第三讲__排序不等式讲解
- 格式:doc
- 大小:374.51 KB
- 文档页数:10
第三讲 柯西不等式与排序不等式考情分析从近两年高考来看,对本部分内容还未单独考查,但也不能忽视,利用柯西不等式构造“平方和的积”与“积的和的平方”,利用排序不等式证明成“对称”形式,或两端是“齐次式”形式的不等式问题.真题体验1.(2017·江苏高考)已知a ,b ,c ,d 为实数,且a 2+b 2=4,c 2+d 2=16,证明:ac +bd ≤8.证明:由柯西不等式可得:(ac +bd )2≤(a 2+b 2)(c 2+d 2). 因为a 2+b 2=4,c 2+d 2=16, 所以(ac +bd )2≤64, 因此ac +bd ≤8.2.(2015·陕西高考)已知关于x 的不等式|x +a |<b 的解集为{x |2<x <4}. (1)求实数a ,b 的值;(2)求at +12+bt 的最大值.解:(1)由|x +a |<b ,得-b -a <x <b -a ,则⎩⎪⎨⎪⎧-b -a =2,b -a =4,解得⎩⎪⎨⎪⎧a =-3,b =1.(2)-3t +12+t =3·4-t +t ≤ [(3)2+12][(4-t)2+(t)2] =24-t +t =4,当且仅当4-t 3=t1,即t =1时等号成立, 故(-3t +12+t)max =4.柯西不等式的一般形式为(a 21+a 2+…+a 2n )(b 21+b 2+…+b 2n )≥(a 1b 1+a 2b 2+…+a nb n )2(a i ,b i ∈R ,i =1,2,…,n ),形式简洁、美观、对称性强,灵活地运用柯西不等式,可以使一些较为困难的不等式证明问题迎刃而解.[例1] 已知a ,b 为正实数,a +b =1,x 1,x 2为正实数. (1)求x1a +x2b +2x1x2的最小值;(2)求证:(ax 1+bx 2)(ax 2+bx 1)≥x 1x 2.[解] (1)∵a ,b 为正实数,a +b =1,x 1,x 2为正实数, ∴x1a +x2b +2x1x2≥33x1a ·x2b ·2x1x2=332ab ≥ 332⎝ ⎛⎭⎪⎫a +b 22=6,当且仅当x1a =x2b =2x1x2,a =b ,即a =b =12,且x 1=x 2=1时,x1a +x2b +2x1x2有最小值6.(2)证明:∵a ,b ∈R +,a +b =1,x 1,x 2为正实数, ∴(ax 1+bx 2)(ax 2+bx 1)=[(ax1)2+(bx2)2][(ax2)2+(bx1)2]≥(a2x1x2+b2x1x2)2=x 1x 2(a +b )2=x 1x 2,当且仅当x 1=x 2时取等号.排序不等式具有自己独特的体现:多个变量的排列与其大小顺序有关,特别是与多变量间的大小顺序有关的不等式问题,利用排序不等式解决往往很简捷.[例2] 在△ABC 中,试证:π3≤aA +bB +cC a +b +c <π2.[证明] 不妨设a ≤b ≤c ,于是A ≤B ≤C . 由排序不等式,得aA +bB +cC =aA +bB +cC ,aA +bB +cC ≥bA +cB +aC , aA +bB +cC ≥cA +aB +bC .以上三式相加,得3(aA +bB +cC )≥(a +b +c )(A +B +C )=π(a +b +c ). 得aA +bB +cC a +b +c ≥π3,①又由0<b +c -a,0<a +b -c,0<a +c -b ,有 0<A (b +c -a )+C (a +b -c )+B (a +c -b ) =a (B +C -A )+b (A +C -B )+c (A +B -C ) =a (π-2A )+b (π-2B )+c (π-2C ) =(a +b +c )π-2(aA +bB +cC ). 得aA +bB +cC a +b +c <π2.②由①②得原不等式成立.有关不等式问题往往要涉及到对式子或量的范围的限定.其中含有多变量限制条件的最值问题往往难以处理.在这类题目中,利用柯西不等式或排序不等式处理往往比较容易.[例3] 已知5a 2+3b 2=158,求a 2+2ab +b 2的最大值.[解] ∵⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫552+⎝ ⎛⎭⎪⎫332[(5a )2+(3b )2] ≥⎝⎛⎭⎪⎫55×5a +33×3b 2=(a +b )2=a 2+2ab +b 2,当且仅当5a =3b 即a =38,b =58时取等号.∴a 2+2ab +b 2≤815×(5a 2+3b 2)=815×158=1.∴a 2+2ab +b 2的最大值为1. [例4] 已知a +b +c =1.(1)求S =2a 2+3b 2+c 2的最小值及取得最小值时a ,b ,c 的值; (2)若2a 2+3b 2+c 2=1,求c 的取值范围. [解] (1)根据柯西不等式,得1=a +b +c =12·2a +13·3b +1·c≤⎝ ⎛⎭⎪⎫12+13+112(2a 2+3b 2+c 2)12=116·S , 即116·S ≥1,∴S ≥611,当且仅当a =311, b =211,c =611时等号成立,∴当a =311,b =211,c =611时,S min =611.