高强度聚乙烯醇水凝胶微球的制备
- 格式:pdf
- 大小:246.52 KB
- 文档页数:4
聚乙烯醇水凝胶的制备及应用进展吴李国 章悦庭 胡绍华(东华大学纤维材料改性国家重点实验室,上海,200051)摘要 综述了PVA 水凝胶的制备进展,详细介绍了PVA 水凝胶的最新应用研究。
关键词:聚乙烯醇,水凝胶,制备,应用中图法分类号:TQ31 高分子凝胶是线性高分子链通过交联形成三维网状结构,再经过大量溶剂溶胀形成的一种胶态物质[1]。
“凝胶”的称谓是由胶体化学创始人Graham 于19世纪后半叶提出的。
最早的凝胶应用可以追溯到中国古代的豆腐制作。
现代的凝胶研究则始于水溶胶领域明胶的研究[2]。
最初的凝胶研究只限于凝胶的溶胀等基本现象,例如对天然橡胶在有机溶剂中溶胀时压力与浓度的关系等等。
20世纪30年代起,科学家开始系统地研究凝胶化(Gelation )过程,主要体现在基础理论的研究和工艺学研究两方面。
Flor y 提出了利用单体聚合制造网络的临界条件,此后,Flor y 又和R ehner 提出了网络结构的溶胀理论。
Eldridge 和Ferr y 则研究了热可逆溶胶的凝胶点和聚合物浓度的关系。
凝胶按照分散相介质的不同而分为水凝胶(hydro -gel )、醇凝胶(alc ogel )和气凝胶(aerogel )等。
因此,水凝胶的分散相介质是水,它是由水溶性分子经过交联后形成的,能够在水中溶胀并且保持大量水分而不溶解的胶态物质。
20世纪50年代,日本人曾根康夫[3]最早注意到聚乙烯醇(P V A )水溶液的凝胶化现象。
由于P V A 水凝胶除了具备一般水凝胶的性能外,特别具有毒性低、机械性能优良(高弹性模量和高的机械强度)、吸水量高和生物相容性好等优点,因而倍受青睐。
P V A 水凝胶在生物医学和工业方面的用途非常广泛。
这里就PV A 水凝胶最新的制备和应用研究进展作一综述。
1 PVA 水凝胶的制备PVA 水凝胶的制备按照交联的方法可分为化学交联和物理交联。
化学交联又分辐射交联和化学试剂交联两大类。
聚乙烯醇水凝胶强度与醇解度的关系介绍聚乙烯醇(Polyvinyl Alcohol,PVA)水凝胶是一种具有优异性能的高分子材料。
它在水中能迅速吸收大量水分,形成凝胶状,并具有良好的可溶性。
聚乙烯醇水凝胶的强度与醇解度之间存在一定的关系,本文将对这一关系进行探讨。
聚乙烯醇水凝胶的制备聚乙烯醇水凝胶的制备过程如下: 1. 将适量聚乙烯醇固体加入水中,并加热搅拌。
2. 聚乙烯醇在加热的过程中逐渐溶解。
3. 等溶液冷却到室温后,形成聚乙烯醇水凝胶。
聚乙烯醇水凝胶的强度与醇解度的关系强度的定义聚乙烯醇水凝胶的强度是指其抵抗外部力作用下形变或破坏的能力。
强度与醇解度之间存在一定的相关性。
醇解度对水凝胶强度的影响聚乙烯醇水凝胶的醇解度是指其在水中的溶解度,通常以聚乙烯醇的含量表示。
醇解度越高,水凝胶的强度越低;醇解度越低,水凝胶的强度越高。
分子链交联度与醇解度的关系聚乙烯醇水凝胶的强度与其分子链交联度有关。
在制备过程中,聚乙烯醇分子链之间可以通过氢键或化学交联形成交联网络。
分子链交联度越高,醇解度越低,水凝胶的强度越高。
