ⎛⎭⎪⎫a -122+34>0恒成立,∴a -1>0,即a >1.8.已知对于任意的x ∈(-∞,1)∪(5,+∞),都有x 2-2(a -2)x +a >0,则实数a 的取值范围是________.答案 (1,5]解析 令f (x )=x 2-2(a -2)x +a ,则当Δ=4(a -2)2-4a <0,即1<a <4时,f (x )>0在R 上恒成立,符合题意;当Δ≥0,即a ≤1或a ≥4时,函数f (x )的两个零点都在[1,5]上,则⎩⎪⎨⎪⎧a ≤1或a ≥4,1≤a -2≤5,f (1)=1-2(a -2)+a ≥0,f (5)=25-10(a -2)+a ≥0,解得4≤a ≤5.综上,实数a 的取值范围是(1,5].9.已知集合A ={x |(x -6)(x -2a -5)>0},集合B ={x |[(a 2+2)-x ]·(2a -x )<0}. (1)若a =5,求集合A ∩B ;(2)已知a >12,且“x ∈A ”是“x ∈B ”的必要不充分条件,求实数a 的取值范围.解 (1)由集合A 中的不等式(x -6)(x -15)>0, 解得x <6或x >15,即A =(-∞,6)∪(15,+∞),集合B 中的不等式为(27-x )·(10-x )<0, 即(x -27)(x -10)<0,解得10<x <27, 即B =(10,27),∴A ∩B =(15,27). (2)当a >12时,2a +5>6,∴A =(-∞,6)∪(2a +5,+∞),a 2+2>2a ,∴B =(2a ,a 2+2),∵x ∈A ”是“x ∈B ”的必要不充分条件,∴B ⊆A , ∴a 2+2≤6,∴12<a ≤2.即实数a 的取值范围是⎝ ⎛⎦⎥⎤12,2.10.解关于x 的不等式:x 2-(3a +1)x +3a >0(a ∈R ).解 x 2-(3a +1)x +3a >0(a ∈R )等价于(x -3a )(x -1)>0(a ∈R ). (1)当a <13时,3a <1,∴x <3a 或x >1;(2)当a =13时,3a =1,∴x ≠1;(3)当a >13时,3a >1,∴x <1或x >3a ;综上,原不等式的解集(1)当a <13时为(-∞,3a )∪(1,+∞); (2)当a =13时为(-∞,1)∪(1,+∞); (3)当a >13时为(-∞,1)∪(3a ,+∞). B 组 能力提高11.对任意x ∈[-1,1],函数f (x )=x 2+(a -4)x +4-2a 的值恒大于零,则a 的取值范围为________.答案 (-∞,1)解析 函数f (x )=x 2+(a -4)x +4-2a 的对称轴为 x =-a -42=4-a 2. ①当4-a 2<-1,即a >6时,f (x )在[-1,1]上单调递增, f (x )的值恒大于零等价于f (-1)=1+(a -4)×(-1)+4-2a >0,解得a <3,故有a ∈∅;②当-1≤4-a 2≤1,即2≤a ≤6时,f (x )在[-1,1]上的最小值为f ⎝ ⎛⎭⎪⎫4-a 2, 只要f ⎝⎛⎭⎪⎫4-a 2=⎝ ⎛⎭⎪⎫4-a 22+(a -4)×4-a 2+4-2a >0, 即a 2<0,故有a ∈∅;③当4-a 2>1,即a <2时,f (x )在[-1,1]上单调递减, 只要f (1)=1+(a -4)+4-2a >0,即a <1,故有a <1.综上,a 的取值范围是(-∞,1).12.已知函数f (x )=log a ⎝ ⎛⎭⎪⎫ax 2-x +12(a >0且a ≠1)在⎣⎢⎡⎦⎥⎤1,32上恒为正,则实数a 的取值范围是________.