(2)由条件可得⎩⎪⎨⎪⎧a +b =1-c ,2a2+3b2=1-c2,根据柯西不等式,得(a +b )2≤⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫132[(2a )2+(3b )2]=56×(2a 2+3b 2),∴(1-c )2≤56·(1-c 2),解得111≤c ≤1.∴c 的取值范围为⎣⎢⎡⎦⎥⎤111,1.(时间:90分钟,总分120分)一、选择题(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设a ,b ∈R +且a +b =16,则1a +1b 的最小值是( )A.14 B.18 C.116D.12解析:选A (a +b )⎝ ⎛⎭⎪⎫1a +1b ≥⎝ ⎛⎭⎪⎫a ·1a +b ·1b 2=4,∴1a +1b ≥14.当且仅当a ·1b =b ×1a ,即a =b =8时取等号.2.已知x +3y +5z =6,则x 2+y 2+z 2的最小值为( ) A.65 B.635C.3635D .6解析:选C 由柯西不等式,得x 2+y 2+z 2=(12+32+52)(x 2+y 2+z 2)×112+32+52≥(x+3y +5z )2×135=62×135=3635,当且仅当x =y 3=z 5时等号成立.3.已知a ,b ,c 为正数且a +b +c =32,则a2+b2+b2+c2+c2+a2的最小值为( )A .4B .4 2C .6D .6 2解析:选C ∵a ,b ,c 为正数.∴ 2 a2+b2=1+1 a2+b2≥a +b . 同理 2 b2+c2≥b +c , 2 c2+a2≥c +a ,相加得 2 (a2+b2+b2+c2+c2+a2)≥2(b +c +a )=62, 即a2+b2+b2+c2+c2+a2≥6,当且仅当a =b =c =2时取等号. 4.设a ,b ,c 均大于0,a 2+b 2+c 2=3,则ab +bc +ca 的最大值为( ) A .0B .1C .3D.333解析:选C 设a ≥b ≥c >0,由排序不等式得a 2+b 2+c 2≥ab +bc +ac ,所以ab +bc +ca ≤3,故选C.5.已知a ,b ,c 为正数,则(a +b +c )⎝⎛⎭⎪⎫1a +b +1c 的最小值为( )A .1 B. 3 C .3D .4解析:选D (a +b +c )⎝⎛⎭⎪⎫1a +b +1c=[(a +b)2+(c)2]⎣⎢⎡⎦⎥⎤1a +b 2+⎝ ⎛⎭⎪⎫1c 2≥⎝⎛⎭⎪⎫a +b ·1a +b +c ·1c 2=22=4.当且仅当a +b =c 时取等号.6.已知(x -1)2+(y -2)2=4,则3x +4y 的最大值为( ) A .21 B .11 C .18D .28解析:选A 根据柯西不等式得[(x -1)2+(y -2)2][32+42]≥[3(x -1)+4(y -2)]2=(3x +4y -11)2,∴(3x +4y -11)2≤100.可得3x +4y ≤21,当且仅当x -13=y -24=25时取等号. 7.设a ,b ,c 为正数,a +b +4c =1,则a +b +2c 的最大值是( ) A. 5 B. 3C .2 3 D.32解析:选B ∵1=a +b +4c =(a)2+(b)2+(2c)2=13[(a)2+(b)2+(2c)2]·(12+12+12) ≥(a +b +2c)2·13,∴(a +b +2c)2≤3,当且仅当a =b =4c 时等式成立,故a +b +2c 的最大值为 3.8.函数f (x )=1-cos 2x +cos x ,则f (x )的最大值是( ) A. 3 B. 2 C .1D .2解析:选A 因为f (x )=1-cos 2x +cos x ,。
三 排序不等式1.顺序和、乱序和、反序和设a 1≤a 2≤…≤a n ,b 1≤b 2≤…≤b n 为两组实数,c 1,c 2,…,c n 为b 1,b 2,…,b n 的任一排列,称a 1b 1+a 2b 2+…+a n b n 为这两个实数组的顺序积之和(简称顺序和),称a 1b n +a 2b n -1+…+a n b 1为这两个实数组的反序积之和(简称反序和).称a 1c 1+a 2c 2+…+a n c n 为这两个实数组的乱序积之和(简称乱序和).2.排序不等式(排序原理)定理:(排序原理,又称为排序不等式) 设a 1≤a 2≤…≤a n ,b 1≤b 2≤…≤b n 为两组实数,c 1,c 2,…,c n 为b 1,b 2,…,b n 的任一排列,则有a 1b n +a 2b n -1+…+a n b 1≤a 1c 1+a 2c 2+…+a n c n ≤a 1b 1+a 2b 2+…+a n b n ,等号成立(反序和等于顺序和)⇔a 1=a 2=…=a n 或b 1=b 2=…=b n .排序原理可简记作:反序和≤乱序和≤顺序和.