电感、变压器的高频特性与损耗、9页
- 格式:doc
- 大小:50.50 KB
- 文档页数:9
高频变压器规格书详解高频变压器在电子设备中扮演着至关重要的角色,它们通过感应耦合在不同电路上提供电隔离、阻抗匹配和电平变换。
规格书是了解变压器特性和性能的关键。
本文将深入探讨高频变压器规格书中的关键参数和术语。
主要参数初级电感 (Lp):初级绕组的电感,表示其对变化磁通的阻抗。
次级电感 (Ls):次级绕组的电感,决定了其对变化磁通的响应。
匝数比 (Np/Ns):初级绕组匝数与次级绕组匝数之比,决定了变压器的电压转换率。
漏感 (Llk):由磁通未完全耦合引起的寄生电感,影响变压器的效率和频率响应。
耦合系数 (k):表示初级和次级绕组之间的磁耦合程度,范围从 0 到 1。
电气特性初级电阻 (Rp):初级绕组的电阻,影响变压器的效率和功耗。
次级电阻 (Rs):次级绕组的电阻,对负载电流和电压调节有影响。
测试电压 (HVT):指定变压器能够承受的高压测试而不击穿。
绝缘电阻 (IR):测量绕组之间的绝缘电阻,以确保设备安全性。
频率响应共振频率 (fr):变压器初级和次级电感与分布电容相结合产生的串联谐振频率。
频率范围:变压器有效工作的频率范围,包括谐振频率。
机械特性尺寸:变压器的物理尺寸,包括长度、宽度和高度。
重量:变压器的重量,影响设备的安装和运输。
安装方式:指定变压器的安装方式,例如螺纹孔或表面贴装。
散热:变压器散热的机制,例如自然对流或强制冷却。
其他参数损耗:变压器在操作过程中产生的热量损失,包括铜损和磁损。
温度范围:变压器可以安全工作的环境温度范围。
认证:变压器符合的行业标准和安全认证,例如 UL、CE 和ISO。
应用:变压器在特定电子设备中的典型用途,例如电源转换器、隔离放大器和射频系统。
理解高频变压器规格书对于选择和使用合适的变压器至关重要。
通过仔细审查这些参数,工程师可以确保变压器满足其设备的电气、机械和性能要求。
电感小知识点总结大全一、电感的概念电感是指导体中由于自感现象所产生的电感电动势。
通俗地说,当电流通过导体时,会产生磁场,而磁场的变化又会引起感应电动势,这种现象就是电感现象,电感即是储存磁能的元件。
二、电感的工作原理电感的工作原理是建立在法拉第电磁感应定律的基础上的。
当电流通过导体时,会产生磁场,而磁场的变化会导致感应电动势。
这个感应电动势的大小与电感的大小有关,电感的单位是亨利,它表示当电流的变化率为1安培每秒时,所产生的感应电动势为1伏特,即1H=1V/A。
三、电感的类型电感根据其结构和工作原理的不同,可以分为多种类型,主要包括线圈式电感、铁芯电感、空心电感、变压器等。
线圈式电感是由绕制成卷绕线圈的绝缘铁芯组成的元件,主要用于滤波和抑制干扰。
铁芯电感是在线圈中加入磁性材质制成的元件,可以增大电感的大小。
空心电感是指线圈中没有铁芯的电感元件,用于高频电路中。
变压器是一种通过电磁感应来改变电压的电感元件。
四、电感的特性电感具有多种特性,包括电感大小、频率特性、饱和电感、损耗和温升等。
电感大小和匝数、磁性材料的种类和尺寸、空气磁路的长度及其截面积等因素有关。
电感的频率特性是指在不同频率下,电感的大小是否变化。
饱和电感是指在磁通量达到一定数值时,电感值几乎不再增加。
电感还会产生一定的损耗和温升,这与导体的电阻和磁性材料的损耗有关。
五、电感的参数电感的参数包括电感值、电感容抗、损耗、品质因数等。
电感值是电感的大小,通常用亨利(H)作为单位。
电感容抗是指电感对交流电流的阻抗,它随着频率的增加而增大。
损耗是指电感在工作过程中的能量损耗,这主要是由于导体的电阻和磁性材料的损耗所引起的。
品质因数是电感的一个重要参数,它是指电感对于能量的存储和损耗的比值,品质因数越大,电感的性能越好。
