大同镇初中2018-2019学年初中七年级上学期数学第一次月考试卷(7)
- 格式:doc
- 大小:114.00 KB
- 文档页数:6
2018~2019学年度第一学期第一次月考试题
七年级数学(答案)
一、选择题
1. C
2. A
3. B
4. C
5. D
6. D
7. B
8. A
9. C10. C
二、填空题
11. ;;12. 0
13. 114. 7
三、计算题:
15. 解:原式;
原式;
原式.
16.原式;
原式;
原式.
四、解答题;
17. 解:,
.
18. 解:根据题意得:,;,,
则或;
,
,,,
则.
19. 解:正确,理由为:一个数的倒数的倒数等于原数;
原式的倒数为,则.
20. 解:如图所示:
21. 解;
.
答:该小组在A地的东边,距A东面39km;
升.
小组从出发到收工耗油195升,
升升,
收工前需要中途加油,
应加:升,
答:收工前需要中途加油,应加15升.
22. 个;答:前三天共生产599个;
个;
产量最多的一天比产量最少的一天多生产26个;
个,
元,
答:该厂工人这一周的工资总额是84135元.。
七年级第一次月考试卷(附参考答案)考试时间:120分钟 总分:120分一、选择题(本大题共6小题,每小题3分,共18分)1.-23-的倒数是( )A. 32 B.32-C.23D. 23- 2.下列各计算题中,结果是零的是( )A .33+--() B .33++- C .33--() D .2332⎛⎫+- ⎪⎝⎭3.若1a >,则a,a -,1a 的大小关系正确的是( )A. 1a a a >->;B. 1a a a >->;C. 1a a a >>-D.1a a a ->>4.将一把刻度尺按如图所示放在数轴上(数轴的单位长度是1cm),刻度尺上的“0cm”和“8cm”分别对应数轴上的-3.6和x ,则x 的值为( )A .4.2B .4.3C .4.4D .4.55.已知:a =-2+(-10),b =-2-(-10),c =-2×(-110),下列判断正确的是( )A .a >b >cB .b >c >aC .c >b >aD .a >c >b6.已知整数a 1,a 2,a 3,a 4,…满足下列条件:a 1=0,a 2=-|a 1+1|,a 3=-|a 2+2|,a 4=-|a 3+3|,……依此类推,则a 20xx 的值为( )A .-1009B .-1008C .-20xxD .-20xx 二、填空题(本大题共6小题,每小题3分,共18分)7.比较大小:23-________34-.8.某市20xx 年元旦的最低气温为﹣1℃,最高气温为7℃,这一天的最高气温比最低气温高 ℃. 9.计算:= .10.如图是一个简单的数值运算程序.当输入x 的值为-1时,则输出的数值为________.输入x ―→×(-3)―→-2―→输出11.已知4x =,12y =,且0xy <,则x y 的值等于 . 12.已知四个互不相等的整数a,b,c,d 满足abcd =77,则a +b +c +d =________.三、(本大题共5小题,每题6分,共30分)13.计算:(1)-17+(-33)-10-(-16); (2)1+(-2)+|-2-3|-5.14.计算:(1)(-3)×6÷(-2)×12;(2)1533023610⎛⎫-⨯---- ⎪⎝⎭()15.把下列各数填在相应的表示集合的大括号里:0.618,-3.14, -4, -(-53) , -|-31|, - 6% , 0 , 32(1)整数: { ¨¨¨} (2)负分数:{ ¨¨¨}16.如图,一名跳水运动员参加10m 跳台的跳水比赛(10m 跳台是指跳台离水面的高度为10m ),这名运动员举高手臂时身长为2m ,跳水池池深为5.4m .(1)若以水面为基准,高于水面为正,则这名运动员指尖的高度及池底的深度分别如何表示? (2)若以池底为基准,高于池底为正,则水面的高度、跳台的高度及这名运动员指尖的高度分别如何表示?(3)若以跳台为基准,高于跳台为正,则池底的深度与水面的高度分别如何表示?17.动手操作:已知在纸面上有一数轴(如图),折叠纸面.(1)若2表示的点A 与-2表示的点B 重合,则折痕经过的点P 叫做AB 的中点,则点P 表示的数是 ;若-2表示的点C 与6表示的点D 重合,则折痕经过的点Q 叫做CD 的中点,则点Q 表示的数是 ;(2)从(1)发现,在数轴上线段两端点表示的数与线段中点表示的数存在某一等量关系,用此关系求:已知E点表示的数是-1018,F点表示的数是2018 ,请列出式子求线段EF的中点R表示的数。
七年级上学期第一次月考数学试卷一、选择题(本大题共12个小题,每小题3分,共36分,在每小题给出的四个选项中,只有一个选项符合题意)1.(3分)向东行驶3km,记作+3km,向西行驶2km记作()A.+2km B.﹣2km C.+3km D.﹣3km2.(3分)下列说法正确的是()①0是绝对值最小的有理数②相反数大于本身的数是负数③数轴上原点两侧的数互为相反数④两个数比较,绝对值大的反而小.A.①②B.①③C.①②③D.①②③④3.(3分)﹣5的相反数是()A.B.C.﹣5 D. 54.(3分)﹣3+(﹣5)的结果是()A.﹣2 B.﹣8 C.8 D. 25.(3分)2014年1月1日零点,北京、上海、重庆、宁夏的气温分别是﹣4℃、5℃、6℃、﹣8℃,当时这四个城市中,气温最低的是()A.北京B.上海C.重庆 D.宁夏6.(3分)下列说法错误的是()A.负整数和负分数统称负有理数B.正整数,0,负整数统称为整数C.正有理数与负有理数组成全体有理数D.3.14是小数,也是分数7.(3分)下列选项中,表示数轴的是()A.B.C.D.8.(3分)在﹣3,,0,3四个数中,最小的数是()A.﹣3 B.C.0 D. 39.(3分)﹣3的绝对值等于()A.3B.C. D.﹣310.(3分)在数轴上到原点距离等于2的点所表示的数是()A.﹣2 B.2C.±2 D.不能确定11.(3分)以下关于﹣这个数在数轴上的位置的描述,其中正确的是()A.在﹣3的左边B.在3的右边C.在原点和﹣1之间D.在﹣1的左边12.(3分)若数轴上的点A向左移动2个单位长度,再向右移动3个单位长度,正好对应﹣5这个点,那么原来A点对应的数是()A.﹣4 B.2C.﹣6 D.0二.填空题(本大题共6个小题;每小题3分,共18分.把答案写在题中横线上)13.(3分)|﹣10|=;﹣6的相反数是.14.(3分)﹣1,0,0.2,,3中正数一共有个.15.(3分)最大的负整数是,绝对值最小的有理数是.16.(3分)数轴上到表示数4的点的距离为1个单位长度的点表示的数是.17.(3分)绝对值小于3的整数是.18.(3分)(﹣)+(+)=.三、解答题(共4小题,满分46分)19.(10分)把下列各数填在相应的大括号中:6,﹣12,,﹣3.14,0,﹣,|﹣9|,2014,﹣2.5.整数:{ …}正整数:{ …}分数:{ …}负数:{ …}非负数:{ …}.20.(12分)画一条数轴,在数轴上标出表示下列各数的点,并用“<”把它们连接起来.﹣(﹣2),﹣0.5,0,﹣|﹣4|,+.21.(10分)比较下列各组中两个数的大小(注意书写过程)(1)﹣和﹣;(2)﹣和﹣.22.(14分)计算(1)(﹣2.4)+(﹣3.7)+(﹣4.6)+5.7(2)(﹣)+13+(﹣)+17.参考答案与试题解析一、选择题(本大题共12个小题,每小题3分,共36分,在每小题给出的四个选项中,只有一个选项符合题意)1.(3分)向东行驶3km,记作+3km,向西行驶2km记作()A.+2km B.﹣2km C.+3km D.﹣3km考点:正数和负数.分析:根据正数和负数表示相反意义的量,向东记为正,可得答案.解答:解:向东行驶3km,记作+3km,向西行驶2km记作﹣2km,故选:B.点评:本题考查了正数和负数,相反意义的量用正数和负数表示.2.(3分)下列说法正确的是()①0是绝对值最小的有理数②相反数大于本身的数是负数③数轴上原点两侧的数互为相反数④两个数比较,绝对值大的反而小.A.①②B.①③C.①②③D.①②③④考点:绝对值;相反数;有理数大小比较.分析:根据绝对值的意义对①④进行判断;根据相反数的定义对②③进行判断.解答:解:0是绝对值最小的有理数,所以①正确;相反数大于本身的数是负数,所以②正确;数轴上在原点两侧且到原点的距离相等的数互为相反数,所以③错误;两个负数比较,绝对值大的反而小,所以④错误.故选A.点评:本题考查了绝对值:若a>0,则|a|=a;若a=0,则|a|=0;若a<0,则|a|=﹣a.也考查了相反数.3.(3分)﹣5的相反数是()A.B.C.﹣5 D. 5考点:相反数.分析:根据只有符号不同的两个数互为相反数,可得一个数的相反数.解答:解:﹣5的相反数是5,故选:D.点评:本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.4.(3分)﹣3+(﹣5)的结果是()A.﹣2 B.﹣8 C.8 D. 2考点:有理数的加法.分析:根据同号两数相加,取相同的符号,并把绝对值相加,可得答案.解答:解:原式=﹣(3+5)=﹣8.故选:B.点评:本题考查了有理数的加法,先确定和的符号,再进行绝对值得运算.5.(3分)2014年1月1日零点,北京、上海、重庆、宁夏的气温分别是﹣4℃、5℃、6℃、﹣8℃,当时这四个城市中,气温最低的是()A.北京B.上海C.重庆 D.宁夏考点:有理数大小比较.专题:应用题.分析:根据正数大于0,0大于负数,可得答案.解答:解:﹣8<﹣4<5<6,故选:D.点评:本题考查了有理数比较大小,正数大于0,0大于负数是解题关键.6.(3分)下列说法错误的是()A.负整数和负分数统称负有理数B.正整数,0,负整数统称为整数C.