[点睛] 排序不等式也可以理解为两实数序列同向单调时,所得两两乘积之和最大;反向单调(一增一减)时,所得两两乘积之和最小.[例a 5b 3c 3+b 5c 3a 3+c 5a 3b 3≥1a +1b +1c. [思路点拨] 分析题目中已明确a ≥b ≥c ,所以解答本题时可直接构造两个数组,再用排序不等式证明即可.[证明] ∵a ≥b >0,于是1a ≤1b,又c >0,从而1bc ≥1ca,同理1ca ≥1ab ,从而1bc ≥1ca ≥1ab.又由于顺序和不小于乱序和,故可得a 5b 3c 3+b 5c 3a 3+c 5a 3b 3≥b 5b 3c 3+c 5c 3a 3+a 5a 3b 3=b 2c 3+c 2a 3+a 2b 3⎝⎛⎭⎪⎫∵a 2≥b 2≥c 2,1c 3≥1b 3≥1a 3≥c 2c 3+a 2a 3+b 2b 3=1c +1a +1b =1a +1b +1c. ∴原不等式成立.利用排序不等式证明不等式的技巧在于仔细观察、分析所要证明的式子的结构,从而正确地构造出不等式中所需要的带有大小顺序的两个数组.1.已知0<α<β<γ<π2,求证:sin αcos β+sin βcos γ+sin γ·cos α>12(sin2α+sin 2β+sin 2γ).证明:∵0<α<β<γ<π2,且y =sin x 在⎝ ⎛⎭⎪⎫0,π2为增函数,y =cos x 在⎝ ⎛⎭⎪⎫0,π2为减函数,∴0<sin α<sin β<sin γ,cos α>cos β>cos γ>0. ∴sin αcos β+sin βcos γ+sin γcos α >sin αcos α+sin βcos β+sin γcos γ =12(sin 2α+sin 2β+sin 2γ). 2.设x ≥1,求证:1+x +x 2+…+x 2n≥(2n +1)x n. 证明:∵x ≥1,∴1≤x ≤x 2≤…≤x n. 由排序原理得12+x 2+x 4+…+x 2n≥1·x n +x ·xn -1+…+xn -1·x +x n·1即1+x 2+x 4+…+x 2n≥(n +1)x n.①又因为x ,x 2,…,x n,1为1,x ,x 2,…,x n的一个排列, 由排序原理得1·x +x ·x 2+…+x n -1·x n +x n·1≥1·x n +x ·xn -1+…+xn -1·x +x n·1,即x +x 3+…+x2n -1+x n≥(n +1)x n.②将①②相加得1+x +x 2+…+x 2n≥(2n +1)x n.a 12bc +b 12ca +c 12ab≥a 10+b 10+c 10. [思路点拨] 本题考查排序不等式的应用,解答本题需要搞清:题目中没有给出a ,b ,c 三个数的大小顺序,且a ,b ,c 在不等式中的“地位”是对等的,故可以设a ≥b ≥c ,再利用排序不等式加以证明.[证明] 由对称性,不妨设 a ≥b ≥c ,于是a 12≥b 12≥c 12,1bc ≥1ca ≥1ab,故由排序不等式:顺序和≥乱序和,得a 12bc +b 12ca +c 12ab ≥a 12ab +b 12bc +c 12ca =a 11b +b 11c +c 11a.① 又因为a 11≥b 11≥c 11,1a ≤1b ≤1c.再次由排序不等式:反序和≤乱序和,得a 11a +b 11b +c 11c ≤a 11b +b 11c +c 11a.② 所以由①②得a 12bc +b 12ca +c 12ab≥a 10+b 10+c 10.在排序不等式的条件中需要限定各数值的大小关系,对于没有给出大小关系的情况,要根据各字母在不等式中地位的对称性,限定一种大小关系.3.设a ,b ,c 都是正数,求证:bc a +ca b +abc≥a +b +c .证明:由题意不妨设a ≥b ≥c >0,由不等式的单调性,知ab ≥ac ≥bc ,1c ≥1b ≥1a .由排序不等式,知ab ×1c +ac ×1b+bc ×1a≥ab ×1b +ac ×1a +bc ×1c=a +c +b ,即bc a +ca b +abc≥a +b +c .4.设a 1,a 2,a 3为正数,求证:a 1a 2a 3+a 2a 3a 1+a 3a 1a 2≥a 1+a 2+a 3. 证明:不妨设 a 1≥a 2≥a 3>0,于是 1a 1≤1a 2≤1a 3,a 2a 3≤a 3a 1≤a 1a 2,由排序不等式:顺序和≥乱序和得a 1a 2a 3+a 3a 1a 2+a 2a 3a 1≥1a 2·a 2a 3+1a 3·a 3a 1+1a 1·a 1a 2 =a 3+a 1+a 2. 即a 1a 2a 3+a 2a 3a 1+a 3a 1a 2≥a 1+a 2+a 3.1.有两组数:1,2,3与10,15,20,它们的顺序和、反序和分别是( ) A .100,85 B .100,80 C .95,80D .95,85解析:选B 由顺序和与反序和的定义可知顺序和为100,反序和为80. 2.