当前位置:文档之家› 第十二讲 旋风分离器的设计和非标设计方法

第十二讲 旋风分离器的设计和非标设计方法

第十二讲 旋风分离器的设计和非标设计方法
第十二讲 旋风分离器的设计和非标设计方法

第十二讲旋风分离器的设计和非标设计方法

旋风分离器是对流干燥系统的重要组成部分。我们对此必须要足够地重视,有一些失败的对流干燥系统,不是干燥器设计不合理,而是旋风分离器设计或选用不合理。

在气流干燥和旋转闪蒸干燥系统中,有80~90%的产品是通过旋风分离器回收的,只有10~20%的产品是通过布袋除尘器回收的。如果旋风分离器‘失灵’,大量的产品就‘拥挤’到布袋除尘器中,增加布袋除尘器的阻力,造成风机风压不够,以致干燥系统‘瘫痪’。

在喷雾干燥系统中,对于喷雾干燥塔底部作为主要回收产品的系统来说,也有将近30%的产品要通过旋风分离器回收;对于喷雾干燥塔底部不收集产品的系统(如中药浸膏喷雾干燥系统),就有全部或85%以上的产品要通过旋风分离器收集。

对于振动流化床干燥系统和转筒干燥系统也有5~10%的细微颗粒要通过旋风分离器回收。

一、旋风分离器的结构和工作原理:

(一)、旋风分离器的结构:

一般来说,旋风分离器由进风管,直筒,锥形筒,排灰管,锁风阀和排风管组成(见图1)。

(二)、工作原理:

当含尘气流以14~22m/s速度由进风管进入旋风分离器时,气流将由直线运动变为圆周运动。旋转气流的绝大部分沿直圆筒的内壁呈螺旋形向下,

朝锥形筒体运动。通常称此气流为‘外旋气流’。含尘气流在旋转过程中产生离心力,将重度大于气体的尘粒甩向筒内壁。尘粒一旦与筒壁接触,便失去惯性力,而靠入口速度的动量和向下的重力沿壁面下落,进入排灰管。旋转下降的外旋气流在到达锥体时,因圆锥形的收缩而向除尘器中心靠拢。根据‘旋转矩’不变原理,其切向速度不断提高。当气流到达锥体下端某一位置时,即以同样的旋转方向从旋风分离器中部,由下反转而上,继续作螺旋运动,即为‘内旋气流’。最后净化气体经排风内管排出器外,一部分未被捕获的尘粒也由此随排风排出旋风分离器。

自进气管流入的另一小部分气体,则向旋风分离器顶盖流动,然后沿排气管外侧向下流动。当到达排气管下端时,即反转向上随上升的中心气流(内旋气流)一同从排气管排出。分散在这一部分上旋气流中的尘粒也随同被带走。

二、旋风分离器的内部气流分布简介和旋风分离器的特点: 由于旋风分离器的分离,捕集过程是一种极为复杂的三维,二相湍流运动,致使理论与实验研究十分困难。.另外,设备的结构不同,几何尺寸的不一,尤其是气—固两相本身物理性质的差异,操作条件的变化等等因素,都对旋风分离器的主要性能----效率,压力损失有显著的影响.因此,至今仍无法全面掌握它们运动的内在规律,更不能从理论上建立一套完整的成熟的数学模型。我们在这里仅介绍与我们有关旋风分离器的定性和半定量的知识。

(一)、旋风分离器的内部气流分布简介:

1.气流在旋风分离器内是复杂的三维运动,器内任一点上都有切向、径向和轴向速度,其中切向速度对分离性能和压力损失影响最大。在旋风分

离器内,切向速度和压力分布在同一水平面,各点的切向速度由器壁向中心增大,满足半自由旋流区的切向速度分布规律:v t×r n=常数,n称速度分布指数,一般在0.5~0.9范围内。到直径等于排气管直径的0.65倍的圆周上大最大值,再往中心则急剧减少,即随于轴心距离的减小而降低。切线速度最大的圆周内有一轴向速度很大的向上内旋气流,称为核心流,核心流以内的气流为强制涡。核心气流以外为准自由涡。器内各点的压力测定结果表明,由于旋涡的存在,在分离器内气体沿径向的压力分布曲线似抛物线状。器壁附近压力最高,仅稍低于气流进口压力,往中心逐渐降低,至核心气流处降为负压,低压核心气流一直延伸至最下面的排灰口。因此,当分离器灰仓或底部接近轴心处有漏孔时,外部空气会以高速进入分离器,使已沉降的颗粒重新卷入净化气流中,以致严重影响收尘效率。