正有理数与负有理数组成全体有理数D.3.14是小数,也是分数考点:有理数.分析:按照有理数的分类判断:有理数.解答:解:负整数和负分数统称负有理数,A正确.整数分为正整数、负整数和0,B正确.正有理数与0,负有理数组成全体有理数,C错误.3.14是小数,也是分数,小数是分数的一种表达形式,D正确.故选C.点评:认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.注意整数和正数的区别,注意0是整数,但不是正数.7.(3分)下列选项中,表示数轴的是()A.B.C.D.考点:数轴.分析:根据数轴的三要素:原点、正方向、单位长度,可得答案.解答:解:A、没有原点,故A错误;B、单位长度不统一,故B错误;C、数轴上的点表示的数右边的总比左边的大,故C错误;D、单位、原点、正方向,故D正确;故选;D.点评:本题考查了数轴,利用了数轴的三要素:原点、单位长度、正方向.8.(3分)在﹣3,,0,3四个数中,最小的数是()A.﹣3 B.C.0 D. 3考点:有理数大小比较.分析:根据有理数的大小比较法则进行比较即可.解答:解:﹣3,,0,3四个数中,最小的数是﹣3.故选A.点评:本题考查了有理数的大小比较,掌握有理数的大小比较法则是解题关键.9.(3分)﹣3的绝对值等于()A.3B.C. D.﹣3考点:绝对值.专题:常规题型.分析:根据绝对值的性质解答即可.解答:解:|﹣3|=3.故选A.点评:此题考查了绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.10.(3分)在数轴上到原点距离等于2的点所表示的数是()A.﹣2 B.2C.±2 D.不能确定考点:数轴.分析:先在数轴上标出到原点距离等于2的点,然后根据图示作出选择即可.解答:解:在数轴上到原点距离等于2的点如图所示:点A、B即为所求的点,即在数轴上到原点距离等于2的点所表示的数是﹣2和2;故选C.点评:本题考查了数轴.由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.11.(3分)以下关于﹣这个数在数轴上的位置的描述,其中正确的是()A.在﹣3的左边B.在3的右边C.在原点和﹣1之间D.在﹣1的左边考点:数轴.分析:画出数轴,在数轴上表示出﹣3,﹣1,3及﹣即可.解答:解:如图所示,,故选D.点评:本题考查的是数轴,根据题意画出数轴,利用数形结合求解是解答此题的关键.12.(3分)若数轴上的点A向左移动2个单位长度,再向右移动3个单位长度,正好对应﹣5这个点,那么原来A点对应的数是()A.﹣4 B.2C.﹣6 D.0考点:数轴.分析:设原来与A对应的数是x,则x﹣2+3=﹣5,求出x的值即可.解答:解:设原来与A对应的数是x,则x﹣2+3=﹣5,解得x=﹣6.故选C.点评:本题考查的是数轴,熟知“左减右加”的法则是解答此题的关键.二.填空题(本大题共6个小题;每小题3分,共18分.把答案写在题中横线上)13.(3分)|﹣10|=10;﹣6的相反数是6.考点:绝对值;相反数.分析:直接利用绝对值和相反数的意义求解即可.解答:解:|﹣10|=10;﹣6的相反数是6,故答案为:10,6.点评:考查了绝对值和相反数的知识,属于基础定义,比较简单.14.(3分)﹣1,0,0.2,,3中正数一共有3个.考点:正数和负数.专题:常规题型.分析:根据正、负数的定义对各数分析判断即可.解答:解:﹣1,0,0.2,,3中正数是0.2,,3共有3个.故答案为:3.点评:本题主要考查了正负数的定义,是基础题,比较简单.15.(3分)最大的负整数是﹣1,绝对值最小的有理数是0.考点:有理数;绝对值.分析:根据特殊有理数和绝对值的性质求解.最大的负整数是﹣1;正数和负数的绝对值都是正数,0的绝对值是0,所以绝对值最小的有理数是0.解答:解:最大的负整数是﹣1;∵负数与正数的绝对值都是正数,0的绝对值是0,∴绝对值最小的有理数是0.故应填﹣1;0.点评:本题主要考查了负整数和绝对值的概念,熟记概念是学好数学的关键.16.(3分)数轴上到表示数4的点的距离为1个单位长度的点表示的数是5或3.考点:数轴.分析:设该数是x,再根据数轴上两点间的距离公式求出x的值即可.解答:解:设该数是x,则|x﹣4|=1,解得x=5或x=3.故答案为:5或3.点评:本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.17.(3分)绝对值小于3的整数是﹣2,﹣1,0,1,2.考点:绝对值.分析:绝对值小于3的整数即为绝对值分别等于2、1、0的整数.解答:解:小于3的整数绝对值有0,1,2.因为互为相反数的两个数的绝对值相等,所以绝对值小于3的整数是0,±1,±2.点评:注意掌握互为相反数的两个数的绝对值相等.18.(3分)(﹣)+(+)=.考点:有理数的加法.专题:计算题.分析:原式利用异号两数相加的法则计算即可得到结果.解答:解:原式=.故答案为:.点评:此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.三、解答题(共4小题,满分46分)19.(10分)把下列各数填在相应的大括号中:6,﹣12,,﹣3.14,0,﹣,|﹣9|,2014,﹣2.5.整数:{ …}正整数:{ …}分数:{ …}负数:{ …}非负数:{ …}.考点:有理数.分析:根据整数、负分数、无理数的定义进行解答.解答:解:整数:{6,﹣12,0,|﹣9|,2014…}正整数:{ 6,|﹣9|,2014…}分数:{ ,﹣3.14,﹣,﹣2.5…}负数:{﹣12,﹣3.14,﹣,﹣2.5…}非负数:{ 6,,0,|﹣9|,2014…},点评:本题考查了实数,熟悉无理数、整数及负分数的定义是解题的关键.20.(12分)画一条数轴,在数轴上标出表示下列各数的点,并用“<”把它们连接起来.﹣(﹣2),﹣0.5,0,﹣|﹣4|,+.考点:有理数大小比较;数轴.分析:先将各数表示在数轴上,结合数轴即可用“<”连接.解答:解:如图所示:用“<”连接为:﹣0.5<0<+<﹣(﹣2)<﹣|﹣4|.点评:本题考查了有理数的大小比较,由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.21.(10分)比较下列各组中两个数的大小(注意书写过程)(1)﹣和﹣;(2)﹣和﹣.考点:有理数大小比较.分析:(1)比较﹣与﹣的大小即可;(2)比较与的大小即可.解答:解:(1)﹣=﹣1﹣,﹣=﹣1﹣,∵﹣<﹣,∴﹣<﹣;(2)﹣=﹣1,﹣=﹣1,∵>,∴﹣>﹣.点评:本题考查了有理数的大小比较,掌握有理数的大小比较法则是解题关键.22.(14分)计算(1)(﹣2.4)+(﹣3.7)+(﹣4.6)+5.7(2)(﹣)+13+(﹣)+17.考点:有理数的加法.专题:计算题.分析:(1)原式结合后,相加即可得到结果;(2)原式结合后,相加即可得到结果.解答:解:(1)原式=﹣10.7+5.7=﹣5;(2)原式=﹣1+30=29.点评:此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.。
○…………外…………○…………装…………○…………订…………○…………线…………○………… 学校:___________姓名:___________班级:___________考号:___________ ○…………内…………○…………装…………○…………订…………○…………线…………○………… 绝密★启用前 2018-2019学年度第一学期10月月考试卷 一、选择题 (每小题3分,共30分) 1.在下列选项中,具有相反意义的量是( ) A. 收入20元与支出20元 B. 6个老师与6个学生 C. 走了100米与跑了100米 D. 向东行30米与向北行30米 2.一个数的相反数是3,则这个数是( )A .﹣B .C .﹣3D .3 3.如图,数轴上A B 、两点分别对应实数a b 、,则下列结论错误的是 ( ) A. 0a b +< B. 22a b > C. 0ab < D. a b < 4.大于-2.5小于1.5的整数有多少个( ) A. 4个 B. 5个 C. 6个 D. 7个 5.下列算式正确的是( ) A. (﹣14)﹣5=﹣9 B. 0﹣(﹣3)=3 C. (﹣3)﹣(﹣3)=﹣6 D. |5﹣3|=﹣(5﹣3) 6.114-的倒数是( )。
A.54- B.54 C.45- D.45 7.若,则a 与b 的关系是( ) A .a =b B .a =b C .a =b =0 D .a =b 或a =-b 8.9月8日,首条跨区域动车组列车运行线——长春至白城至乌兰浩特快速铁路开通运营“满月”。
这条承载着吉林、内蒙古人民希望与企盼的铁路,自开通运营以来,安全优质高效地发送旅客930000人,这个数字用科学记数法表示为( ) A. 9.3×103 B. 9.3×105 C. 0.93×106 D. 93×104 9.下列说法正确的是( )B .近似数43.82精确到0.001C .近似数6.610精确到千分位D .近似数2.708×104精确到千分位 10.下列说法:①有理数是指整数和分数;②有理数是指正数和负数;③没有最大的有理数,最小的有理数是0;④有理数的绝对值都是非负数;⑤几个数相乘,当负因数的个数为奇数时,积为负;⑥倒数等于本身的有理数只有1。