若0<a 1<a 2,0<b 1<b 2,且a 1+a 2=b 1+b 2=1,则下列代数式中值最大的是( ) A .a 1b 1+a 2b 2 B .a 1a 2+b 1b 2C .a 1b 2+a 2b 1 D.12解析:选A 因为0<a 1<a 2,0<b 1<b 2,所以由排序不等式可知a 1b 1+a 2b 2最大. 3.锐角三角形中,设P =a +b +c2,Q =a cos C +b cos B +c cos A ,则P ,Q 的大小关系为( )A .P ≥QB .P =QC .P ≤QD .不能确定 解析:选C 不妨设A ≥B ≥C ,则a ≥b ≥c ,cos A ≤cos B ≤cos C ,则由排序不等式有Q =a cos C +b cos B +c cos A ≥a cos B +b cos C +c cos A=R (2sin A cos B +2sin B cos C +2sin C cos A ) =R [sin(A +B )+sin(B +C )+sin(A +C )] =R (sin C +sin A +sin B )=P =a +b +c2.4.儿子过生日要老爸买价格不同的礼品1件、2件及3件,现在选择商店中单价为13元、20元和10元的礼品,至少要花( )A .76元B .20元C .84元D .96元解析:选A 设a 1=1(件),a 2=2(件),a 3=3(件),b 1=10(元),b 2=13(元),b 3=20(元),则由排序原理反序和最小知至少要花a 1b 3+a 2b 2+a 3b 1=1×20+2×13+3×10=76(元).5.已知两组数1,2,3和4,5,6,若c 1,c 2,c 3是4,5,6的一个排列,则1c 1+2c 2+3c 3的最大值是________,最小值是________.解析:由反序和≤乱序和≤顺序和知,顺序和最大,反序和最小,故最大值为32,最小值为28.答案:32 286.设正实数a 1,a 2,…,a n 的任一排列为 a 1′,a 2′,…,a n ′,则a 1a 1′+a 2a 2′+…+a na n ′的最小值为________.解析:不妨设0<a 1≤a 2≤a 3…≤a n , 则1a 1≥1a 2≥…≥1a n.其反序和为a 1a 1+a 2a 2+…+a n a n=n , 则由乱序和不小于反序和知a 1a 1′+a 2a 2′+…+a n a n ′≥a 1a 1+a 2a 2+…+a na n=n , ∴a 1a 1′+a 2a 2′+…+a na n ′的最小值为n . 答案:n7.设a 1,a 2,a 3,a 4是1,2,3,4的一个排序,则a 1+2a 2+3a 3+4a 4的取值范围是________. 解析:a 1+2a 2+3a 3+4a 4的最大值为12+22+32+42=30,最小值为1×4+2×3+3×2+4×1=20,∴a 1+2a 2+3a 3+4a 4的取值范围是[20,30]. 答案:[20,30]8.设a ,b ,c 是正实数,用排序不等式证明a a b b c c≥(abc )a +b +c3.证明:由所证不等式的对称性,不妨设a ≥b ≥c >0, 则lg a ≥lg b ≥lg c ,据排序不等式有:a lg a +b lg b +c lg c ≥b lg a +c lg b +a lg c , a lg a +b lg b +c lg c ≥c lg a +a lg b +b lg c ,以上两式相加,再两边同加a lg a +b lg b +c lg c ,整理得 3(a lg a +b lg b +c lg c )≥(a +b +c )(lg a +lg b +lg c ), 即lg(a a b b c c)≥a +b +c3·lg(abc ), 故a a b b c c≥(abc )a +b +c3.9.某学校举行投篮比赛,按规则每个班级派三人参赛,第一人投m 分钟,第二人投n分钟,第三人投p 分钟,某班级三名运动员A ,B ,C 每分钟能投进的次数分别为a ,b ,c ,已知m >n >p ,a >b >c ,如何派三人上场能取得最佳成绩?解:∵m >n >p ,a >b >c , 且由排序不等式知顺序和为最大值, ∴最大值为ma +nb +pc ,此时分数最高, ∴三人上场顺序是A 第一,B 第二,C 第三. 10.已知0<a ≤b ≤c ,求证:c 2a +b +b 2a +c +a 2b +c ≥a 2a +b +b 2b +c +c 2c +a.证明:因为0<a ≤b ≤c ,所以0<a +b ≤c +a ≤b +c , 所以1a +b ≥1c +a ≥1b +c>0, 又0<a 2≤b 2≤c 2, 所以c 2a +b +b 2a +c +a 2b +c是顺序和,a 2a +b +b 2b +c +c 2c +a是乱序和,由排序不等式可知顺序和大于等于乱序和, 即不等式c 2a +b +b 2a +c +a 2b +c ≥a 2a +b +b 2b +c +c 2c +a成立.精美句子1、善思则能“从无字句处读书”。