六、电感的应用电感具有广泛的应用,主要包括滤波、抑制干扰、存储能量、变压器和谐振等。
在电子电路中,电感常用于滤波电路中,可以滤除某些频率的信号,使电路获得干净的直流信号。
电感耦合和变压器部分电感耦合是指通过电感的作用,将两个或多个电路的电磁场相互连接的一种方式。
它常用于电路的耦合、滤波、谐振等。
1.耦合电感:耦合电感是指将两个电路通过电感连接在一起的一种元件。
它可以让信号从一个电路传递到另一个电路,同时也可以限制高频噪声的传播。
耦合电感通常由线圈组成,其匝数和绕制方式会影响其特性。
2.电感滤波:电感滤波是一种利用电感元件对电路进行滤波的方法。
它可以通过电感的自感效应,对电路中的高频噪声进行抑制,从而提高电路的信噪比。
电感滤波器通常由电感和负载组成,其电感值和负载值的选择会影响滤波效果。
3.电感谐振:电感谐振是指在电感元件和电容元件组成的电路中,当电感元件和电容元件的共振频率相等时,电路的阻抗达到最小值,电流达到最大值的现象。
电感谐振常用于电路的选频、放大等。
变压器是一种利用电磁感应原理,实现电压和电流的变换的装置。
它由两个或多个绕组组成,绕组之间通过铁芯连接。
1.变压器的基本原理:变压器的工作原理是利用电磁感应现象。
当交流电流通过 primary winding(一次绕组)时,会在铁芯中产生变化的磁通量,进而在 secondary winding(二次绕组)中感应出电动势,从而实现电压的变换。
2.变压器的种类:变压器可以按照其工作原理、结构、用途等方面进行分类。
例如,按照工作原理可以分为交流变压器和直流变压器;按照结构可以分为壳式变压器和芯式变压器;按照用途可以分为电力变压器和电子变压器等。
3.变压器的主要参数:变压器的主要参数包括变压比、匝数比、效率、短路阻抗等。
变压比是指变压器的输入电压和输出电压之间的比值;匝数比是指变压器的输入绕组和输出绕组之间的匝数比值;效率是指变压器输出功率与输入功率之间的比值;短路阻抗是指变压器在短路条件下的阻抗值。
4.变压器的应用:变压器在电力系统中具有重要的作用,它可以将高压电能转换为低压电能,以满足不同用电场合的需求。
此外,变压器还可以用于电子设备中,例如电源适配器、音频放大器等。
高频电路中的元器件的工作特点
高频电路中的元器件包括电感、电容、电阻、晶体管等。
它们
在高频电路中的工作特点如下:
1. 电感,在高频电路中,电感会产生自感和互感。
自感会导致
电感的电流和电压之间的相位差,而互感则会影响电感之间的耦合。
在高频电路中,电感的线圈匝数和结构设计会影响其自感和互感的
特性,从而影响整个电路的工作性能。
2. 电容,在高频电路中,电容会产生电容反应和介质损耗。
电
容的电容反应会导致其在高频下的等效电容值发生变化,而介质损
耗会导致电容器内部的能量损耗。
因此,在高频电路设计中需要考
虑电容的这些特性,以保证电路的稳定性和性能。
3. 电阻,在高频电路中,电阻会产生电阻损耗和分布电容。
电
阻的电阻损耗会导致能量的损耗,而分布电容会影响电路的频率响应。
因此,在高频电路设计中需要选择合适的电阻器以满足电路的
要求。
4. 晶体管,在高频电路中,晶体管作为放大器和开关元件,其
工作特点会影响整个电路的性能。
晶体管的频率响应、噪声系数、非线性失真等特性需要在高频电路设计中得到充分考虑。
总的来说,高频电路中的元器件需要考虑其自身特性以及相互之间的影响,以保证整个电路在高频条件下的稳定性和性能。
在设计高频电路时,需要充分了解元器件的特性,并合理选择和配置元器件,以满足电路的要求。
电感器和变压器电感器通常分为两大类:一类是应用自感作用的电感线圈;另一类是应用互感作用的变压器。
电感线圈的用途及为广泛,主要应用于LC滤波器,调谐放大等。