表观粘度与醇解度的关系表观粘度也是评价聚乙烯醇水凝胶强度的重要指标之一。
表观粘度与醇解度呈负相关关系,即醇解度越高,表观粘度越低,水凝胶的强度越低。
交联度与醇解度的关系聚乙烯醇水凝胶的交联度是指交联点的数量和密度。
交联度与醇解度呈正相关关系,即交联度越高,醇解度越低,水凝胶的强度越高。
影响聚乙烯醇水凝胶醇解度的因素聚乙烯醇分子量聚乙烯醇分子量越高,醇解度越低,水凝胶的强度越高。
溶液浓度溶液浓度越高,醇解度越低,水凝胶的强度越高。
温度较低温度下,聚乙烯醇分子链的运动和交联较多,醇解度较低,水凝胶的强度较高。
pH值pH值对聚乙烯醇水凝胶的醇解度和强度有一定的影响。
通常,醇解度和强度会随着pH值的变化而变化。
结论聚乙烯醇水凝胶的强度与醇解度之间存在着一定的关系。
醇解度越低,水凝胶的强度越高。
醇解度受多种因素影响,其中聚乙烯醇分子量、溶液浓度、温度和pH值是影响醇解度的重要因素。
聚乙烯醇(PVA)水凝胶的制备聚乙烯醇(PVA)水凝胶是一种高分子化合物制成的水凝胶,具有可溶性和良好的生物相容性,可以广泛应用于医学、环保、农业和生物工程等领域。
本文将介绍PVA水凝胶的制备方法。
一、材料准备1. PVA粉末:选择适合需要的聚乙烯醇粉末,粉末的分子量与最终制备出的水凝胶的性质密切相关。
2. 离子交换水:烧杯中添加适量的离子交换水,以保证PVA粉末能够充分溶解。
3. 甘油:甘油可用于增加PVA水凝胶的柔韧性,可以根据需要添加适量的甘油。
4. 氢氧化钙:氢氧化钙可用于控制PVA水凝胶的凝胶速度,添加适量的氢氧化钙可以定制出不同凝胶速度的水凝胶。
二、制备方法2. 将烧杯置于加热板上,用磁力搅拌器将PVA溶液搅拌均匀,使其达到透明的状态。
3. 将氢氧化钙称量放入烧杯中,逐滴加入PVA溶液中,并不停搅拌,直至氢氧化钙完全溶解,均匀分布在PVA溶液中,形成PVA凝胶。
4. 添加适量的甘油,也可在加氢氧化钙之前添加,以提高PVA凝胶的柔韧性,同时仍需不停搅拌,确保甘油均匀分布在PVA凝胶中。
5. 将制备好的PVA凝胶倒入模具中,静置3-4小时,至凝胶固化。
6. 将凝胶取出,并加入水或其他液体,使凝胶膨胀、吸水。
三、特点PVA水凝胶的特点主要体现在以下方面。
1. 生物相容性好:PVA是一种无毒、无害、生物相容性良好的高分子材料,可广泛应用于医学领域。
2. 可溶性好:PVA具有优良的可溶性,可与水和其他有机溶剂混合使用。
四、应用PVA水凝胶可广泛应用于医学、环保、农业和生物工程等领域,具体应用如下:1. 医学领域:可用于载药、组织工程、伤口治疗等。
2. 环保领域:可用于固体废物处理、水污染治理和土壤修复等。
3. 农业领域:可用于土壤保水、植物栽培和农残保留等。
4. 生物工程领域:可用于生物反应器、生物传感器和生物分离等。
五、结论。
一种聚乙烯醇水凝胶微针的制备方法1.准备所需的原料和器具,包括聚乙烯醇(PVA)、交联剂、脱氧剂、微针模具等。
2.在实验室中,确保操作台面整洁干净,以确保微针制备的卫生和稳定性。
3.将PVA粉末加入到适量的去离子水中,并进行搅拌,直至PVA完全溶解。
4.在搅拌的逐渐向PVA水溶液中加入适量的交联剂,用来交联PVA并增加其稳定性。