2018-2019学年七年级(上)第一次月考数学试卷一、选择题1.若﹣a=2,则a等于()A.2 B.C.﹣2 D.2.两个非零有理数的和为零,则它们的商是()A.0 B.﹣1 C.1 D.不能确定3.在有理数中有()A.最大的数 B.最小的数C.绝对值最小的数D.不能确定4.若x=(﹣3)×,则x的倒数是()A.﹣ B.C.﹣2 D.25.在﹣2与1.2之间有理数有()A.2个B.3 个 C.4 个 D.无数个6.在﹣1,1.2,﹣2,0,﹣(﹣2),﹣23中,负数的个数有()A.2个B.3个C.4个D.5个7.有理数a、b在数轴上的对应的位置如图所示:则()A.﹣a<﹣b B.﹣b<a C.b=a D.﹣a>b8.在﹣5,﹣,﹣3.5,﹣0.01,(﹣2)2,(﹣22)各数中,最大的数是()A.﹣22B.﹣C.﹣0.01 D.(﹣2)29.已知(1﹣m)2+|n+2|=0,则(m+n)2013的值为()A.﹣1 B.1 C.2 013 D.﹣2 01310.下列计算①(﹣1)×(﹣2)×(﹣3)=6;②(﹣36)÷(﹣9)=﹣4;③×(﹣)÷(﹣1)=;④(﹣4)÷×(﹣2)=16.其中正确的个数()A.4个B.3个C.2个D.1个11.下列等式不成立的是()A.(﹣3)3=﹣33 B.﹣24=(﹣2)4 C.|﹣3|=|3| D.(﹣3)100=310012.已知|a|=5,|b|=8,且满足a+b<0,则a﹣b的值为()A.﹣13 B.13 C.3或13 D.13或﹣13二、填空题13.肥料口袋上标有50kg±0.5kg表示什么意思.14.在数轴上,点A所表示的数为2,那么到点A的距离等于3个单位长度的点所表示的数是.15.若|x+2|与|y﹣3|互为相反数,则x+y= ,x y= .16.用“☆”定义新运算:对于任意有理数a、b,都有a b=b2﹣a﹣1,例如:74=42﹣7﹣1=8,那么(﹣5)(﹣3)= .三.解答题17.计算题:(1)22﹣5×+|﹣2|;( 2)(+4.3)﹣(﹣4)+(﹣2.3)﹣(+4);(3)+(﹣)﹣(﹣)+(﹣)﹣(+);(4)﹣9÷3+(﹣)×12+32;( 5)(﹣48)+(﹣2)3﹣(﹣25)×(﹣4)+(﹣2)2;(6)﹣23﹣×[2﹣(﹣3)2]+(﹣32).18.把下列各数分别填入相应的集合里.﹣23,﹣|﹣|,0,,﹣(﹣3.14),2006,﹣(+5),+1.88,(1)正数集合:{ …};(2)负数集合:{ …};(3)整数集合:{ …};(4)分数集合:{ …}.19.规定一种运算: =ad﹣bc,例如=2×5﹣3×4=﹣2,请你按照这种运算的规定,计算的值.20.已知a,b互为相反数,c,d互为倒数,x的绝对值为1,求a+b+x2﹣cdx.21.气象统计资料表明:海拔高度每增加100 米,气温降低大约0.6℃.小明和小亮为考证地方教材中星斗山海拔高度,国庆期间他们两个进行实地测量,小明在山下一个海拔高度为1020米的小山坡上测得的气温为14℃,小亮在星斗山顶峰的最高位置测得的气温为2℃,那么你知道星斗山顶峰的海拔高度是多少米吗?请列式计算.22.小明从文斗中学出发,先向西走2千米到达A村,继续向西走3千米到达B村,然后向东走10千米到C村,后回到学校.(1)以学校为原点,向东为正,用1厘米表示1千米在数轴上表示出,A,B.C三个村庄的位置;(2)小明一共走了多少千米?(3)若D村与A,B,C在一条线上,D到C村有1千米.那么D到B村有多少千米?23.20袋小麦以每袋450千克为准,超过的千克数记为正数,不足的千克数记为负数,分别记为:﹣6,4,3,﹣2,﹣3,1,0,5,8,﹣5,与标准质量相比较,(1)这20袋小麦总计超过或不足多少千克?(2)20袋小麦总质量是多少千克?(3)有几袋是非常标准的?一、选择题1.若﹣a=2,则a 等于( )A .2B .C .﹣2D .【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:﹣a=2,则a 等于﹣2,故选:C .【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.两个非零有理数的和为零,则它们的商是( )A .0B .﹣1C .1D .不能确定【考点】有理数的乘法;有理数的加法;有理数的除法.【分析】根据互为相反数的两数的和等于0判断出这两个数是互为相反数,再根据异号得负解答.【解答】解:∵两个非零有理数的和为零,∴这两个数互为相反数,∴它们的商是负数.故选B .【点评】本题考查了有理数的除法,有理数的加法,判断出这两个数互为相反数是解题的关键.3.在有理数中有( )A .最大的数B .最小的数C .绝对值最小的数D .不能确定【考点】绝对值;有理数.【分析】根据有理数的知识和绝对值的性质作出正确地判断即可.【解答】解:没有最大的有理数也没有最小的有理数,绝对值最小的数是0,故选C【点评】本题主要考查了绝对值和有理数的知识,解题的关键是掌握有理数的有关知识以及绝对值的性质.4.若x=(﹣3)×,则x的倒数是()A.﹣ B.C.﹣2 D.2【考点】有理数的乘法;倒数.【分析】先求出x的值,再根据倒数的定义即可求出x的倒数.【解答】解:∵x=(﹣3)×=﹣,∴x的倒数是﹣2,故选C.【点评】此题主要考查了有理数的乘法和倒数的定义,两数相乘,同号得正,异号得负,并把绝对值相乘.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.要求掌握并熟练运用.5.在﹣2与1.2之间有理数有()A.2个B.3 个 C.4 个 D.无数个【考点】有理数.【分析】根据有理数分为整数与分数,判断即可得到结果.【解答】解:在数轴上﹣2与1.2之间的有理数有无数个.故选D.【点评】此题考查了数轴,熟练掌握有理数的定义是解答本题的关键.6.在﹣1,1.2,﹣2,0,﹣(﹣2),﹣23中,负数的个数有()A.2个B.3个C.4个D.5个【考点】相反数;正数和负数.【分析】注意﹣(﹣2)=2,﹣23=﹣8,指出所有的负数即可.【解答】解:负数有﹣1,﹣2,﹣23,一共有3个,故答案为:B.【点评】本题考查了有理数的分类,本题比较简单,明确有理数分为正数、负数和0即可做出正确判断.7.有理数a、b在数轴上的对应的位置如图所示:则()A.﹣a<﹣b B.﹣b<a C.b=a D.﹣a>b【考点】数轴.【分析】根据数轴可以得到a、0、b的关系,从而可以解答本题.【解答】解:由数轴可得,a<﹣1<0<b<1,∴﹣a>﹣b,故选项A错误,﹣b>a,故选项B错误,a<b,故选项C错误,﹣a>b,故选项D正确,故选D.【点评】本题考查数轴,解题的关键是明确数轴的特点,利用数形结合的思想解答.8.在﹣5,﹣,﹣3.5,﹣0.01,(﹣2)2,(﹣22)各数中,最大的数是()A.﹣22B.﹣C.﹣0.01 D.(﹣2)2【考点】有理数大小比较.【分析】根据正数大于一切负数即可解答.【解答】解:(2)2=4,(﹣22)=﹣2,∴最大的数是(﹣2)2,故选:D.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.9.已知(1﹣m)2+|n+2|=0,则(m+n)2013的值为()A.﹣1 B.1 C.2 013 D.﹣2 013【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】根据非负数的性质列方程求出m、n的值,再代入代数式进行计算即可得解.【解答】解:由题意得,1﹣m=0,n+2=0,解得m=1,n=﹣2,所以,(m+n)2013=(1﹣2)2013=﹣1.故选A.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.10.下列计算①(﹣1)×(﹣2)×(﹣3)=6;②(﹣36)÷(﹣9)=﹣4;③×(﹣)÷(﹣1)=;④(﹣4)÷×(﹣2)=16.其中正确的个数()A.4个B.3个C.2个D.1个【考点】有理数的除法;有理数的乘法.【分析】根据有理数的乘法和除法法则分别进行计算即可.【解答】解:①(﹣1)×(﹣2)×(﹣3)=﹣6,故原题计算错误;②(﹣36)÷(﹣9)=4,故原题计算错误;③×(﹣)÷(﹣1)=,故原题计算正确;④(﹣4)÷×(﹣2)=16,故原题计算正确,正确的计算有2个,故选:C.【点评】此题主要考查了有理数的乘除法,关键是注意结果符号的判断.11.下列等式不成立的是()A.(﹣3)3=﹣33 B.﹣24=(﹣2)4 C.|﹣3|=|3| D.(﹣3)100=3100【考点】有理数的乘方;绝对值.【分析】根据有理数的乘方分别求出即可得出答案.【解答】解:A:(﹣3)3=﹣33,故此选项正确;B:﹣24=﹣(﹣2)4,故此选项错误;C:|﹣3|=|3|=3,故此选项正确;D:(﹣3)100=3100,故此选项正确;故符合要求的为B,故选:B.【点评】此题主要考查了有理数的乘方运算,熟练掌握有理数乘方其性质是解题关键.12.已知|a|=5,|b|=8,且满足a+b<0,则a﹣b的值为()A.﹣13 B.13 C.3或13 D.13或﹣13【考点】有理数的减法;绝对值.【专题】分类讨论.【分析】根据绝对值的意义及a+b<0,可得a,b的值,再根据有理数的减法,可得答案.【解答】解:由|a|=5,|b|=8,且满足a+b<0,得a=5,或a=﹣5,b=﹣8.当a=﹣5,b=﹣8时,a﹣b=﹣5﹣(﹣8)=﹣5+8=3,当a=5,b=﹣8时,a﹣b=5﹣(﹣8)=5+8=13,故选:D.【点评】本题考查了有理数的减法,分类讨论是解题关键,以防漏掉.二、填空题13.肥料口袋上标有50kg±0.5kg表示什么意思净含量最大不超过50kg+0.5kg,最少不低于50kg ﹣0.5kg..【考点】正数和负数.【分析】意思是净含量最大不超过50kg+0.5kg,最少不低于50kg﹣0.5kg.【解答】解:由题意可知:“50kg±0.5kg”表示净含量的浮动范围为上下0.5kg,即含量范围在(50+0.5)=50.5kg到(50﹣0.5)=49.5kg之间.即:它表示净含量的浮动范围为上下5kg,最多重50.5kg,最少重49.5kg;故答案为:净含量最大不超过50kg+0.5kg,最少不低于50kg﹣0.5kg.