第三讲柯西不等式与排序不等式3.3 排序不等式A级基础巩固一、选择题1.设正实数a1,a2,a3的任一排列为a1′,a2′,a3′,则a1a1′+a2a2′+a3a3′的最小值为( )A.3 B.6C.9 D.12解析:a1≥a2≥a3>0,则1a3≥1a2≥1a1>0,由乱序和不小于反序和知,所以a1a1′+a2a2′+a3a3′≥a1a1+a2a2+a3a3=3,所以a1a1′+a2a2′+a3a3′的最小值为3,故选A.答案:A2.车间里有5 台机床同时出了故障,从第1 台到第5 台的修复时间依次为4 min,8 min,6 min,10 min,5 min,每台机床停产1 min损失5 元,经合理安排损失最少为( )A.420 元B.400 元C.450 元D.570 元解析:损失最少为5(1×10+2×8+3×6+4×5+5×4)=420(元),反序和最小.答案:A3.设a,b,c∈R+,M=a5+b5+c5,N=a3bc+b3ac+c3ab,则M与N的大小关系是( )A.M≥N B.M=NC.M<N D.M>N解析:不妨设a≥b≥c>0,则a4≥b4≥c4,运用排序不等式有:a5+b5+c5=a·a4+b·b4+c·c4≥ac4+ba4+cb4,又a3≥b3≥c3>0,且ab≥ac≥bc>0,所以a4b+b4c+c4a=a3ab+b3bc+c3ca≥a3bc+b3ac+c3ab,即a5+b5+c5≥a3bc+b3ac+c3ab,即M≥N.答案:A4.已知a,b,c≥0,且a3+b3+c3=3,则a b+b c+c a的最大值是( ) A.1 B.2C.3 D.3 3解析:设a≥b≥c≥0,所以 a ≥ b ≥ c.由排序不等式可得a b+b c+c a≤a a+b b+c c.而(a a+b b+c c)2≤(a a)2+(b b)2+(c c)2](1+1+1)=9,即a a+b b+c c≤3.所以a b+b c+c a≤3.答案:C5.已知a,b,c∈(0,+∞),则a2(a2-bc)+b2(b2-ac)+c2(c2-ab)的正负情况是( )A.大于零B.大于等于零C.小于零D.小于等于零解析:设a≥b≥c>0,所以a3≥b3≥c3,根据排序原理,得a3·a+b3·b+c3·c≥a3b+b3c+c3a.又知ab≥ac≥bc,a2≥b2≥c2,所以a3b+b3c+c3a≥a2bc+b2ca+c2ab.所以a4+b4+c4≥a2bc+b2ca+c2ab,即a2(a2-bc)+b2(b2-ac)+c2(c2-ab)≥0.答案:B二、填空题6.设a1,a2,…,a n为实数,b1,b2,…,b n是a1,a2,…,a n的任一排列,则乘积a1b1+a2b2+…+a n b n不小于________.答案:a1a n+a2a n-1+…+a n a17.已知a,b,c都是正数,则ab+c+bc+a+ca+b≥________.。
第三讲 柯西不等式与排序不等式2.熟悉一般形式的柯西不等式,理解柯西不等式的证明;.会应用柯西不等式解决函数最值,方程、不等式等的一些问题一、课前准备 知识情景:1. 柯西主要贡献简介: 柯西(Cauchy ),法国人,生于1789年,是十九世纪前半叶最杰出的分析家. 他奠定了数学分析的理论基础. 数学中很多定理都冠以柯西的名字,如柯西收敛原理、柯西中值定理、柯西积分不等式、柯西判别法、柯西方程等等.2.如果,a b R ∈, 那么222a b a b +≥. 当且仅当a b =时, 等号成立. 当0,0a b >>时,由222a b a b +≥⇒基本不等式: 二、新课导学(一)二维形式的柯西不等式1. 柯西不等式:若,,,a b c d R ∈,则22222()()()a b c d a c b d +++.当且仅当 时, 等号成立.此即二维形式的柯西不等式. 证法1.(综合法)222222222222()()a b c d a c a db c b d++=+++222()()()a c b d =++当且仅当 时, 等号成立.证法2.(构造法)分析:22222()()()a c b d a b c d +++⇐22222[2()]4()()0a c b d a b c d +-++而22222[2()]4()()a c b d a b c d +-++的结构特征 那么, 证:设22222()()2()f x a b x a c b d x c d =+-+++, ∵ 22()()()f x a x c b x d =-+- 0 恒成立.∴ . 得证. 证法3.(柯西不等式的向量形式) 设向量(,)ma b =,(,)n c d =, 则||m =,||n =.∵ m n⋅=,且><⋅⋅=⋅n m n m n m ,cos ||||,有||||||n m n m ⋅⋅.∴ . 得证. 2. 二维柯西不等式的变式:变式1.若,,,a b c d R ∈,则_a c b d +_a c b d +;变式2.若,,,a b c d R ∈;变式3. (三角不等式)若1122,,,x y x y R∈推论:若123123,,,,,x x x y y y R ∈,则≥3. 二维柯西不等式的应用:例1.(1)已知,a b 为实数,求证: 4422332()()()a b a b a b ++≥+ (2)设,,1a b R a b +∈+=,求证:114ab+≥例2.(1)求函数y =(2)若231x y +=,求2249x y +的最小值,并求最小值点。