答案 ⎝ ⎛⎭⎪⎫12,89∪⎝ ⎛⎭⎪⎫32,+∞ 解析 设g (x )=ax 2-x +12,x ∈⎣⎢⎡⎦⎥⎤1,32,需满足g (x )=ax 2-x +12>0,即a >1x -12x 2,设h (x )=1x -12x 2,则h ′(x )=1x 2·⎝ ⎛⎭⎪⎫1x -1, ∵x ∈⎣⎢⎡⎦⎥⎤1,32,∴h ′(x )≤0,h (x )在⎣⎢⎡⎦⎥⎤1,32上单调递减,∴⎝ ⎛⎭⎪⎫1x -12x 2max =12, 从而a >12,可得函数g (x )=ax 2-x +12的对称轴为 x =12a<1, 从而函数g (x )=ax 2-x +12在⎣⎢⎡⎦⎥⎤1,32上单调递增, 当a >1时,函数f (x )在⎣⎢⎡⎦⎥⎤1,32上单调递增, ∴f (1)=log a ⎝⎛⎭⎪⎫a -1+12>0⇒a >32, 当12<a <1时,函数f (x )在⎣⎢⎡⎦⎥⎤1,32上单调递减, ∴f ⎝ ⎛⎭⎪⎫32=log a ⎝ ⎛⎭⎪⎫a ·94-32+12>0⇒49<a <89, 即12<a <89, 故答案为⎝ ⎛⎭⎪⎫12,89∪⎝ ⎛⎭⎪⎫32,+∞. 13.已知函数f (x )=|x |+|x -4|,则不等式f (x 2+2)>f (x )的解集用区间表示为________. 答案 (-∞,-2)∪(2,+∞)解析 函数f (x )的图象如图,可知图象关于直线x =2对称.因为x 2+2>0且f (x 2+2)>f (x ),则必有 ⎩⎪⎨⎪⎧ x 2+2>4,x ≥0,x 2+2>x 或⎩⎪⎨⎪⎧ x 2+2>4,x <0,(x 2+2)+x >4,解得x ∈(-∞,-2)∪(2,+∞).14.设函数f (x )=x 2+ax +b (a ,b ∈R ).(1)当b =a 24+1时,求函数f (x )在区间[-1,1]上的最小值g (a )的表达式; (2)已知函数f (x )在区间[-1,1]上存在零点,且0≤b -2a ≤1,求实数b 的取值范围. 解 (1)当b =a 24+1时,函数f (x )=⎝ ⎛⎭⎪⎫x +a 22+1,故其图象的对称轴为直线x =-a 2. 当-a 2≥1,即a ≤-2时,f (x )在[-1,1]上单调减, g (a )=f (1)=a 24+a +2; 当-1≤-a 2<1,即-2<a ≤2时,g (a )=f ⎝ ⎛⎭⎪⎫-a 2=1; 当-a 2<-1,即a >2时,f (x )在[-1,1]上单调增, g (a )=f (-1)=a 24-a +2. 综上,g (a )=⎩⎪⎨⎪⎧ a 24+a +2,a ≤-2,1,-2<a ≤2,a 24-a +2,a >2.(2)设s ,t 为方程f (x )=0的解,且-1≤t ≤1,则⎩⎪⎨⎪⎧ s +t =-a ,st =b .因为0≤b -2a ≤1,所以-2t t +2≤s ≤1-2t t +2(-1≤t ≤1). 当0≤t ≤1时,-2t 2t +2≤st ≤t -2t 2t +2, 设g (t )=-2t 2t +2,则g ′(t )=-2t (t +4)(t +2)2,当t ∈[0,1]时,g ′(t )≤0,设h (t )=t -2t 2t +2,则h ′(t )=-2t 2-8t +2(t +2)2, 当t ∈[0,5-2)时,h ′(t )>0,当t ∈(5-2,1]时,h ′(t )<0.所以-23≤-2t 2t +2≤0,-13≤t -2t 2t +2≤9-45, 所以-23≤b ≤9-4 5. 当-1≤t <0时,t -2t 2t +2≤st ≤-2t 2t +2, 因为当t ∈[-1,0)时,g ′(t )>0,h ′(t )>0,所以-2≤-2t 2t +2<0和-3≤t -2t 2t +2<0, 所以-3≤b <0.故b 的取值范围是[-3,9-45].。