【点评】此题考查正负数在实际生活中的应用,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.14.在数轴上,点A所表示的数为2,那么到点A的距离等于3个单位长度的点所表示的数是﹣1和5 .【考点】数轴.【分析】点A所表示的数为2,到点A的距离等于3个单位长度的点所表示的数有两个,分别位于点A的两侧,分别是﹣1和5.【解答】解:2﹣3=﹣1,2+3=5,则A表示的数是:﹣1或5.故答案为:﹣1或5.【点评】本题考查了数轴的性质,理解点A所表示的数是2,那么点A距离等于3个单位的点所表示的数就是比2大3或小3的数是关键.15.若|x+2|与|y﹣3|互为相反数,则x+y= 1 ,x y= ﹣8 .【考点】非负数的性质:绝对值.【分析】根据非负数的性质列出算式,求出x、y的值,计算即可.【解答】解:由题意得,|x+2|+|y﹣3|=0,则x+2=0,y﹣3=0,解得,x=﹣2,y=3,则x+y=1,x y=﹣8,故答案为:1;﹣8.【点评】本题考查的是相反数的概念和非负数的性质,掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.16.用“☆”定义新运算:对于任意有理数a、b,都有a b=b2﹣a﹣1,例如:74=42﹣7﹣1=8,那么(﹣5)(﹣3)= 13 .【考点】有理数的混合运算.【专题】新定义.【分析】利用题中的新定义计算即可得到结果.【解答】解:根据题中的新定义得:(﹣5)(﹣3)=9﹣(﹣5)﹣1=9+5﹣1=13.故答案为:13.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.三.解答题17.(2015秋•利川市校级月考)计算题:(1)22﹣5×+|﹣2|;( 2)(+4.3)﹣(﹣4)+(﹣2.3)﹣(+4);(3)+(﹣)﹣(﹣)+(﹣)﹣(+);(4)﹣9÷3+(﹣)×12+32;( 5)(﹣48)+(﹣2)3﹣(﹣25)×(﹣4)+(﹣2)2;(6)﹣23﹣×[2﹣(﹣3)2]+(﹣32).【考点】有理数的混合运算.【专题】计算题;实数.【分析】(1)原式先计算乘方及绝对值运算,再计算乘法运算,最后算加减运算即可得到结果;(2)原式利用减法法则变形,计算即可得到结果;(3)原式利用减法法则变形,计算即可得到结果;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(5)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果;(6)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:(1)原式=4﹣1+2=5;(2)原式=4.3+4﹣2.3﹣4=2;(3)原式=﹣﹣﹣+=﹣;(4)原式=﹣3+6﹣8+9=4;(5)原式=﹣48﹣8﹣100+4=﹣156+4=﹣152;(6)原式=﹣8+1﹣9=﹣16.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.18.把下列各数分别填入相应的集合里.﹣23,﹣|﹣|,0,,﹣(﹣3.14),2006,﹣(+5),+1.88,(1)正数集合:{ ,﹣(﹣3.14),2006,+1.88 …};(2)负数集合:{ ﹣23,﹣|﹣|,﹣(+5)…};(3)整数集合:{ ﹣23,0,2006,﹣(+5)…};(4)分数集合:{ ﹣|﹣|,,﹣(﹣3.14),+1.88 …}.【考点】有理数.【分析】按照有理数分类即可求出答案.【解答】解:故答案为:正数:,﹣(﹣3.14),2006,+1.88;负数:﹣23,﹣|﹣|,﹣(+5);整数:﹣23,0,2006,﹣(+5);分数:﹣|﹣|,,﹣(﹣3.14),+1.88;【点评】本题考查有理数的分类,属于基础题型.19.规定一种运算: =ad﹣bc,例如=2×5﹣3×4=﹣2,请你按照这种运算的规定,计算的值.【考点】有理数的混合运算.【专题】新定义.【分析】根据新运算得出1×0.5﹣(﹣3)×(﹣2),算乘法,最后算减法即可.【解答】解:=1×0.5﹣(﹣3)×(﹣2)=0.5﹣6=﹣5.5.【点评】本题考查了有理数的混合运算的应用,能根据新运算得出1×0.5﹣(﹣3)×(﹣2)是解此题的关键.20.已知a,b互为相反数,c,d互为倒数,x的绝对值为1,求a+b+x2﹣cdx.【考点】倒数;相反数;绝对值.【专题】计算题.【分析】根据相反数,绝对值,倒数的概念和性质求得a与b,c与d及x的关系或值后,代入代数式求值.【解答】解:∵a,b互为相反数,∴a+b=0,∵c,d互为倒数,∴cd=1,∵|x|=1,∴x=±1,当x=1时,a+b+x2﹣cdx=0+(±1)2﹣1×1=0;当x=﹣1时,a+b+x2+cdx=0+(±1)2﹣1×(﹣1)=2.【点评】本题主要考查相反数,绝对值,倒数的概念及性质.(1)相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0;(2)倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数;(3)绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.21.气象统计资料表明:海拔高度每增加100 米,气温降低大约0.6℃.小明和小亮为考证地方教材中星斗山海拔高度,国庆期间他们两个进行实地测量,小明在山下一个海拔高度为1020米的小山坡上测得的气温为14℃,小亮在星斗山顶峰的最高位置测得的气温为2℃,那么你知道星斗山顶峰的海拔高度是多少米吗?请列式计算.【考点】有理数的混合运算.【分析】根据题意,可以知道顶峰的温度与小明所在位置的温差,从而可以求得顶峰的高度.【解答】解:由题意可得,星斗山顶峰的海拔高度是:1020+(14﹣2)÷0.6×100=1020+12÷0.6×100=1020+2000=3020(米),即星斗山顶峰的海拔高度是3020米.【点评】本题考查有理数的混合运算,解题的关键是明确有理数混合运算的计算方法.22.小明从文斗中学出发,先向西走2千米到达A村,继续向西走3千米到达B村,然后向东走10千米到C村,后回到学校.(1)以学校为原点,向东为正,用1厘米表示1千米在数轴上表示出,A,B.C三个村庄的位置;(2)小明一共走了多少千米?(3)若D村与A,B,C在一条线上,D到C村有1千米.那么D到B村有多少千米?【考点】数轴.【分析】(1)数轴三要素:原点,单位长度,正方向.依此表示出家以及A、B、C三个村庄的位置;(2)距离相加的和即为所求;(3)分两种情况:①D村在C村左边时;②D村在C村右边时;分别计算即可.【解答】解:(1)如图所示:(2)2+3+10=15,即小明一共走了15千米;(3)分两种情况:①D村在C村左边时,则C、D村表示的数分别是5千米、4千米,4﹣(﹣2﹣3)=4+5=9(千米);②D村在C村右边时,则C、D村表示的数分别是5千米、6千米,6﹣(﹣2﹣3)=6+5=11(千米);综上所述:D到B村有9千米或11千米.【点评】本题考查的是数轴、绝对值的有关内容,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.23.20袋小麦以每袋450千克为准,超过的千克数记为正数,不足的千克数记为负数,分别记为:﹣6,4,3,﹣2,﹣3,1,0,5,8,﹣5,与标准质量相比较,(1)这20袋小麦总计超过或不足多少千克?(2)20袋小麦总质量是多少千克?(3)有几袋是非常标准的?【考点】正数和负数.【分析】(1)将各数据相加即可求出20袋小麦是不足或超过;(2)将(1)中的数据与20袋标准小麦总量相加即可求出答案;(3)记数为0时,小麦重量非常标准.【解答】解:(1)﹣6+4+3﹣2﹣3+1+0+5+8﹣5=5,这20袋小麦总计超过5千克;(2)20袋小麦总质量是:20×450+5=9005;(3)只有一袋非常标准,由于该袋小麦与标准质量相比较为0;【点评】本题考查正负数的意义,属于基础题型。
2018-2019学年第一学期月考卷七年级数学一、 选择题:(每题3分,共30分)1、下表是我国几个城市某年一月份的平均气温,其中气温最低的城市是( ) 城市北京 武汉 广州 哈尔滨 平均气温(单位:℃)-4.63.813.1-19.42、下列各数中互为相反数的是( ) A .12与0.2B .13与-0.33C .-2.25与2.25D .5与-(-5)3、在-(-5),+(-5),-|-5|,-(+5)中负数有( ) A 、0个B 、1个C 、2个D 、3个4、下列四个数中,在-2到0之间的数是( ) A .-1 B . 1 C .-3 D .35、在数轴上与-3的距离等于4的点表示的数是 ( ) A .1B .-7C .1或-7D .无数个6. 绝对值不大于5的整数有( )A 、9个B 、8个C 、5个D 、4个 7、﹣2016的绝对值是( ) A .2016 B .﹣2016C .D .﹣8、一个数和它的倒数相等,则这个数是( )A 、1B 、1-C 、±1D 、±1和09、有理数,a 、b 在数轴上的位置如图所示,则a 、b 、﹣b 、﹣a 的大小关系是( )A .b <﹣a <a <﹣bB .b <a <﹣b <﹣aC .b <﹣b <﹣a <aD .b <a <﹣a <﹣b10、 如果a a -=||,下列成立的是( )A .0>aB .0<aC .0≥aD .0≤a 二、填空题:(每题3分,共24分)11、一天早晨的气温是-5℃,中午又上升了10℃,半夜又下降了8℃,则半夜的气温是________.12、用“<”“=”或“>”号填空:98-_____109--(+5) _____-︱-5︳13、若a 与-5互为相反数,则a =_______;若b 的绝对值是3,则b =_________.14、最大的负整数是______,绝对值最小的整数是______.15、水池中的水位在某天8个时间测得的数据记录如下(规定上升为正,单位:cm ):+3、-6、-1、+5、-4、+2、-3、-2,那么这天中水池水位最终的变化情况是_____ 。