全国高中数学联赛 金牌教练员讲座兰州一中数学组第六讲 不等式的应用、参数取值范围问题知识、方法、技能I .排序不等式(又称排序原理) 设有两个有序数组n a a a ≤≤≤ 21及.21n b b b ≤≤≤ 则n n b a b a b a +++ 2211(同序和)jn n j j b a b a b a +++≥ 2211(乱序和) 1121b a b a b a n n n +++≥- (逆序和)其中n j j j ,,,21 是1,2,…,n 的任一排列.当且仅当n a a a === 21或n b b b === 21时等号(对任一排列n j j j ,,,21 )成立.证明:不妨设在乱序和S 中n j n ≠时(若n j n =,则考虑1-n j ),且在和S 中含有项),(n k b a n k ≠则.n n jn n j n n k b a b a b a b a n +≤+ ①事实上,左-右=,0))((≥--n j n k n b b a a由此可知,当n j n ≠时,调换n k j n j k j b a b a b a S ++++= 11(n j n ≠)中n b 与nj 位置(其余不动),所得新和.1S S ≥调整好n a 及n b 后,接着再仿上调整1-n a 与1-n b ,又得.12S S ≥如此至多经1-n 次调整得顺序和n n b a b a b a +++ 2211jn n j j b a b a b a +++≥ 2211 ②这就证得“顺序和不小于乱序和”.显然,当n a a a === 21或n b b b === 21时②中等号成立.反之,若它们不全相等,则必存在n j 及k ,使n b .,k n j a a b n >>这时①中不等号成立.因而对这个排列②中不等号成立. 类似地可证“乱序和不小于逆序和”. II .应用排序不等式可证明“平均不等式”:设有n 个正数n a a a ,,,21 的算术平均数和几何平均数分别是n n n nn a a a G na a a A 2121=+++=和此外,还有调和平均数(在光学及电路分析中要用到nn a a a nH 11121+++=,和平方平均(在统计学及误差分析中用到)na a a Q nn 22221+++=这四个平均值有以下关系n n n n Q A G H ≤≤≤. ○* 其中等号成立的充分必要条件都是n a a a === 21.下面首先证明算术平均数一几何平均数不等式:.n n G A ≥记1,,,2121211====n n n Ga a a x G aa x G a x ;.1,,1,12211nn x y x y x y ===由于数组n x x x ,,,21 和数组n y y y ,,,21 中对应的数互为倒数,由排序不等式得n n y x y x y x +++ 1211(逆序和)≤ 1121,-+++n n n y x y x y x ,即 .21nn n n G a G a G a n +++≤从而.n n G A ≥等号当且仅当n x x x === 21或n y y y === 21时成立,而这两者都可得到n a a a === 21.下面证明.n n H G ≥对n 个正数na a a 1,,1,121 应用,n n A G ≤得.1111112121n nn a a a n a a a ⋅⋅⋅≥+++即.n n H G ≥(符号成立的条件是显然的).最后证明,n n Q A ≤它等价于.0)()(22122221≥+++-+++n n a a a a a a n而上式左边= +-++-+-++-+-2223221221221)()()()()(n n a a a a a a a a a a0)(21≥-+-n n a a ,于是不等式及等号成立的条件都是显然的了.从上述证明可见,nn Q A ≤对一切R a a a n ∈,,,21 成立.III .应用算术平均数——几何平均数不等式,可用来证明下述重要不等式. 柯西(Cavchy )不等式:设1a 、2a 、3a ,…,n a 是任意实数,则).)(()(222212222122211n n n n b b b a a a b a b a b a ++++++≤+++等号当且仅当k ka b i i (=为常数,),,2,1n i =时成立.证明:不妨设),,2,1(n i a i =不全为0,i b 也不全为0(因为i a 或i b 全为0时,不等式显然成立). 记A=22221n a a a +++ ,B=22221n b b b +++ .且令),,,2,1(,n i Bby A a x i i i i ===则.1,12222122221=+++=+++n n y y y x x x 于是原不等式成为.12211≤+++n n y x y x y x即≤+++)(22211n n y x y x y x 2222122221nn y y y x x x +++++++ .