变压器主要用来变换电压、电流和阻抗。
一、电感器的特性电感在电路中常用字母L表示,电感量是电感线圈的主要参数,电感量的大小与线圈圈数、绕制方式及磁芯的材料等因素有关。
电感量的单位是亨利,简称亨,用字母H表示,比亨小的单位是毫亨(mH),更小的单位是微亨(μH)。
它们之间的关系是:1H =103 mH=106μH。
品质因数是电感线圈的另一主要参数,通常用字母Q来表示。
Q值越高表明电感线圈的功率损耗越小,效率越高,即“品质”越好。
电感器的技术参数一般标在电感器的外壳上。
二、电感器的用途电感器在电路中有阻碍交流电通过的特性。
在交流电路中常用作扼流、降压、交连、负载等。
1.电感线圈电感线圈按结构特点分为单层、多层、蜂房式、带磁芯式等电感。
⑴小型固定电感线圈小型固定电感线圈又称电感器,具有体积小、重量轻、结构牢固和安装使用方便等优点,广泛用于电子设备中,用作滤波、陷波、扼流、振荡、延迟等。
⑵低频扼流圈低频扼流圈又称滤波线圈,一般由铁芯和绕组等组成。
低频扼流圈常与电容器组成滤波电路,以滤除整流后残存的一些交流成分。
⑶高频扼流圈高频扼流圈用在高频电路中阻碍高频电流的通过。
在电路中与电容器串联或并联组成滤波电路,起到分开高低频的作用。
⑷高频天线线圈高频天线线圈按其用途可分多种,如收音机中的天线线圈就是其中的一种,配以可变电容即可组成调谐电路,以选择不同频率的广播电台信号。
2.变压器变压器是对交流电(或信号)进行电压、电流和阻抗变换的器件。
按工作频率分为低频变压器、中频变压器和高频变压器;按用途分为电源变压器、音频变压器、中频变压器、高频变压器、级间藕合变压器及专用变压器(如开关变压器)等。
⑴低频变压器低频变压器包括电源变压器和音频变压器。
主要用途是电压变换(降压或升压)和阻抗变换。
变压器电气、特性术语定义、产品特性和测试原理•1. 开路电感(OCL, Open Circuit Inductance): 当变压器二次侧开路,所量侧到一次侧的电感。
•2. 漏感(LL, Leakage Inductance):当变压器二次侧短路,所量侧到一次侧的电感。
•3. 圈比(Turns Ratio): 变压器一次侧与二次侧的圈数比。
•4. 杂散电容(Inter-winding Capacitance): 变压器一次侧与二次侧之间的电容。
•5. 耐压(Hi-pot): 变压器一、二次之间的绝缘耐压。
•6.插入损耗(Insertion Loss): 插入损耗是指一个滤波器插入在电源与负载之间时信号能量的衰减. 下图显示了插入损耗测试方法.•IL=20lg (dB)•测试框图如下:VinVout 术语定义、产品特性和测试原理•7.反射损耗(Return Loss):反射损耗是用来描述实测阻抗与标准阻抗不同或不匹配的程度,不同和不匹配既包括幅值大小的不同又包括相位角的不同。
反射损耗的单位是分贝,反射损耗的表达式如下:.这里ZS是指标准阻抗,ZM是实测阻抗。
如果匹配理想,反射损耗将会无穷大。
术语定义、产品特性和测试原理•RL, 测试框图如下:术语定义、产品特性和测试原理•8. 串扰(Crosstalk), 是指一个通道的无用信号耦合进邻近的信号通道。
串扰的单位是分贝,它是敏感电缆的耦合电压与邻近干扰源电压之比。
•CT, 测试框图如下:术语定义、产品特性和测试原理•9.共模与差模的转换DCMR (DM TO CM Conversion)•共模与差模的转换是指差模信号的增益与共模信号的增益之比,其单•位是分贝。