2018-2019学年度第一学期第一次检测试题(卷)七年级数学 (答案)一、选择题(本题共10小题,每小题2,共20分.每小题四个选项中只有一个正确,请把正确选项的代号写在答题卡内.)二、填空题(共8题,每题3分,共24分)×107 14. 5.3三、解答题(一):本大题共6小道,共36分. 19.分数:{ ,0.275 , ﹣ , ﹣0.25 …}非负整数:{8 , 0 …}有理数:{ 8,,0.275,0,﹣,﹣6,﹣0.25,﹣|﹣2|,…} 20. ﹣3.5<﹣1<0<<4<+5,21.(1)3.96 (2)-3.21 (3)4 ( 4)-13 22.(1)-73 (2)-2923. (1)∵-的绝对值是,的绝对值是,而>,所以> (2)∵|-4+5|=1,|-4|+|5|=9,∴|-4+5|<|-4|+|5|; (3)∵52,=25,25=32,∴52,<25;(4)2×32=18,(2×3)2=36,∴2×32<(2×3)2.24. 解:∵∴ 与标准质量相比较,这10袋小麦总计少了2 kg. 10袋小麦的总质量是1 500-2=1 498(kg ) 四、解答题(二):本大题共5小道,共40分25. (1) (2)- (3)1 (4)-76 26. (1)13 (2)-27. 解 因为|a|=2,所以a=±2,c 是最大的负整数,所以c=-1当a=2时,a+b-c=2-3-(-1)= 0; 当a=-2时,a+b-c=-2-3-(-1)=-4。
28. 解 由题意得:a+b=0,cd=1,m=±2,24m =原式=0042314231241241+⨯-⨯+⨯--⨯⨯+⨯+或() =5或-1129. 解:(1)∵点A 表示数-3,∴点A 向右移动7个单位长度,终点B 表示的数是-3+7=4,A ,B 两点间的距离是|-3-4|=7;(2)∵点A 表示数3,∴将A 点向左移动7个单位长度,再向右移动5个单位长度,那么终点表示的数是3-7+5=1,A ,B 两点间的距离为3-1=2;(3)∵点A 表示数-4,∴将A 点向右移动168个单位长度,再向左移动256个单位长度,那么终点B 表示的数是-4+168-256=-92,A 、B 两点间的距离是|-4+92|=88;(4)∵A 点表示的数为m ,∴将A 点向右移动n 个单位长度,再向左移动p 个单位长度,那么点B 表示的数为(m+n-p ),A ,B 两点间的距离为|n-p|.。
山西省大同市七年级上学期数学第一次月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)在﹣,﹣|﹣4|,﹣(﹣4),﹣22 ,(﹣2)2 ,﹣10%,0中,负数的个数有()A . 2个B . 3个C . 4个D . 5个2. (2分)当1<a<2时,代数式的值是()A . -1B . 1C . 2a-3D . 3-2a3. (2分) (2016七上·阳新期中) |﹣2|的相反数是()A .B . ﹣2C .D . 24. (2分) (2020八上·曲沃期末) 下列计算正确的是()A .B .C . -3×2=-6D .5. (2分)(2020·开平模拟) 如图,数轴上,,,,五个点表示连续的五个整数,,,,,且,则下列说法正确的有()①点表示的数字是②③④A . 都之前B . 只有①③正确C . 只有①②③正确D . 只有③错误6. (2分)下列说法中,正确的是()A . 若两个有理数的差是正数,则这两个数都是正数B . 两数相乘,积一定大于每一个乘数C . 0减去任何有理数,都等于此数的相反数D . 倒数等于本身的为1,0,﹣17. (2分) (2019七上·日照月考) 有理数a、b在数轴上的对应点如图所示,则下列式子错误的是()A . ab > 0B . a+b < 0C .D . a-b < 08. (2分)若+=0 ,则下列结论成立的是()A . x=0或y=0B . x,y同号C . x,y异号D . x,y为一切有理数9. (2分)下列说法正确的是()A . 0.25是0.5 的一个平方根B . 正数有两个平方根,且这两个平方根之和等于0C . 7 2的平方根是7D . 负数有一个平方根10. (2分) (2018七上·宝丰期末) 已知12mx和是同类项,则|2﹣4x|+|4x﹣1|的值为()A . 1B . 3C . 13D . 8x﹣3二、填空题 (共10题;共10分)11. (1分) (2019七上·武威月考) 如图,在单位长度是1的数轴上,点和点所表示的两个数互为相反数,则点表示的数是________.12. (1分) (2020七上·江城月考) 在有理数中,最大的负整数是________,最小的正整数是________,最大的非正数是________,最小的非负数是________。
2018-2019学年七年级(上)第一次月考数学试卷一、选择题1.﹣2016的绝对值是()A.2016 B.﹣2016 C.D.﹣2.在﹣,0,,﹣1这四个数中,最小的数是()A.﹣B.0 C.D.﹣13.下列说法正确的是()A.整数就是正整数和负整数B.负整数的相反数就是非负整数C.有理数中不是负数就是正数D.零是自然数,但不是正整数4.如图,数轴上点A所表示的数的倒数是()A.﹣2 B.2 C.D.5.下列算式中,结果是正数的是()A.﹣[﹣(﹣3)]B.﹣|﹣(﹣3)|3 C.﹣(﹣3)2D.﹣32×(﹣2)3 6.有四包真空小包装火腿,每包以标准克数(450克)为基准,超过的克数记作正数,不足的克数记作负数,以下数据是记录结果,其中表示实际克数最接近标准克数的是()A.+2 B.﹣3 C.+3 D.+47.下列说法正确的是()A.一个数的绝对值一定比0大B.倒数等于它本身的数是±1C.绝对值等于它本身的数一定是正数D.一个数的相反数一定比它本身小8.下列结论中,错误的个数为()﹣(﹣2)2=4,﹣5÷×5=﹣5,=,(﹣3)2×(﹣)=3,﹣33=﹣9.A.2个 B.3个 C.4个 D.5个9.已知a、b、c大小如图所示,则的值为()A.1 B.﹣1 C.±1 D.010.将正整数依次按如表规律排成4列,根据表中的排列规律,数2016应在()A.第671行第2列B.第671行第3列 C.第672行第2列 D.第672行第3列二、填空题11.在知识抢答中,如果用+10表示得10分,那么扣20分表示为.12.某天温度最高是12℃,最低是﹣7℃,这一天温差是℃.13.在数﹣4.3,﹣,|0|,﹣(﹣),﹣|﹣3|,﹣(+5)中,是非正数.14.比较大小:.15.将2.96精确到十分位的近似数为.16.当|a|+a=0时,则a是.17.若|a+2|+(b﹣3)2=0,则﹣a2b=.18.设a<0,b>0,且a+b>0,用“<”号把a、﹣a、b、﹣b连接起来为.19.A、B两地相距6980000m,用科学记数法表示为km.20.若x、y互为相反数,a、b互为倒数,c的绝对值等于2,则()2016﹣(﹣ab)2015+c3=.三、解答题(共60分)21.(6分)在数轴上表示下列各数,再用“<”号把各数连接起来.+2,﹣(+4),+(﹣1),|﹣3|,﹣1.522.(24分)计算:(1)22+(﹣2016)+(﹣2)+2016(2)(﹣4)×|﹣3|﹣4÷(﹣2)﹣|﹣5|(3)﹣3×(﹣)﹣(﹣10)÷(﹣)(4)0.7×19+2×(﹣14)+0.7×+×(﹣14)(5)(﹣22﹣33)÷[(﹣)3×÷](6)215﹣214﹣213﹣…﹣27﹣26﹣25.23.(6分)规定“*”是一种运算,且a*b=a b﹣b a,例如:2*3=23﹣32=8﹣9=﹣1,试计算4*(3*2)的值.24.(6分)已知|m|=4,|n|=6,且|m+n|=m+n,求m﹣n的值.25.(9分)股民周思源上周五在股市以收盘价(收市时的价格)买进某公司股票1000股,每股25元,周六、周日股市不交易,在接下来的一周交易日内,周思源记下该股票每日收盘价格相比前一天的涨跌情况:(单位:元)根据上表回答问题:(1)星期二收盘时,该股票每股多少元?(2)这一周内该股票收盘时的最高价,最低价分别是多少?(3)已知买入股票与卖出股票均需支付成交总金额的5‰(千分之五)的交易费.若小王在本周五以收盘价将全部股票卖出,他的收益情况如何?26.(9分)阅读下面材料:点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为|AB|.当A、B两点中有一点在原点时,不妨设点A在原点,如图1所示,|AB|=|OB|=|b|=|a﹣b|;当A、B两点都不在原点时.(1)如图2所示,点A、B都在原点右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a ﹣b|;(2)如图3所示,点A、B都在原点左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b ﹣(﹣a)=|a﹣b|;(3)如图4所示,点A、B在原点两边,|AB|=|OB|+|OA|=|b|+|a|=a+(﹣b)=|a﹣b|.综上所述,数轴上A、B两点之间的距离表示为|AB|=|a﹣b|.根据阅读材料回答下列问题:(1)数轴上表示﹣2和﹣5的两点之间的距离是,数轴上表示1和﹣3的两点之间的距离是;(2)数轴上表示x和﹣3的两点A、B之间的距离是,如果|AB|=2,则x 为.