5.继续搅拌PVA水溶液,保持温度和搅拌速度恒定,直至交联剂充分溶解在PVA水溶液中。
6.将脱氧剂逐渐加入PVA水溶液中,以保持PVA在制备过程中不被氧化。
7.将制备好的PVA水溶液倒入微针模具中,确保填充均匀并且没有气泡产生。
8.将填充好的微针模具转移到低温环境中,以促进PVA水溶液的凝胶化和固化。
9.等待一定时间,直至PVA水凝胶微针完全固化,并且具有足够的硬度和稳定性。
10.将固化好的PVA水凝胶微针从模具中取出,并进行清洁和消毒处理。
11.根据需要,可以对PVA水凝胶微针进行切割和修整,以获得需要的大小和形状。
12.在微针的底部或侧面设计微针尖,以便在穿刺时减小疼痛和损伤。
13.可以根据需要在微针的表面添加药物或活性成分,用以实现特定的治疗效果。
14.将制备好的PVA水凝胶微针存放在干燥、无菌的环境中,以便后续的实验和临床应用。
15.进行相关的物理化学分析和性能测试,以验证PVA水凝胶微针的质量和稳定性。
16.对PVA水凝胶微针进行生物相容性测试,确保其在人体内的安全性和可接受性。
17.设计并进行药物释放实验,评估PVA水凝胶微针用于药物传递的效果和机制。
18.开展体外人工皮肤或动物模型实验,验证PVA水凝胶微针在真实生物体内的穿刺和治疗效果。
19.优化制备工艺和参数,以提高PVA水凝胶微针的生产效率和性能稳定性。
20.利用先进的成像和分析技术,对PVA水凝胶微针的微观结构和表面形态进行表征和分析。
21.开展长期稳定性和保存期实验,评估PVA水凝胶微针在不同条件下的稳定性和耐用性。
聚乙烯醇水凝胶的制备方法及设备一、制备方法:1.原料准备:首先准备聚乙烯醇(PVA)粉末和去离子水。
PVA粉末的选择可以根据需要的吸湿性和保湿性能来确定,去离子水要保证纯净。
2.溶液制备:将适量的PVA粉末加入去离子水中,搅拌均匀。
可以根据所需的胶体浓度来调整PVA粉末的用量。
搅拌过程中要确保PVA粉末完全溶解,可以加热溶液来加快溶解速度。
3.凝胶形成:将制备好的PVA溶液倒入待凝胶的容器中,然后将容器放在适当的条件下进行凝胶。
凝胶可以通过自然凝胶或者添加适量的交联剂进行凝胶。
4.凝胶加工:将凝胶取出,可以通过挤出、压制、注射等方法将凝胶加工成所需形状和尺寸。
在加工过程中要注意保持凝胶的湿润状态,可以使用湿润剂来避免凝胶的干燥。
二、设备:1.溶液配置设备:包括搅拌机、加热设备和容器。
搅拌机用于将PVA 粉末和去离子水充分混合,可以选择机械搅拌机或者磁力搅拌机。
加热设备用于加热溶液,可以选择加热板或者恒温水槽。
容器可以选择耐热的玻璃容器或不锈钢容器。
2.凝胶形成设备:包括凝胶容器和凝胶条件。
凝胶容器可以选择密封的模具或者盖子,保证凝胶形成过程的无外界干扰。
凝胶条件包括温度和湿度,可以根据实际需要进行调控。
3.凝胶加工设备:包括挤出机、压制机和注射机。
挤出机可以将凝胶挤出成所需的形状,压制机可以通过加压将凝胶制成薄膜或者片状。
注射机可以用于将凝胶注射到模具中制成特定形状。
以上是聚乙烯醇水凝胶的制备方法及相应的设备介绍。
制备水凝胶需要确保原料的纯净度,搅拌和加热过程要充分溶解,凝胶过程要保证无外界干扰。
设备选择要根据实际需求和生产规模来确定。