NETWORK ANALYSER Agilent 8712ETOR EQUIVALENTNETWORKANALYSERAgilent 8712ET OR EQUIVALENT BALUN 100:50BALUN 100:50BALUN50:100BALUN50:100TXOUT TXIN RXOUT RXIN •DCMR, 测试框图如下:术语定义、产品特性和测试原理•附录1: 网络连接器高频参数测试方法及原理•附录2: 以太网络变压器介绍Microsoft Word恅紫术语定义、产品特性和测试原理Adobe Acrobat Document网络变压器之行业标准•Meets IEEE802.3 & ANSI X3.263 Standard,•350uH OCL with 8mA DC Bias•IEC60950, 1500Vac Insulation。
绕组高频效应及其对损耗的影响1.集肤效应1.1集肤效应的原理图1.1表示了集肤效应的产生过程。
图中给出的是载流导体纵向的剖面图,当导体流过电流(如图中箭头方向)时,由右手螺旋法则可知,产生的感应磁动势为逆时针方向,产生进入和离开剖面的磁力线。
如果导体中的电流增加,则由于电磁感应效应,导体中产生如图所示方向的涡流。
由图可知:涡流的方向加大了导体表面的电流,抵消了中心线电流,这样作用的结果是电流向导体表面聚集,故称为集肤效应。
在此引进一个集肤深度〈skin depth〉的概念,此深度的电流密度大小恰好为表面电流密度大小的1/e倍:一般用集肤深度Δ来表示集肤效应,其表达式为:(1.1)其中:γ为导体的电导率,μ为导体的磁导率,f为工作频率。
图1.1.集肤效应产生过程示意图图1.2.高频导体电路密度分布图高频时的导体电流密度分布情形,大致如图1.2所示,由表面向中心处的电流密度逐渐减小。
由上图及式1.1可知,当频率愈高时,临界深度将会愈小,结果造成等效阻值上升。
因此在高频时,电阻大小随着频率而变的情形,就必须加以考虑进去。
1.2影响及应用在高频电路中可以采用空心导线代替实心导线。
此外,为了削弱趋肤效应,在高频电路中也往往使用多股相互绝缘细导线编织成束来代替同样截面积的粗导线,这种多股线束称为辫线。
在工业应用方面,利用趋肤效应可以对金属进行表面淬火。
考虑到交流电的集肤效应,为了有效地利用导体材料和便于散热,发电厂的大电流母线常做成槽形或菱形母线;另外,在高压输配电线路中,利用钢芯铝绞线代替铝绞线,这样既节省了铝导线,又增加了导线的机械强度,这些都是利用了集肤效应这个原理。
集肤效应是在讯号线里最基本的失真作用过程之一,也有可能是最容意被忽略误解的。
与一般讯号线的夸大宣传所言,集肤效应并不会改变所有的高频讯号,并且不会造成任何相关动能的损失。
正好相反,集肤效应会因传导体的不同成分,在传递高频讯号时有不连贯的现象。
同样地,在陈旧的线束传导体上,集肤效应助长讯号电流在多条线束上的交互跳动,对于声音造成刺耳的记号。
2邻近效应图2.1表示了邻近效应的产生过程。
A、B两导体流过相同方向的电流IA和IB,当电流按图中箭头方向突增时,导体A产生的突变磁通ΦA-B在导体B中产生涡流,使其下表面的电流增大,上表面的电流减少。
同样导体B产生的突变磁通ΦB-A在导体A中产生涡流,使其上表面的电流增大,下表面的电流减少。
这个现象就是导体之间的邻近效应。
当流过导体的电流相同,导体之间的距离一定时,如果导体之间的相对面积不同,邻近效应使得导体有效截面面积不同。
研究表明:导体的相对面积越大则导体有效截面越大,损耗相对较小。
图2.1.临近效应产生过程示意图图2.2.临近效应示意图图2.3. 一轴对称模型在频率为20KHz时电流密度的分布图临近效应与集肤效应是共存的。
集肤效应是电流主要集中在导体表面附近,但是沿着导体圆周的电流分布还是均匀的。
如果另一根载有反向交流电流的圆柱导体与其相邻,其结果使电流不再对称地分布在导体中,而是比较集中在两导体相对的内侧,形成这种分布的原因可以从电磁场的观点来理解。