(3)当代数式|x+1|+|x﹣2|取最小值时,即在数轴上,表示x的动点到表示﹣1和2的两个点之间的距离和最小,这个最小值为.相应的x的取值范围是.参考答案与试题解析一、选择题1.﹣2016的绝对值是()A.2016 B.﹣2016 C.D.﹣【考点】绝对值.【分析】根据正数的绝对值是本身,0的绝对值为0,负数的绝对值是其相反数.【解答】解:∵﹣2016的绝对值等于其相反数,∴﹣2016的绝对值是2016.故选A.【点评】本题考查了绝对值,解决本题的关键是明确绝对值的定义.2.在﹣,0,,﹣1这四个数中,最小的数是()A.﹣B.0 C.D.﹣1【考点】有理数大小比较.【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:根据有理数大小比较的法则,可得﹣1<﹣,所以在﹣,0,,﹣1这四个数中,最小的数是﹣1.故选:D.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.3.下列说法正确的是()A.整数就是正整数和负整数B.负整数的相反数就是非负整数C.有理数中不是负数就是正数D.零是自然数,但不是正整数【考点】有理数.【分析】按照有理数的分类填写:有理数.【解答】解:A、整数就是正整数和负整数,还有0,故本选项错误;B、负整数的相反数就是非负整数,故本选项错误;C、有理数中不是负数就是正数,还有0,故本选项错误;D、零是自然数,但不是正整数,本选项正确;故选D.【点评】认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.注意整数和正数的区别,注意0是整数,但不是正数.4.如图,数轴上点A所表示的数的倒数是()A.﹣2 B.2 C.D.【考点】倒数;数轴.【分析】由题意先读出数轴上A的数,然后再根据倒数的定义进行求解.【解答】解:由题意得数轴上点A所表示的数为﹣2,∴﹣2的倒数是﹣,故选D.【点评】此题主要考查倒数的定义,是一道基础题.5.下列算式中,结果是正数的是()A.﹣[﹣(﹣3)]B.﹣|﹣(﹣3)|3 C.﹣(﹣3)2D.﹣32×(﹣2)3【考点】绝对值;正数和负数;相反数.【分析】根据相反数的定义,有理数的运算,可得答案.【解答】解:A、﹣[﹣(﹣3)]=﹣[+3]=﹣3,故A错误;B、﹣|﹣(﹣3)|2=﹣9,故B错误;C、﹣(﹣3)2=﹣9,故C错误;D、﹣32×(﹣2)3=﹣9×(﹣8)=72,故D正确;故选:D.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.6.有四包真空小包装火腿,每包以标准克数(450克)为基准,超过的克数记作正数,不足的克数记作负数,以下数据是记录结果,其中表示实际克数最接近标准克数的是()A.+2 B.﹣3 C.+3 D.+4【考点】正数和负数.【分析】实际克数最接近标准克数的是绝对值最小的那个数.【解答】解:A、+2的绝对值是2;B、﹣3的绝对值是3;C、+3的绝对值是3;D、+4的绝对值是4.A选项的绝对值最小.故选A.【点评】本题主要考查正负数的绝对值的大小比较.7.下列说法正确的是()A.一个数的绝对值一定比0大B.倒数等于它本身的数是±1C.绝对值等于它本身的数一定是正数D.一个数的相反数一定比它本身小【考点】倒数;相反数;绝对值.【分析】根据倒数的意义,绝对值的性质,相反数的意义,可得答案.【解答】解:A、0的绝对值等于零,故A错误;B、倒数等于它本身的数是±1,故B正确;C、绝对值等于它本身的数一定是非负数,故C错误;D、0等相反数等于零,故D错误;故选:B.【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.8.下列结论中,错误的个数为()﹣(﹣2)2=4,﹣5÷×5=﹣5,=,(﹣3)2×(﹣)=3,﹣33=﹣9.A.2个 B.3个 C.4个 D.5个【考点】有理数的乘方;有理数的乘法;有理数的除法.【分析】根据有理数的乘方、有理数的除法和有理数的乘法法则分别进行计算,即可得出答案.【解答】解:∵﹣(﹣2)2=﹣4,﹣5÷×5=﹣125,=,(﹣3)2×(﹣)=﹣3,﹣33=﹣27,∴错误的有5个;故选D.【点评】此题考查了有理数的乘方、有理数的除法和有理数的乘法,掌握运算法则是本题的关键,是一道基础题.9.已知a、b、c大小如图所示,则的值为()A.1 B.﹣1 C.±1 D.0【考点】绝对值;数轴.【分析】根据数轴上a,b,c的位置知道它们的符号,从而去掉绝对值.【解答】解:根据图示,知a<0<b<c,∴=++=﹣1+1+1=1.故选A.【点评】本题考查了绝对值、数轴.解题的关键是根据数轴判断a,b,c的符号.10.将正整数依次按如表规律排成4列,根据表中的排列规律,数2016应在()A.第671行第2列B.第671行第3列 C.第672行第2列 D.第672行第3列【考点】规律型:数字的变化类.【分析】由图表知,3个数字为一组,奇数行从左向右排列,偶数列是从右向左排列,2016÷3=672,即可依据规律得出其位置.【解答】解:∵2016÷3=672,∴2016排在第672行,第2列,故选:C.【点评】本题考查数字的变化类,解题的关键是明确题意,找出数字的变化特点.二、填空题11.在知识抢答中,如果用+10表示得10分,那么扣20分表示为﹣20.【考点】正数和负数.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示,“正”和“负”相对.【解答】解:用+10表示得10分,那么扣20分用负数表示,那么扣20分表示为﹣20.故答案为:﹣20.【点评】此题考查正负数在实际生活中的应用,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.12.某天温度最高是12℃,最低是﹣7℃,这一天温差是19℃.【考点】有理数的减法.【分析】温差等于最高气温减去最低气温,列式计算即可.【解答】解:12﹣(﹣7)=12+7=19.故答案为:19.【点评】本题考查了有理数的减法的应用和有理数的减法法则,是基础知识较简单.13.在数﹣4.3,﹣,|0|,﹣(﹣),﹣|﹣3|,﹣(+5)中,﹣4.3,﹣,|0|,﹣|﹣3|,﹣(+5)是非正数.【考点】正数和负数;相反数;绝对值.【分析】首先将各数化简,再根据正负数的定义可得结果.【解答】解:﹣4.3是负数,不是正数;﹣是负数,不是正数;|0|=0,不是正数;﹣()=,是正数;﹣|﹣3|=﹣3,不是正数;﹣(+5)=﹣5,不是正数,所以﹣4.3,﹣,|0|,﹣|﹣3|,﹣(+5)是非负数,故答案为:﹣4.3,﹣,|0|,﹣|﹣3|,﹣(+5).【点评】本题主要考查了有理数的定义,熟练掌握有理数的分类是解答此题的关键.14.比较大小:>.【考点】有理数大小比较.【分析】根据两个负数比较大小,其绝对值大的反而小比较即可.【解答】解:∵|﹣|=,|﹣|=,∴﹣>﹣,故答案为:>.【点评】本题考查了有理数的大小比较的应用,能熟记有理数的大小比较法则是解此题的关键.15.将2.96精确到十分位的近似数为 3.0.【考点】近似数和有效数字.【分析】根据近似数的精确度求解.【解答】解:2.96精确到十分位的近似数为3.0.答案为3.0.【点评】本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.\16.当|a|+a=0时,则a是非负数.【考点】绝对值.【分析】利用相反数的定义可得|a|与a的关系,易得结果.【解答】解:∵|a|+a=0,∴|a|=﹣a,∴a≤0,即a为非负数,故答案为:非负数.【点评】本题主要考查了相反数的定义和绝对值的性质,根据相反数的定义解答此题是关键.17.若|a+2|+(b﹣3)2=0,则﹣a2b=﹣12.【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】根据非负数的性质列方程求出a、b的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,a+2=0,b﹣3=0,解得a=﹣2,b=3,所以,﹣a2b=﹣(﹣2)2×3=﹣4×3=﹣12.故答案为:﹣12.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.18.设a<0,b>0,且a+b>0,用“<”号把a、﹣a、b、﹣b连接起来为﹣b <a<﹣a<b.【考点】有理数大小比较.【分析】根据有理数的加法法则判断a、b以及﹣a、﹣b的符号和|a|与|b|的大小,据此即可判断.【解答】解:∵a<0,b>0,a+b>0,∴﹣a>0,﹣b<0,|a|<|b|,∴﹣b<a<﹣a<b.故答案是:﹣b<a<﹣a<b.【点评】本题考查了有理数的加法法则以及有理数大小的比较,判断a、b以及﹣a、﹣b的符号和|a|与|b|的大小是关键.19.A、B两地相距6980000m,用科学记数法表示为 6.98×103km.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将6980000m=6980km用科学记数法表示为:6.98×103.故答案为:6.98×103.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.20.若x、y互为相反数,a、b互为倒数,c的绝对值等于2,则()2016﹣(﹣ab)2015+c3=9或﹣7.【考点】代数式求值.【分析】根据题意可知x+y=0,ab=1,|c|=2,然后分别代入原式求值即可.