2.涡流:

涡流也称二次涡流,在旋风分离器中称次流,它由轴向速度v z与径向速度v r构成。涡流对旋风分离器的性能,尤其是分离效率,影响较大。常见的涡流有:

(1).短路流:旋风分离器顶盖,排气管外面与筒体内壁之间,由于径向速度与轴向速度的存在,将形成局部涡流(上涡流).夹带着相当数量的尘粒向中心流动,并沿排气管外表面下降,最后随中心上生气流逸出排气管,影响了除尘效率。

(2). 纵向旋涡流:纵向旋涡流是以旋风分离器内,外流分界面为中心的器内再循环而形成的纵向流动。经实验证明,零轴向速度面的位置等于0.6倍旋风筒体半径。由于排气管内有效流通载面小于排气管管端以下内旋流

的有效流通载面,因此在排气管管端处产生节流效应,从而使排气管管端附近的气体径向速度大大提高,致使气体对大颗粒的甩力超过了颗粒所受的离心力而造成‘短路’,影响了分离性能。

(3).外层旋流中的局部涡流:由于旋风分离器壁面不光滑,如突起,焊缝等等,可产生与主流方向垂直的涡流.其量虽只约主流的五分之一,但这种流动会使壁面附近,或者已被分离到壁的粒子重新甩到内层旋流,使较大的尘粒在净化气中出现,降低了旋风分离器的分离能力。这种湍流对分离5μm 以下的颗粒尤为不利。

(4).底部夹带:外层旋流在锥体顶部向上返转时可产生局部涡流,将粉尘重新卷起,假使旋流一直延伸到灰斗,也同样会把灰斗中粉尘,特别是细粉尘搅起,被上升气流带走。底部夹带的粉尘量占排气管带出粉尘量的20~30%。因此,合理的结构设计,减少底部夹带是改善旋风分离器捕集效率的重要方面。

(二)、旋风分离器的特点:

1.结构简单,器身无运动部件,不需特殊的附属设备,占地面积小,制造,安装投资较小。

2.操作,维护简便,压力损失中等,动力消耗不大,运转维护费用较低。3.操作弹性大,性能稳定,不受含尘气体的浓度,温度限制。对于粉尘的物理性质无特殊要求,同时可根据化工生产的不同要求,选用不同材料制作,或内衬各种不同的耐磨,耐热材料,以提高使用寿命。

4.缺点:如卸灰阀泄漏,会严重影响除尘效率;磨损严重,特别是处理高浓度或琢磨性大的粉尘时,入口处和锥体部位都容易磨坏;除尘效率不

高,单独使用时有时满足不了含尘气体排放浓度要求。

三、旋风分离器的压力损失和除尘效率:

(一)、压力损失ΔP:

1.产生压力损失的原因:

(1).进口管的摩擦损失;

(2).气体进入旋风分离器内,因膨胀或压缩而造成的能量损失;

(3).气体在旋风分离器中与器壁的摩擦所引起的能量损失;

(4).旋风分离器内气体因旋转而产生的能量损失;

(5).排气管内摩擦损失,同时旋转运动较直线运动需要消耗更多的能量;

(6).排气管内气体旋转时的动能转化为静压能的损失。

2.旋风分离器压力损失计算式:

(1).一般情况下,旋风分离器的压力损失ΔP在1000~2000Pa,特殊设计

的例外。

(2).压力损失应该用旋风分离器进、出口全压之差来表示,即

ΔP=(P q)j-(P q)h

而全压为: 全压(P q)=静压(P z)+动压(P d)

又动压为: P d=v2·ρg/2 (Pa)

∴ΔP=【(P z)j+v j2·ρg/2】-【(P z)h+v h2·ρg/2】

=【(P z)j-(P z)h】+【(v j2-v h2)·ρg/2】(Pa)

式中:(P q)j,(P q)h---旋风分离器进、出口全压,(Pa);

(P z)j,(P z)h---旋风分离器进、出口静压,(Pa);

(P d)j,(P d)h---旋风分离器进、出口动压,(Pa);

v j,v h----旋风分离器进、出口速度,(m/s);

ρg----气体的密度,(kg/m3)。

如果进、出口截面积相同,则v j=v h,所以有:

ΔP=(P z)j-(P z)h(Pa)