电源能量主要通过两线之间的空间以电磁波的形式传送给负载,导线内部的电流密度分布与空间的电磁波分布密切相关,两线相对内侧处电磁波能量密度大,传入导线的功率大,故电流密度也较大。
如果两导线载有相同方向的交变电流,则情况相反,在两线相对外侧处的电流密度大。
3.导体的边缘效应Dowall提出了计算两绕组变压器绕组交流电阻的方法,此方法先将圆导体转化为方形,并作如下假设:①磁场被假定为一维变量,垂直于导体的分量被忽略,并且总磁场强度在每个导体层中为常量;②绕组被假定为无限长片状导体的一部分,电流密度沿每层导体截面是常数,导体边缘效应被忽略;③假定磁芯不存在,线圈在整个磁芯宽度方向上均匀分布;④流过绕组的电压和电流均为正弦波,且线圈无开路。
后来的研究者们对此方法提出了一些修正。
事实上,导体的边缘效应对磁性元件的损耗和漏感等有较大的影响。
绕组的边缘效应会造成由上述假定所限定的一维绕组损耗计算方法所不能计算的额外损耗。
在不同的工作频率下,绕组之间距离不同,造成的交流电阻和漏感不同,对于一个指定的频率,存在一个最佳的距离使得绕组交流电阻最小;绕组在磁芯窗口中的位置对绕组参数也有一定的影响;对于高频变压器,原副边绕组的宽度与绕组损耗和能量的存储也有很大关系:原副边绕组宽度相同时高频变压器可以获得最小的交流电阻和漏感。
有关学者对这种边缘效应进行了详细的研究,使用二维有限元仿真软件,通过对磁场分布和电流分布进行分析证明了绕组边缘效应对绕组损耗和漏感的影响。
因为有限元分析方法对每个设计方案都要单独求解,因此不能提供一般的结论,Soft Switching Technologies Corporation的Nasser H.Kutkut对传统的一维绕组损耗计算方法进行了改进,通过在Dowell方法分析结果上添加一些修正因数,则可以将二维的边缘效应考虑进去。
使用二维有限元的方法分析绕组的边缘效应损耗,通过研究几何因素如绕组间距、位置等对磁场分布和电流分布的影响,进而得出几何因素对绕组损耗的影响,得出了一系列的绕组优化原则。
在大电流时,铜带的使用是比较常见的,但是铜带使用时会出现较明显的绕组边缘效应,电流变成了不均匀分布的形式,可以想象二维场效应是比较严重的。
在分析铜带绕组的二维边缘效应之前,先做一定的假设:①假定电流集中在一个趋肤深度内。
当铜带导体的厚度是当前工作频率对应的趋肤深度的若干倍时,这一点是成立的。
②假定电流密度沿着铜带导体表面是Js,则铜带厚度方向上电流密度的分布满足式(3.1):(3.1)n表示铜带从表面深入到内部的深度,k为结构系数。
在高频的情况下,趋肤深度非常小,导体表面的磁场接近线性磁场,这种情况下,导体表面的电流分布类似于在标量电势作用下的导体表面的静电荷分布,方形铜带问题的分析就可以简化为与之等截面积的椭圆状铜带导体的分析,方形铜带导体和椭圆形铜带导体的截面关系如图3.1所示。
图3.1.铜带的椭圆近似模型分析使用这种假设条件,则可以得到沿着铜带的电流密度分布为式(3.2)所示:(3.2)由式(3.2)可以看出,当x=b或者x=-b时电流密度Js最大。
即铜带在导体的边缘处达到最大值,从磁场分布的角度来看,在铜带导体的边缘处由于边缘效应,磁场垂直于导体的分量会很大,这样就导致了这个磁场分量对铜带导体的切割,铜带绕组的涡流损耗会增大,同时导体边缘处的强磁场会导致电流密度的显著增大。
电流分布是在边缘处很强,中间较为平均,由于边缘处受强磁场的吸引,显示高的电流密度,这种电流密度在端部的重新分布增加了导体的交流电阻,其结果比一维分析的要大很多。
通过优化铜带边缘的场分布,可以减小边缘处的磁场垂直分量,这样可以改善铜带导体电流密度的分布,减小绕组高频损耗。