【解答】解:由题意可知:x+y=0,ab=1,c=±2,当c=2时,∴原式=0﹣(﹣1)2015+23=1+8=9当c=﹣2时,∴原式=0﹣(﹣1)2015+(﹣2)3=1+(﹣8)=﹣7故答案为:9或﹣7.【点评】本题考查代数式求值,涉及相反数,倒数,绝对值的性质.三、解答题(共60分)21.在数轴上表示下列各数,再用“<”号把各数连接起来.+2,﹣(+4),+(﹣1),|﹣3|,﹣1.5【考点】有理数大小比较;数轴.【分析】根据有理数大小的比较方法,先化简再判断大小.【解答】解:先化简:﹣(+4)=﹣4,+(﹣1)=﹣1,|﹣3|=3;所给5个数中,有3个负数,2个正数,在数轴上分别比较3个负数2个正数的大小,正数大于一切负数.故﹣(+4)<﹣1.5<+(﹣1)<+2<|﹣3|.【点评】要比较几个数的大小,需要先对数进行化简,看每个数的实际值.22.(24分)(2016秋•麻城市月考)计算:(1)22+(﹣2016)+(﹣2)+2016(2)(﹣4)×|﹣3|﹣4÷(﹣2)﹣|﹣5|(3)﹣3×(﹣)﹣(﹣10)÷(﹣)(4)0.7×19+2×(﹣14)+0.7×+×(﹣14)(5)(﹣22﹣33)÷[(﹣)3×÷](6)215﹣214﹣213﹣…﹣27﹣26﹣25.【考点】有理数的混合运算.【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式先计算乘除运算,再计算加减运算即可得到结果;(3)原式先计算乘除运算,再计算加减运算即可得到结果;(4)原式逆用乘法分配律计算即可得到结果;(5)原式先计算乘方运算,再计算乘除运算即可得到结果;(6)原式两项两项结合后,计算即可得到结果.【解答】解:(1)原式=22﹣2﹣2016+2016=20;(2)原式=﹣12+2﹣5=﹣15;(3)原式=×﹣10×=3﹣15=﹣12;(4)原式=﹣14×(+)+0.7×(19+)=﹣42+14=﹣28;(5)原式=(﹣31)÷(﹣××)=﹣31×(﹣)=46.5;(6)原式=214×(2﹣1)﹣213﹣…﹣27﹣26﹣25=213×(2﹣1)﹣…﹣27﹣26﹣25=…=26﹣25=32.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.23.规定“*”是一种运算,且a*b=a b﹣b a,例如:2*3=23﹣32=8﹣9=﹣1,试计算4*(3*2)的值.【考点】有理数的混合运算.【分析】原式利用题中的新定义计算即可得到结果.【解答】解:根据题中的新定义得:原式=4*(9﹣8)=4*1=4﹣1=3.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.24.已知|m|=4,|n|=6,且|m+n|=m+n,求m﹣n的值.【考点】有理数的减法;绝对值;有理数的加法.【分析】首先根据绝对值的性质得到m、n的值,然后再根据绝对值的性质确定m、n的值,进而可得m﹣n的值.【解答】解:∵|m|=4,|n|=6,∴m=±4,n=±6,∵|m+n|=m+n,∴m+n≥0,∴m=±4,n=6,∴当m=4,n=6时,m﹣n=﹣2,当m=﹣4,n=6时,m﹣n=﹣10,综上:m﹣n=﹣2或﹣10.【点评】此题主要考查了有理数的减法,以及绝对值的性质,关键是掌握绝对值等于一个正数的数有两个,它们互为相反数.25.股民周思源上周五在股市以收盘价(收市时的价格)买进某公司股票1000股,每股25元,周六、周日股市不交易,在接下来的一周交易日内,周思源记下该股票每日收盘价格相比前一天的涨跌情况:(单位:元)根据上表回答问题:(1)星期二收盘时,该股票每股多少元?(2)这一周内该股票收盘时的最高价,最低价分别是多少?(3)已知买入股票与卖出股票均需支付成交总金额的5‰(千分之五)的交易费.若小王在本周五以收盘价将全部股票卖出,他的收益情况如何?【考点】正数和负数.【分析】(1)根据有理数的加减法的运算方法,求出星期二收盘时,该股票每股多少元即可.(2)这一周内该股票星期一的收盘价最高,星期四的收盘价最低.(3)用本周五以收盘价将全部股票卖出后得到的钱数减去买入股票与卖出股票均需支付的交易费,判断出他的收益情况如何即可.【解答】解:(1)25+2﹣1.4=25.6(元)答:星期二收盘时,该股票每股25.6元.(2)25+2=27(元)25+2﹣1.4+0.9﹣1.8=24.7(元)答:收盘时的最高价、最低价分别是27元、24.7元.(3)(25.2﹣25)×1000﹣5‰×1000×(25+25.2)=200﹣251=﹣51(元)答:他的收益情况为亏51元.【点评】此题主要考查了正数和负数,有理数加减乘除的运算方法,以及单价、总价、数量的关系,要熟练掌握.26.阅读下面材料:点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为|AB|.当A、B两点中有一点在原点时,不妨设点A在原点,如图1所示,|AB|=|OB|=|b|=|a﹣b|;当A、B两点都不在原点时.(1)如图2所示,点A、B都在原点右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a ﹣b|;(2)如图3所示,点A、B都在原点左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b ﹣(﹣a)=|a﹣b|;(3)如图4所示,点A、B在原点两边,|AB|=|OB|+|OA|=|b|+|a|=a+(﹣b)=|a﹣b|.综上所述,数轴上A、B两点之间的距离表示为|AB|=|a﹣b|.根据阅读材料回答下列问题:(1)数轴上表示﹣2和﹣5的两点之间的距离是3,数轴上表示1和﹣3的两点之间的距离是4;(2)数轴上表示x和﹣3的两点A、B之间的距离是|x+3| ,如果|AB|=2,则x为﹣1或5.(3)当代数式|x+1|+|x﹣2|取最小值时,即在数轴上,表示x的动点到表示﹣1和2的两个点之间的距离和最小,这个最小值为3.相应的x的取值范围是﹣1≤x≤2.【考点】整式的加减—化简求值;数轴;绝对值.【分析】根据数轴上A、B两点之间的距离表示为|AB|=|a﹣b|即可求出答案.【解答】解:(1)﹣2﹣(﹣5)=3,1﹣(﹣3)=4,;(2)|x﹣(﹣3)|=|x+3|,∵|x+3|=2,∴x+3=±2,∴x=﹣1或5;(3)由题意可知:当x在﹣1与2之间时,此时,代数式|x+1|+|x﹣2|取最小值,最小值为2﹣(﹣1)=3,此时x的取值范围为:﹣1≤x≤2;故答案为:(1)3,4;(2)|x+3|,﹣1或﹣5;(3)3,﹣1≤x≤2.【点评】本题考查绝对值的意义,涉及有理数的运算,整式化简,绝对值的性质.。
大同市初中2018-2019学年初中七年级上学期数学第一次月考试卷班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.(2分)(2015•海南)﹣2015的倒数是()A. B. C. ﹣2015 D. 20152.(2分)(2015•厦门)如图,在△ABC中,∠C=90°,点D,E分别在边AC,AB上.若∠B=∠ADE,则下列结论正确的是()A. ∠A和∠B互为补角B. ∠B和∠ADE互为补角C. ∠A和∠ADE互为余角D. ∠AED和∠DEB互为余角3.(2分)(2015•连云港)2014年连云港高票当选全国“十大幸福城市”,在江苏十三个省辖市中居第一位,居民人均可支配收入约18000元,其中“18000”用科学记数法表示为()A. 0.18×105B. 1.8×103C. 1.8×104D. 18×1034.(2分)(2015•宁德)2014年我国国内生产总值约为636000亿元,数字636000用科学记数法表示为()A. B. C. D.5.(2分)(2015•贺州)观察下列等式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,…,解答下面问题:2+22+23+24+…+22015﹣1的末位数字是()A. 0B. 3C. 4D. 86.(2分)(2015•山西)计算﹣3+(﹣1)的结果是()A. 2B. -2C. 4D. -47.(2分)(2015•宿迁)-的倒数是()A. -2B. 2C. -D.8.(2分)(2015•龙岩)﹣1的倒数是()A. ﹣1B. 0C. 1D. ±19.(2分)(2015•海南)据报道,2015年全国普通高考报考人数约为9 420 000人,数据9 420 000用科学记数法表示为9.42×10n,则n的值是()A. 4B. 5C. 6D. 710.(2分)(2015•毕节市)2014年我国的GDP总量为629180亿元,将629180亿用科学记数法表示为()A. 6.2918×105元B. 6.2918×1014元C. 6.2918×1013元D. 6.2918×1012元二、填空题11.(1分)(2015•娄底)下列数据是按一定规律排列的,则第7行的第一个数为________ .12.(1分)(2015•呼伦贝尔)将图1的正方形作如下操作:第1次分别连接对边中点如图2,得到5个正方形;第2次将图2左上角正方形按上述方法再分割如图3,得到9个正方形…,以此类推,第n次操作后,得到正方形的个数是 ________.13.(1分)(2015•益阳)如图是用长度相等的小棒按一定规律摆成的一组图案,第1个图案中有6根小棒,第2个图案中有11根小棒,…,则第n个图案中有________根小棒.14.(1分)(2015•张家界)由中国发起创立的“亚洲基础设施投资银行”的法定资本金为100 000 000 000美元,用科学记数法表示为________美元.15.(1分)(2015•巴中)a是不为1的数,我们把称为a的差倒数,如:2的差倒数为=﹣1;﹣1的差倒数是=;已知a1=3,a2是a1的差倒数,a3是a2的差倒数.a4是a3差倒数,…依此类推,则a2015= ________.16.