即压力损失可用进、出口静压差来表示,进、出口静压差采用U形管即可在进、出口的管壁测出。如果进、出口截面积不相同,则还要用原始计算式计算,除了测出静压,还要测出系统的流量,才能计算出动压。

(3).计算旋风分离器压力损失的常用计算式:

为了使压力损失计算时采用与动压计算相类似的计算式,引进了一个阻力系数ζ,定义为旋风分离器的压力损失与进口动压头之比。即

ΔP

ζ= -------------- (无量纲)

v j2·ρg/2

∴ΔP=ζ·(v j2·ρg)/2 (Pa)

这是我们常用的阻力计算形式,在管道局部阻力计算时也用该式,只是阻力系数是不同的值,但一定要注意v的定义。

另外还有不同的阻力系数计算式,我们在非标旋风分离器设计时再介绍。

(二)、旋风分离器的除尘效率:

1.临界分离粒径:

对旋风分离器内气体流动的研究可知,关键的分离区是从排气管下至排灰口间的准自由涡与核心气流交界处,即大致在旋转半径为0.65倍排气管半径r1(即r0=0.65r1)处有最大的圆周速度,在此假想的圆筒面上离心力最大,此时颗粒的离心沉降速度u r与粒径d p的关系可用下式表示:

18μg·u r·r0

d p2= ------------------- (m)(斯托克斯阻力区)

(ρp-ρg)·u t

式中,u r----颗粒的径向沉降速度,(m/s);

u t----气流的圆周(切向)速度,(m/s);

μg----空气粘度,(Pa·s);

r0----排气管的半径,(m);

ρg----气体密度,(kg/m3);

ρp----颗粒密度,(kg/m3)。

对于一定型号的旋风分离器,在正常操作风速范围(一般为14~22m/s)内,临界分离半径d k可用下式计算,

d k=K×{9μg·D2/【π·H1·(ρp-ρg)·u i】}0.5(m)

式中:D----旋风分离器外圆直筒的直径,(m);

H1----排气管下口至排灰口之间的有效分离高度,(m);

U i----气流入口速度,即操作风速,(m/s);

K----与旋风分离器型号及操作风速有关的常数,对于常用型号的分离器,根据经验可取K=0.6~0.8。

2.除尘效率:

由理论和半经验公式可以求出旋风分离器在一定操作工况下对某一粉尘粒径d p的分级分离效率ηp,但计算式很复杂。在这里介绍一个较为简单的除尘效率计算式。

ηt=1-P·C i-q

式中:P----与旋风分离器的结构和粉尘性质有关的常数,P=0.1~0.3;

C i----标准状况下的粉尘浓度,(g/Nm3);

q----与操作条件有关的常数,一般地,取q=0.046~0.048。

四、影响旋风分离器性能的主要因素:

(一)、旋风分离器几何尺寸的确定及其对旋风分离器性能的影响:

在旋风分离器的几何尺寸中(见图1),以旋风分离器的直径,气体进口以及排气管形状与大小为最重要的影响因素。

1.旋风分离器的直径(筒体直径)D0:

一般,旋风分离器的直径越小,旋转半径越小,粉尘颗粒所受的离心力越大,旋风分离器的除尘效率也就越高。但过小的筒体直径,由于旋风

分离器的器壁与排风管太近,可造成较大直径颗粒有可能反弹至中心气流而被带走,使除尘效率降低。另外,筒体太小容易引起堵塞,尤其是对于粘性物料。因此,一般筒体直径不宜小于50~75mm。工程上常用的旋风分离器的直径是在200mm以上(多管式旋风分离器除外)。如今已出现大于1000mm,甚至2000mm的大型旋风分离器(如丹麦尼罗公司)。2.旋风分离器高度H:

通常,较高除尘效率的旋风分离器都有较大的长度比例。较大的长度比例可使进入筒体的尘粒停留时间增长,减少二次夹带,还可避免旋转气流对灰斗顶部的磨损。但过长的旋风分离器会占据较大的空间。

(1).旋风分离器自然长度:

为了给出旋风分离器的高度有一个约束,提出了‘自然长度’,即从排气管下端至旋风分离器自然旋转顶端的距离,可用下式计算:

l=2.3d e×【D02/(b×a)】1/3

式中,l----旋风分离器筒体长度,m;

D0----旋风分离器筒体直径,m;

b----旋风分离器入口宽度,m;

a----旋风分离器入口高度,m;

d e----旋风分离器出口直径,m。

旋风分离器的实际长度要大于自然长度,但也不能太长。当旋风分离器设计完成后,自然长度可作为一个验算依据。

(2).旋风分离器的实际长度:

一般常取旋风分离器的圆筒段高度,h=(1.5~2.0)D0。而适当加长圆锥

长度,因为圆锥体可以在较短的轴向距离内将外旋流转变为内旋流,因而节约了空间和材料。

(3).圆锥段半锥角α,圆锥段高度(H-h)和排料管直径D2的一般取值:

圆锥段半锥角:设计时常取:α=13~15°。

圆锥段高度(H-h)=(2~2.5)D0。

排料管直径:D2=(0.5~0.8)d e。(d e的常取值,后面有说明)

3.旋风分离器的进口b×a:

(1).进口型式:旋风分离器有两种主要型式----轴向进口和切向进口。切

向进口又分为螺旋面进口、渐开线进口及圆形切向进口。(见图2)

切向进口是最为普通的一种进口型式,制造简单,用得比较多。这种进口型式的旋风分离器外形尺寸紧凑。

螺旋面进口为气流通过螺旋面进入旋风分离器后,以与水平呈近似10°的倾斜角度,向下作螺旋运动。采用这种进口有利于气流向下作倾斜的螺旋运动,同时也避免相邻两螺旋圈的气流的干扰和顶部的短路流。螺旋顶板倾斜角β应小于15°,一般取β≈11°,以克服湍流和改善上灰

环问题。

渐开线(蜗壳形)进口可以减少进口气流对筒体内气流的撞击和干扰。由于从蜗壳形进口进入筒体的气流宽度逐渐变窄,使颗粒向壁面移动的距离减小,而且加大了进口气体和排气管的距离,减少气流的短路机会,因而提高了除尘效率。与其他进口型式相比,蜗壳形进口处理量大,压力损失小,是比较理想的一种进口型式。在90°,180°和270°蜗壳

型式中,以180°的涡壳用得最多。

轴向进口的好处是最大限度地避免进入气体与旋转气流之间的干扰,以提高效率。但因气体均匀分布于进口截面,使靠近中心处分离效果很差。轴向进口常用于多管式旋风分离器。为使进口气体产生旋转,一般多在进口处设置各种形式的叶片。

(2).进口管的型式和位置:进口管可以制成矩形和圆形两种型式。但由于圆形进口管与旋风分离器的器壁只有一点相切,而矩形进口管其整个高度均于筒壁相切。故一般多采用矩形进口管。

矩形宽度b和高度a的比例要适当,通常长而窄的进口管与器壁有着更大的接触面。宽度b越小,临界粒径越小,除尘效果越高。但进口管太长,为了要保持一定的气体旋转圈数N,必须加长筒体,否则除尘效率仍不能提高。一般矩形进口还的高与换之比为:a/b=2~3,另有:b=(0.2~0.25)D0;a=(0.4~0.75)D0。

4.排气管d e和h c:

常见的排气管有两种:一是下端收缩式,另一种为直筒式(见图3)。在设计分离较细粉尘的旋风分离器使,可考虑排气管为下端收缩式。由实验得到证实:当D0/d e=2.5~3时,除尘效率达到最高点,而压力损失增加并不快。一般常取:d e=(0.3~0.5)D0。另外排气管插入的深度也要适当,一般h c≥0.8a。

5.灰斗:

灰斗是旋风分离器设计中最容易被忽略的部分。一般都把它仅看作是排除粉尘的装置。其实在分离器的锥度处,气流非常接近高湍流,而粉尘也正是由此排出。因此,二次夹带的机会也就更多。再则,旋流核心为

负压,如果设计不当,造成灰斗漏气,就会使粉尘二次飞扬加剧,严重地影响除尘效率。下表列出灰斗漏气量和除尘效率降低的关系。

6.旋风分离器各部分间的比例:

标准和常用旋风分离器几何尺寸的比例关系见下表:

(二)、操作条件对旋风分离器性能的影响:

1.进口气速v j的影响:

在一定的范围内,v j进口气速越大,除尘效率越高。但气速太高,气流的湍流程度增加,二次夹带严重。另外,气速太高,粉尘微粒与此筒器壁的摩擦加剧,粗颗粒粉碎,使细粉尘含量增加。过高的气速对具有凝聚性质的粉尘也会起分散作用。这些对除尘都是不利的。

气体通过旋风分离器的压力损失,和气体的进口速度平方成正比。因此,在设计旋风分离器的进口截面时,必须使进口气速为一适宜值。这样既保

证旋风的除尘效率,又考虑到能量的消耗。其次,进口气速过大,也会加速旋风分离器本体的磨损,降低旋风分离器的使用寿命。

一般取进口风速v j=14~22m/s。

2.气体的密度ρ,粘度μ和温度t的影响:

气体密度变化对除尘效率的影响可忽略不计,但气体密度增加,则压力损失也增加。

气体粘度的影响在计算分离器压力损失时常忽略不计。但除尘效率是随着气体粘度的增加而降低(从临界分离粒径计算式可以看出)。

由于温度升高,气体粘度增加,当进口气速等条件保持不变时,分离器效率也稍有降低。通常气体温度越高,旋风分离器压力损失越小。3.气体含尘浓度的影响:

旋风分离器的除尘效率随粉尘浓度增加而提高,这是由于粉尘易团聚和凝聚性能提高引起的。需要注意的是随着含尘浓度增加,排气管排出的粉尘绝对量也会大大地增加。下表是当粉尘粘性较小时,旋风分离器直径和允许含尘质量浓度的关系:

4.气体含湿量的影响:

气体的含湿量对旋风分离器的工况有较大的影响。例如,分散度很高而粘着性很小的粉尘(小于10μm的颗粒含量为30%~40%,气体含湿量为1%)气体在旋风分离器中的净化不好;若细颗粒量不变,湿含量增至

5%~10%时,那么颗粒在旋风分离器内相互粘结成比较大的颗粒,这些大颗粒被猛烈冲击在器壁上,气体净化将大大有改善。但气体含湿量过大,将会引起粉尘粘壁,甚至堵塞,以致大大地降低旋风分离器的性能。(三)、固体粉尘的物理性质对旋风分离器的影响:

1.固体颗粒大小(即粒径d p)的影响:

较大粒径的颗粒在旋风分离器中会产生较大的离心力,有利于分离。所以大颗粒所占的百分比越大,总除尘效率越高。

2.颗粒密度ρp的影响:

粉尘单颗粒密度对除尘效率有着重要的影响。ρp越大,除尘效率也越高。

颗粒密度对压力损失影响很小,设计计算中可以忽略不计。

五、旋风分离器的分类及其选型:

(一)、旋风分离器的分类:

1.按性能分类:

按性能可分为:(1).高效旋风分离器:其筒体直径较小,用来分离较细的粉尘,除尘效率在95%以上;(2).高流量旋风分离器:筒体直径较大,用于处理很大的气体流量,其除尘效率为50%~80%;(3).介于上述两者之间的通用旋风分离器:用于处理适当的中等气体流量,其除尘效率为80%~95%。

2.根据结构型式分类:

根据结构型式可分为圆筒体型(基本型),长锥体型,扩散型,旁通型等,前三种类型的旋风分离器是我们干燥系统中经常用到的(见图4,图5和图6)。

3.按其组合,安装情况分类:

可分为内置旋风分离器(安装在反应器或其他设备内部,化工行业用得较多,体形较小),外置旋风分离器(可见得着外形的);立式(常见的)与卧式(如与热风炉配套的);单筒与多筒的;还有多管旋风分离器(也称旋风子),与锅炉配套用的。

4.按气流导入情况分类和气流在器内的流动路线分类::

按气流导入情况可分为切向导入和轴向导入;按气流进入器内的流动路线可分为反转、直流,以及带二次风的形式。

切流反转式旋风分离器是最常用的旋风分离器,其结构和气流状况在前面已作介绍。

(二)、旋风分离器的选型:

1.选型原则:

(1).旋风分离器的净化气体量应与实际需要处理的含尘气体量一致。选择直径时应尽量小些。如果要求通过的风量较大时,可采用若干个小直径的旋风分离器并联,矩形排列一般最多为2(列)×3(行)=6个,多管旋风分离器不受此限定,圆形排列数量可以增多。

(2).旋风分离器的入口风速要保持14~22m/s,视阻力系数而定。

(3).选择旋风分离器时,要根据工况考虑阻力损失和结构形式,尽可能使之动力消耗减少,且便于维修。

(4).旋风分离器能捕集到的最小尘粒应等于或稍小于被处理气体的粉尘的最小粒度。如不能达到要求,就可把旋风分离器作为第一级分离,后再加布袋除尘或湿法除尘作为第二级分离。

(5).当含尘气体温度很高时,要注意保温,避免水分在分离器内凝结。假如

粉尘不吸收水分,露点温度为30~50℃时,进入分离器的气体温度应高于露点温度30℃;假如粉尘吸水性较强(如水泥,石膏和含碱粉尘等),露点为30~50℃时,进入分离器气体温度应高于露点温度40~50℃。