它等价于 .0)()()(2222211≥-++-+-n n y x y x y x其中等号成立的充要条件是).,,2,1(n i y x i i ==从而原不等式成立,且等号成立的充要条件是).(BAk ka b i i == IV .利用排序不等式还可证明下述重要不等式.切比雪夫不等式:若n a a a ≤≤≤ 21,n b b b ≤≤≤ 21 ,则.21212211nb b b n a a a n b a b a b a nn n n +++⋅+++≥+++证明:由题设和排序不等式,有n n b a b a b a +++ 2211=n n b a b a b a +++ 2211,132212211b a b a b a b a b a b a n n n +++≥+++ ,…….11212211-+++≥+++n n n n n b a b a b a b a b a b a将上述n 个不等式叠加后,两边同除以n 2,即得欲证的不等式.赛题精讲I .排序不等式的应用 应用排序不等式可以简捷地证明一类不等式,请看下述例题.例1:对+∈R c b a ,,,比较a c c b b a c b a 222333++++与的大小.【思路分析】要应用“排序不等式”,必须取两组便于排序的数,这要从两式的结构上去分析. 【略解】 取两组数.,,;,,222c b a c b a不管c b a ,,的大小顺序如何,都是乱序和都是同序和a c c b b a c b a 222333++++,故 a c c b b a c b a 222333++>++.【评述】 找出适当的两组数是解此类题目的关键.例2:+∈R c b a ,,,求证.222222222222abc ca b bc a b a c a c b c b a c b a ++≤+++++≤++ 【思路分析】 应先将a 、b 、c 三个不失一般性地规定为.0>≥≥c b a【略解】由于不等式关于a 、b 、c 对称,可设.0>≥≥c b a于是ab c c b a 111,222≥≥≥≥.由排序不等式,得ac c b b a c c b b a a 111)(111222222⋅+⋅+⋅≤⋅+⋅+⋅逆序和(乱序和). 及.111111222222bc a b c a c c b b a a ⋅+⋅+⋅≤⋅+⋅+⋅ 以上两个同向不等式相加再除以2,即得原式中第一个不等式.再考虑数组abca bc c b a 111,0333≥≥>≥≥及,仿上可证第二个不等式,请读者自己完成. 【评述】应用排序不等式的技巧在于构造两个数组,而数组的构造应从需要入手来设计.这一点应从所要证的式子的结构观察分析,再给出适当的数组. 例3:在△ABC 中,试证:.23ππ<++++≤c b a cC bB aA【思路分析】 可构造△ABC 的边和角的序列,应用排序不等式来证明之.【详解】 不妨设c b a ≤≤,于是.C B A ≤≤由排序不等式,得.,,bC aB cA cC bB aA aC cB bA cC bB aA cC bB aA cC bB aA ++≥++++≥++++≥++ 相加,得)())(()(3c b a C B A c b a cC bB aA ++=++++≥++π, 得3π≥++++c b a cC bB aA ①又由,0,0,0b c a c b a a c b -+<-+<-+<有).(2)()3()2()2()()()()()()(0cC bB aA c b a C c B b A a C B A c B C A b A C B a b c a B c b a C a c b A ++-++=-+-+-=-++-++-+=-++-++-+<ππππ得.2π<++++c b a cC bB aA ②由①、②得原不等式成立.【评述】此题后半部分应用了不等式的性质来证明. 例4:设n a a a ,,,21 是互不相同的自然数,试证.212112221na a a n n +++≤+++ 【思路分析】 应先构造两个由小到大的排序.【略解】将n a a a ,,,21 按由小到大的顺序排成n j j j a a a <<< 21其中n j j j ,,,21 是1,2,…,n 的一个排列,则.,2,121n a a a n j j j ≥≥≥ 于是由排序不等式,得.12112222222121n na a a n a a a n j j j n +++≥+++≥+++例5:设n b b b ,,,21 是正数n a a a ,,,21 的一个排列,求证.2211n b a b a b a nn ≥+++【思路分析】 应注意到),,2,1(11n i a a ii ==⋅【略证】不妨设n a a a ≥≥≥ 21,因为n a a a ,,,21 都大于0. 所以有na a a 11121≤≤≤ , 又nn a a a b b b 1,,1,11,,1,12121 是的任意一个排列,于是得到 .11111122112211nn n n b a b a b a a a a a a a n +++⋅≤⋅++⋅+⋅= 【评述】 此题比较简单,但颇具启发意义,读者应耐心体会.