(1分)(2015•湘潭)计算:23﹣(﹣2)=________ .三、解答题17.(15分)某电动车厂平均每天计划生产200辆电动车,由于各种原因实际每天的生产量与计划量相比(1)产量最多的一天比产量最少的一天多生产多少辆?(2)根据记录可知前五天共生产多少辆?(3)该厂实行计件工资制,每辆车100元,超额完成则超额部分每辆车再奖励40元(以一周为单位结算),那么该厂工人这一周的工资总额是多少元?18.(10分)已知A=ax2-3x+by-1,B=3-y-x+x2且无论x,y为何值时,A-2B的值始终不变.(1)分别求a、b的值;(2)求b a的值.19.(10分)我们定义一种新的运算“*”,并且规定:a*b=a2-2b.例如:2*3=22-2×3=-2,2*(-a)=22-2×(-a)=4+2a.(1)求3*(-4)的值;(2)若2*x=10,求x的值.20.(10分)(1)关于x的方程与方程的解相同,求m的值.(2)已知关于x的多项式的值与x的值无关,求m,n的值.21.(7分)探索规律:观察下面由“※”组成的图案和算式,解答问题:(1)请猜想1+3+5+7+9+…+19=________;(2)请猜想1+3+5+7+9+…+(2n-1)+(2n+1)=________;(3)请用上述规律计算:51+53+55+…+2011+2013.22.(10分)有20筐鸡蛋,以每筐25千克为标准,超过或不足的分别用正、负来表示,记录如下:单位:千克(2)若鸡蛋每千克售价5元,则出售这20筐鸡蛋可卖多少元?23.(6分)如图1,长方形OABC的边OA在数轴上,O为原点,长方形OABC的面积为12,OC边长为3.(1)数轴上点A表示的数为________.(2)将长方形OABC沿数轴水平移动,移动后的长方形记为O′A′B′C′,移动后的长方形O′A′B′C′与原长方形OABC重叠部分(如图2中阴影部分)的面积记为S.①当S恰好等于原长方形OABC面积的一半时,数轴上点A′表示的数是多少?②设点A的移动距离AA′=x.(ⅰ)当S=4时,求x的值;(ⅱ)D为线段AA′的中点,点E在线段OO′上,且OE=OO′,当点D,E所表示的数互为相反数时,求x的值.24.(10分)已知:(1)求(用含的代数式表示)(2)比较与的大小大同市初中2018-2019学年初中七年级上学期数学第一次月考试卷(参考答案)一、选择题。
大同镇初中2018-2019学年初中七年级上学期数学第一次月考试卷
班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1.(2分)(2015•甘南州)在“百度”搜索引擎中输入“姚明”,能搜索到与之相关的网页约27000000个,将这个数用科学记数法表示为()
A. 2.7×105
B. 2.7×106
C. 2.7×107
D. 2.7×108
2.(2分)(2015•南通)如果水位升高6m时水位变化记作+6m,那么水位下降6m时水位变化记作()A. ﹣3m B. 3m C. 6m D. ﹣6m
3.(2分)(2015•恩施州)恩施气候独特,土壤天然含硒,盛产茶叶,恩施富硒茶叶2013年总产量达64000吨,将64000用科学记数法表示为()
A. B. C. D.
4.(2分)(2015•深圳)用科学记数法表示316000000为()
A. 3.16×107
B. 3.16×108
C. 31.6×107
D. 31.6×106
5.(2分)(2015•钦州)国家统计局4月15日发布数据,初步核算,2015年一季度全国国内生产总值为140667亿元,其中数据140667用科学记数法表示为()
A. 1.40667×105
B. 1.40667×106
C. 14.0667×104
D. 0.140667×106
6.(2分)(2015•六盘水)下列运算结果正确的是()
A. ﹣87×(﹣83)=7221
B. ﹣2.68﹣7.42=﹣10
C. 3.77﹣7.11=﹣4.66
D. <
7.(2分)(2015•徐州)﹣2的倒数是()
A. 2
B. -2
C.
D. -
8.(2分)(2015•泰州)﹣的绝对值是()
A. -3
B.
C. -
D. 3
9.(2分)(2015•漳州)如图是一个长方体包装盒,则它的平面展开图是()
A. B.
C. D.
10.(2分)(2015•贺州)下列各数是负数的是()
A. 0
B.
C. 2.5
D. -1
二、填空题
11.(1分)(2015•梧州)计算:3﹣4= ________.
12.(1分)(2015•呼伦贝尔)将图1的正方形作如下操作:第1次分别连接对边中点如图2,得到5个正方形;第2次将图2左上角正方形按上述方法再分割如图3,得到9个正方形…,以此类推,第n次操作后,得到正方形的个数是 ________.
13.(1分)(2015•厦门)已知(39+)×(40+)=a+b,若a是整数,1<b<2,则a=________ .
14.(1分)(2015•通辽)一列数x1,x2,x3,…,其中x1=,x n=(n为不小于2的整数),则x2015= ________.
15.(1分)(2015•上海)计算:|﹣2|+2=________ .
16.(1分)(2015•呼伦贝尔)将图1的正方形作如下操作:第1次分别连接对边中点如图2,得到5个正方形;第2次将图2左上角正方形按上述方法再分割如图3,得到9个正方形…,以此类推,第n次操作后,得到正方形的个数是 ________.
三、解答题
17.(11分)如图,在数轴上点A表示数a,点C表示数c,且多项式x3﹣3xy29﹣20的常数项是a,次数是c.
我们把数轴上两点之间的距离用表示两点的大写字母一起标记,比如,点A与点B之间的距离记作AB.
(1)求a,c的值;
(2)若数轴上有一点D满足CD=2AD,则D点表示的数为________;
(3)动点B从数1对应的点开始向右运动,速度为每秒1个单位长度.同时点A,C在数轴上运动,点A,C的速度分别为每秒2个单位长度,每秒3个单位长度,运动时间为t秒.
①若点A向右运动,点C向左运动,AB=BC,求t的值;
②若点A向左运动,点C向右运动,2AB-m×BC的值不随时间t的变化而改变,直接写出m的值.18.(11分)如图
设a1=22-02,a2=32-12,…,a n=(n+1)2-(n-1)2(n为大于1的整数)
(1)计算a15的值;
(2)通过拼图你发现前三个图形的面积之和与第四个正方形的面积之间有什么关系:
________(用含a、b的式子表示);
(3)根据(2)中结论,探究a n=(n+1)2-(n-1)2是否为4的倍数.
19.(9分)已知:c=10,且a,b满足(a+26)2+|b+c|=0,请回答问题:
(1)请直接写出a,b,c的值:a=________,b=________;
(2)在数轴上a、b、c所对应的点分别为A、B、C,记A、B两点间的距离为AB,则AB=________,AC=________;(3)在(1)(2)的条件下,若点M从点A出发,以每秒1个单位长度的速度向右运动,当点M到达点C 时,点M停止;当点M运动到点B时,点N从点A出发,以每秒3个单位长度向右运动,点N到达点C后,
再立即以同样的速度返回,当点N到达点A时,点N停止.从点M开始运动时起,至点M、N均停止运动为止,设时间为t秒,请用含t的代数式表示M,N两点间的距离.
20.(10分)已知:
(1)求(用含的代数式表示)
(2)比较与的大小
21.(15分)“十一”黄金周期间,淮安动物园在7天假期中每天接待的人数变化如下表(正数表示比前一
(2)请判断七天内游客人数最多的是哪天,有多少人?
(3)若9月30日的游客人数为2万人,门票每人10元,则黄金周期间淮安动物园门票收入是多少元?22.(6分)如图1,长方形OABC的边OA在数轴上,O为原点,长方形OABC的面积为12,OC边长为3.
(1)数轴上点A表示的数为________.
(2)将长方形OABC沿数轴水平移动,移动后的长方形记为O′A′B′C′,移动后的长方形O′A′B′C′与原长方形OABC重叠部分(如图2中阴影部分)的面积记为S.
①当S恰好等于原长方形OABC面积的一半时,数轴上点A′表示的数是多少?
②设点A的移动距离AA′=x.
(ⅰ)当S=4时,求x的值;
(ⅱ)D为线段AA′的中点,点E在线段OO′上,且OE=OO′,当点D,E所表示的数互为相反数时,求x的值.
23.(15分)粮库3天内发生粮食进出库的吨数如下(“ +”表示进库“﹣”表示出库)
+26,﹣32,﹣15,+34,﹣38,﹣20.
(1)经过这3天,粮库里的粮食是增多还是减少了?
(2)经过这3天,仓库管理员结算发现库里还存480吨粮,那么3天前库里存粮多少吨?
(3)如果进出的装卸费都是每吨5元,那么这3天要付多少装卸费?
24.(10分)在解决数学问题的过程中,我们常用到“分类讨论”的数学思想,下面是运用分类讨论的数学
思想解决问题的过程,请仔细阅读,并解答题目后提出的(探究).
(提出问题)两个有理数a、b满足a、b同号,求的值.
(解决问题)解:由a、b同号,可知a、b有两种可能:①当a,b都正数;②当a,b都是负数.①若a、b
都是正数,即a>0,b>0,有|a|=a,|b|=b,则= =1+1=2;②若a、b都是负数,即a<0,b<0,
有|a|=﹣a,|b|=﹣b,则= =(﹣1)+(﹣1)=﹣2,所以的值为2或﹣2.
(探究)请根据上面的解题思路解答下面的问题:
(1)两个有理数a、b满足a、b异号,求的值;
(2)已知|a|=3,|b|=7,且a<b,求a+b的值.
大同镇初中2018-2019学年初中七年级上学期数学第一次月考试卷(参考答案)一、选择题。