(6)旋风分离器结构的密封性要好,确保不漏风。尤其是负压操作,更应注意卸料器锁风装置的可靠性。

(7).易燃易爆粉尘(如煤粉),应设有防爆装置。防爆装置的通常做法是在入口管道上加一个安全防爆阀门。

2.选型步骤:

旋风分离器的性能有三个技术性能(气体处理量G,压力损失ΔP及除尘效率η)和三个经济指标(基建投资和运转费用,占地面积,使用寿命)。

旋风分离器的选型计算主要包括类型选择,筒体直径及数量的确定等内容。一般步骤和方法如下所述。

(1).确定除尘系统需要处理的气体量G(m3/h)。

(2).根据所需处理气体的含尘质量浓度,粉尘性质及使用条件初步选择分离器类型。

(3).确定旋风分离器的进口气体速度v j(14~22m/s);

(4).确定气体进口面积F j(m2):

F j=a×b=G/(3600v j)

根据a/b=2~3 的范围,设定a/b的确定值,计算出a和b的值;

(5).筒体直径D0(m):

根据a=(0.4~0.5)D0的范围,设定具体的比值,计算出D0的值; (6).筒体长度h(m):

根据h=(1.5~2)D0的范围,设定具体的比值,计算出h的值;

(7).锥体长度H-h(m):

根据H-h=(2~2.5)D0的范围,设定具体的比值,计算出H-h的值; (8).排灰口直径D2(m):

根据D2=(0.15~0.4)D0的范围,设定具体的比值,计算出D2值; (9).排风管直径d e(m):

根据d e=(0.3~0.5)D0的范围,设定具体的比值,计算出d e值; (10).排风管插入深度h c(m):

根据h c=(0.3~0.75)D0的范围,设定具体比值,计算出h c值; (11).压力损失ΔP(Pa)的计算:

根据Shepherd-Lapple的压力损失计算式:ζ=K×(a×b)/d e2

上式中,标准切向进口:K=16;有进口叶片:K=7.5;螺旋面进口:K=12, 计算得到ζ值,再用下式计算ΔP,

ΔP=ζ·v j2·ρg/2 (Pa)

3.注意点:

(1).粉尘浓度大和粒径大时,进口气体速度可取小些,反之可选大些。

(2).在高温条件下运行时,应有较大的进口气体速度。

(3).当气体含尘质量浓度较高,或要求捕集的粉尘粒度较大时,应选用较大直径的旋风分离器;当要求净化程度较高,或要求捕集微细尘粒时,可选用较小直径的旋风分离器并联使用。

(4).旋风分离器并联使用时,应采用同型号旋风分离器,并需合理地设计连

结风管,使每个旋风分离器处理气量相等,以免分离器之间产生串流现象,降低效率。彻底消除串流的办法是为每一个分离器设置单独的集尘箱。

(5).旋风分离器一般不宜串联使用。必须串联使用时,应采用不同性能的

旋风分离器,并将低效率者设于前面。

六、干燥系统常用的三种类型的旋风分离器:

(一)、XLT/A型旋风分离器(见图4):

XLT/A型旋风分离器是XLT型旋风分离器的改进型。

XLT型旋风分离器是应用最早的旋风分离器,各类型的旋风分离器都是由它改进而来的。它结构简单,制造容易,压力损失小,处理气量大,有一定的除尘效率。适用于捕集重度和颗粒较大的、干燥的非纤维性粉尘。

1.XLT/A型旋风分离器结构特点:

它具有向下倾斜的螺旋切线型气体进口,顶板为15°角的螺旋型的导向板。由于气体切向进入,又有导向板的作用,可消除气体向上流动形成的小旋涡气流,减少动能消耗,提高除尘效率。它的另一个特点是筒体细长和锥体较长,而且锥体的锥角较小,能提高除尘效率,但压力损失也较高。

2.XLT/A型旋风分离器规格:

XLT/A型旋风分离器以筒体直径为基准,有φ300~800mm共11种规格,每隔50mm为一级。按筒体个数分类有单筒,双筒,三筒,四筒和六筒5种组合。每种组合有两种排气方式。一种为水平(旁侧)排气(X型),一般用于负压操作;另一种为上部(正中)排气(Y型)。用于正压或负压操作。X型的双筒组合者,有正中进排气和旁侧进排气两种;单筒和三