具体方法是在铜带边缘处使用高磁导率磁芯,减小磁路磁阻,这样就会降低了铜带端部的磁场,减小了端部的电流分布,绕组损耗将会降低,但是需要特殊的磁芯工艺。
4.绕组涡流损耗对于高频变压器,因为存在原边和副边绕组,所以可以通过绕组交错布置的方式小绕组的漏感和涡流损耗。
在绕组交错布置时,因为原、副边绕组的磁势是相反的,此会存在一个去磁效应,磁芯窗口中的磁势会有一定的减小,漏磁场和高频时漏磁场成的导体涡流损耗也会比较小。
对于高频电感而言,它只有一个绕组,磁路中的气隙磁势和绕组的磁势平衡,在窗口中没有其它绕组的磁势可以和电感绕组的磁势相平衡产生去磁效应,因此电感磁芯窗口中的磁势较大,磁场较强。
通过分析可以发现,电感中的磁通主要分为以下几个部分:①主磁路磁通。
这部分磁通是流通在电感磁芯中的磁通,它不会在磁芯窗口中出现,因此它不会切割导体,也不会产生导体损耗。
②气隙边缘磁通,即扩散磁通。
这部分磁通是由于气隙磁势而产生,它在磁芯窗口中出现,在高频时会切割窗口中的导体造成涡流损耗。
③旁路磁通。
这部分磁通不是由于气隙磁势而产生,而是由于相邻磁芯柱之间的磁势差而产生,当气隙较小时,旁路磁通在窗口磁通中占较大比例。
图4.1. 磁通分布图4.1旁路磁通损耗旁路磁通通过磁芯窗口跨过相邻的磁芯柱,在绕组上产生大量的涡流和损耗,气隙的边缘磁通是由于跨过气隙的磁势造成的,而旁路磁通是由于相邻磁芯柱间的磁势差异造成,沿着磁芯柱窗口的磁势分布取决于载流绕组和气隙的位置。
沿着磁芯柱磁势随着载流绕组安匝增大而增加,随着跨过气隙而降低。
通过做出如下一维假设,可以对旁路磁通作一定的分析。
1.假定磁芯磁导率是无穷的,磁场进入磁芯窗口是垂直于磁芯表面的。
2.绕组添满整个磁芯窗口宽度,绕组边缘效应很小,可忽略。
3.对圆导体进行一维等效,变成一片方导体,使用等效厚度和等效电导率,磁场在磁芯窗口中平行于导体表面,属一维分布。
4.气隙可认为很小,边缘磁通很小,对旁路磁通影响很小,然而无论气隙多么小,边缘磁通都存在,因为气隙磁势是存在的。
图4.1.1 Dowell绕组损耗分析模型如图4.1.1所示为磁芯窗口中的第m层铜带绕组,其上、下表面的磁场强度分别Hm1和Hm2,则这层铜带绕组的电流分布和绕组损耗可以通过Dowell方程得出,如式(4.1.1)所示:(4.1.1)(4.1.2)式中k= ,f是工作频率,σeq是铜带的等效电导率,μ是绕组的磁导率,Aeq和W是等效铜带的厚度和宽度。
总的旁路磁通绕组损耗可以通过求和得出,如式(2.1.3)所示:(4.1.3)通过用一维的方式分析旁路磁通可知:绕组的电流密度与沿导体的磁场强度密切相关,不同的气隙位置导致不同的窗口磁势,因此沿导体的磁场强度会有较大的不同,沿导体的电流密度分布也会有较大的不同。
旁路磁通的大小是与磁芯高度方向上的平均磁压降密切相关的。
当气隙处于中间与两端时,磁压分布如下图所示:图4.1.2 EI型(a)和EE(b)型磁芯电感窗口磁势分布图a中的平均磁压降为IN/2,b为IN/4。
假定旁路磁通与底边平行,又由于B=dU*u0/w,可知,a中的磁密必定大于b中的磁密,磁场方向与线圈垂直。
下面是损耗与平均磁压降的关系:图4.1.3 损耗随平均磁压降变化图由图可看出磁压降越低,损耗越低。
由此,如果我们可以将磁压降降得更低,就可得到损耗更低的电感!图4.1.4 磁压降与气隙位置的关系由于它将气隙交错布置,使磁压降在高度方向上出现二次转折,仅为IN/8。
它的损耗比起气隙居中者可再下降约50%。
因此我们可以知道在电感磁势一定的情况下,EE磁芯窗口中的最大磁势是EI磁芯的一半。
磁芯窗口中的最大磁势的减小,有助于减小旁路磁通,进而旁路磁通造成的导体涡流损耗也会减小,所以在选择磁芯时应该引起注意,利用交错气隙可以减少磁芯窗口内的旁路磁通。