例6:设正数c b a ,,的乘积1=abc ,试证:.1)11)(11)(11(≤+-+-+-ac cb ba【略解】设xzc z y b y x a ===,,,这里z y x ,,都是正数,则原需证明的不等式化为 y x z x z y z y x xyz y x z x z y z y x -+-+-+≤-+-+-+,,,))()((显然中最多只有一个非负数.若y x z x z y z y x -+-+-+,,中恰有一个非正数,则此时结论显然成立.若y x z x z y z y x -+-+-+,,均为正数,则z y x ,,是某三角形的三边长.容易验证 )].()()([(31))()((222z y x z y x z y x z y x y x z x z y z y x -++-++-+≤-+-+-+故得.))()((xyz y x z x z y z y x ≤-+-+-+【评述】 利用上述换元的方法可解决同类的问题.见下题:设正数a 、b 、c 的乘积,1=abc 证明.23)(1)(1)(1222≥+++++b a c a c b c b a证明:设1,1,1,1====xyz zc y b x a 则,且所需证明的不等式可化为 23222≥+++++y x z x z y z y x ,现不妨设z y x ≥≥,则yx zx z y z y x +≥+≥+,据排序不等式得y x z x z y z y x +++++222y x z y x z y x z y x z +⋅++⋅++⋅≥ 及yx z x z y z y x +++++222y x z x x z y z z y x y +⋅++⋅++⋅≥ 两式相加并化简可得)(2222yx z x z y z y x +++++.333=≥++≥xyz z y x例7:设实数n n n z z z y y y x x x ,,,,,212121 ≥≥≥≥≥≥是n y y y ,,,21 的一个置换,证明:∑∑==-≤-ni i i ni i iz x y x1212.)()(【略解】 显然所需证不等式等价于∑∑==≥ni ii n i ii z x y x 11,这由排序不等式可直接得到.【评述】 应用此例的证法可立证下题:设k a 是两两互异的正整数(),2,1 =k ,证明对任意正整数n ,均有∑∑==≥n i ni k kk a 112.1证明:设n b b b ,,,21 是n a a a ,,,21 的一个排列,使n b b b <<< 21,则从条件知对每个k b n k k >≤≤,1,于是由排序不等式可知∑∑∑===≥≥ni n i k ni k kk b k a 11212.1II .柯西不等式的应用应用柯西不等式,往往能十分简捷地证明某些不等式. 例8:设+∈R x x x n ,,,21 ,求证:.211221322221n n n n x x x x x x x x x x x +++≥++++-【思路分析】 注意到式子中的倒数关系,考虑应用柯西不等式来证之.【评述】注意到式子中的倒数关系,考虑应用柯西不等式来证之.【详解】 ∵0,,,21>n x x x ,故由柯西不等式,得))((1221322221132x x x x x x x x x x x x n n n n ++++++++-2111323212)(x x x x x x x x x x x x n nn n ⋅+⋅++⋅+⋅≥-2121)(n n x x x x ++++=- ,∴.211221322221n n n n x x x x x x x x x x x +++≥++++- 【评述】这是一道高中数学联赛题,还可用均值不等式、数学归纳法、比较法及分离系数法和构造函数法等来证之.针对性训练题1.设a 、b 、c +∈R ,利用排序不等式证明: (1)b a b a b a ab b a ≠>(); (2)b a ac c b cbac b a c b a +++≥222;(3)23≥+++++b a c a c b c b a ; (4).101010121212c b a abc ca b bc a ++≥++ 2.设a 、b 、c 是三角形三边的长,求证:.3≥-++-++-+cb a cb ac b a c b a3.已知a 、b 、c *N ∈,并且,,,c b a b a c a c b >+>+>+求证:.1)1()1()1(≤-+-+-+cb a cb a b ac a c b 4.设,1,*>∈n N n 求证:.22121-⋅>+++n n nn n n C C C5.若b a b a b a lg 2lg ,62,0,0+=+>>求且的最大值. 6.若122,122++=+b a b a 求的最小值. 7.已知11),(),1(13++=>=-x yy x u x y x 求的最小值. 8.y x y x u y x 2),(,1222+==+求的最值.。