筒只有旁侧进排气一种形式;四筒和六筒组合只有正中进排气一种形式。3.XLT/A型旋风分离器的阻力系数:

X型的阻力系数为ζ=5.5,Y型的阻力系数为ζ=5.0。

4.XLT/A型旋风分离器的处理气量和压力损失:

XLT/A型旋风分离器的处理气量和压力损失见下表所列。

XLT/A型旋风分离器处理气量和压力损失按下式计算:

G=2820×n×v j×D2

ΔP=ζ×ρg×v j2/2

式中:G----组合旋风分离器处理气量,(m3/h);

n----旋风筒个数;

D----旋分筒直径,(m);

V j----进口气速,(m/s);

ΔP----单个旋风分离器压力损失,Pa;

ρg----温度为t℃时含尘气体的密度,(kg/m3)。

(二)、CLK型扩散式旋风分离器(见图5):

扩散式旋风分离器又称带倒锥体旋风分离器,它具有除尘效率高,结构简单,加工制造容易,投资低和压力损失适中等优点,适用于捕集干燥的、非纤维性的颗粒粉尘,特别适用于捕集5~10μm以下的颗粒。(另一资料述说为:适宜于捕集粒径大于10μm的粉尘,其总除尘效率可达88%~92%。)

1.工作原理:

含尘气体经矩形进气管沿切向进入筒体,粉尘在离心力的作用下被抛向器壁,并随旋转气流向下运动,大部分气流受反射屏的反射作用,旋转上升经排气管排出。小部分气流随粉尘经反射屏和锥体之间的环缝进入灰斗,进入灰斗的气体速度降低,由于惯性作用,粉尘被捕集在灰斗内,气体则经反射屏的透气孔至排气管排出。

旋风分离器计算

作成 作成::时间时间::2009.5.14 一、問題提出 PHLIPS FC9262/01 這款吸塵器不是旋風除塵式的,現在要用這款吸塵器測參數選擇旋風分離裝置。二、計算過程 1.選擇工作狀況選擇工作狀況:: 根據空氣曲線選擇吸入效率最高點的真空度和流量作為旋風分離器的工作狀態。 吸塵器旋風分離器選擇 Bryan_Wang

已知最大真空度h和最大流量Q,則H-Q曲線的兩個軸截距已知,可確H-Q直線的方程。 再在這個直線上求得吸入功率H*Q最高點(求導數得)。求解過程不再詳述。求得最大吸入功率時真空度H=16.5kPa;流量Q=18.5L/s;吸入功率P2=305.25w 現將真空度及流量按照吸入功率計算值與實際值的比例放大,得真空度H=18.3kPa;流量Q=20.5L/s;2.選擇旋風分離器 為使旋風分離裝置體積最小,選擇允許的最小旋風分離器尺寸。一般旋風分離器筒體直徑不小于50mm,故選擇筒體直徑為50mm。按照標準旋風分離器的尺寸比例,確定旋風除塵器的結構尺寸。 D0=50mm b=12.5mm a=25mm de=25mm h0=20mm h=75mm H-h=100mm D2=12.5mm 計算α約為11度 發現計算得到的吸入功率最大值與產品標稱值375W相差一些,可能是由于測量誤差存在以及壓力損失的原因。

一般要求旋風分離器進氣速度不超過25m/s,這里取旋風分離器進氣速度為22m/s. 計算入口面積為S=3.125e-4平方米。 則單個旋風除塵器流量為Q=6.9e-3平方米/秒則所需旋風除塵器個數為3個計算分級效率 根據GB/T 20291-2006吸塵器標準,這里使用標準礦物灰塵,為大理石沙。进气粒径分布 103058 10019037575015002010 10102016113 顆粒密度ρp=2700kg/m3 進口含塵濃度取為10g/Nm3,大致選取空氣粘度μ=1.8e-6Pa*s 按照以下公式計算顆粒分級效率: 平均粒徑(μm)比重(%)

旋风分离器设计方案

旋风分离器设计方案 用户:特瑞斯信力(常州)燃气设备有限公司 型号: XC24A-31 任务书编号: SR11014 工作令: SWA11298 图号: SW03-020-00 编制:日期:

本设计中旋风分离器属于中压容器,应以安全为前提,综合考虑质量保证的各个环节,尽可能做到经济合理,可靠的密封性,足够的安全寿命。设计标准如下: a. TSG R0004-2009《固定式压力容器安全技术监察规程》 b. GB150-1998《钢制压力容器》 c. HG20584-1998《钢制化工容器制造技术要求》 d. JB4712.2-2007《容器支座》 2、旋风分离器结构与原理 旋风分离器结构简单、造价低廉,无运动部件,操作范围广,不受温度、压力限制,分离效率高。一般主要应用于需要高效除去固、液颗粒的场合,不论颗粒尺寸大小都可以应用,适用于各种燃气及其他非腐蚀性气体。 说明: 旋风分离器的总体结构主要由:进 料布气室、旋风分离组件、排气室、 集污室和进出口接管及人孔等部分组 成。旋风分离器的核心部件是旋风分 离组件,它由多根旋风分离管呈叠加 布置组装而成。 旋风管是一个利用离心原理的2 英寸管状物。待过滤的燃气从进气口 进入,在管内形成旋流,由于固、液 颗粒和燃气的密度差异,在离心力的 作用下分离、清洁燃气从上导管溜走, 固体颗粒从下导管落入分离器底部, 从排污口排走。由于旋风除尘过滤器 的工作原理,决定了它的结构型式是 立式的。常用在有大量杂物或有大量 液滴出现的场合。

其设计的主要步骤如下: ①根据介质特性,选择合适的壳体材料、接管、法兰等部件材料; ②设计参数的确定; ③根据用户提供的设计条件及参数,根据GB150公式,预设壳体壁厚; ④从连接的密封性、强度等出发,按标准选用法兰、垫片及紧固件; ⑤使用化工设备中心站开发的正版软件,SW6校核设备强度,确定壳体厚度及接管壁厚; ⑥焊接接头型式的选择; ⑦根据以上的容器设计计算,画出设计总设备图及零件图。 4、材料的选择 ①筒体与封头的材料选择: 天然气最主要的成分是甲烷,经过处理的天然气具有无腐蚀性,因此可选用一般的钢材。由操作条件可知,该容器属于中压、常温范畴。在常温下材料的组织性和力学性能没有明显的变化。综合了材料的机械性能、焊接性能、腐蚀情况、强度条件、钢板的耗材量与质量以及价格的要求,筒体和封头的材料选择钢号为Q345R的钢板,使用状态为热轧(设计温度为-20~475℃,钢板标准GB 713-2008 锅炉和压力容器用钢板)。 ②接管的材料选择: 根据GB150《钢制压力容器》引用标准以及接管要求焊接性能较好且塑性好的要求,故选择16Mn号GB6479《高压化肥设备用无缝钢管》作各型号接管。因设备设计压力较高,涉及到开孔补强问题,在后面的强度计算过程中,选择16MnII锻件作为接管材料。 ③法兰的材料选择: 法兰选用ASME B16.5-2009钢制管法兰,材质:16MnII,符合NB/T47008-2009压力容器用碳素钢和低合金钢锻件标准。 ④其他附件用材原则: 与受压件相焊的的垫板,选用与壳体一致的材料:Q345R GB713-2008; 其余非受压件,选用Q235-B GB3274 《碳素结构钢和低合金钢热轧厚钢板和

设备吊装方案

陕西金泰氯碱PVC聚合、出料、回收设备吊装方案 目录 1. 工程概况 2. 编制依据 3. 吊装前准备工作 4. 施工部署的基本原则及思路: 5. 吊车行走路线及设备吊装区域的地基处理 6. 吊装工艺流程 7. 大型设备吊装参数一览表 8. 主要设备吊装计算 9. 吊装操作要求 10.安全技术措施 11.质量保证措施 12.环境保证措施 13.作业人员安排及职责 14.主要手段用料 15.主要施工机具 16.附图 17.吊车性能表

1.工程概况 1.1 工程简介 本方案为陕西金泰氯碱PVC聚合、VCM精馏、出料、回收200、300、400、500单元设备吊装而编制,本工程需进行就位吊装的设备主要有:前、后转化、旋风干燥塔器等。安装支撑点高度最高为:27.2m。具体主要设备参数见下表:

2.编制依据 2.1《大型设备吊装工程施工工艺标准》SH/T3515-2003 2.2《工程建设安装工程起重施工规范》HG 20201-2000 2.3《建筑机械使用安全技术操作规程》JGJ 33-2001 2.4《化工塔类设备施工及验收规范》HGJ-211-85 2.5有关主要设备一览表聚合、出料、回收200、300、500单元安装设备基本情况统计表2.6拟使用履带式起重机性能参数表 3.吊装前准备工作 3.1吊装技术装备工作 3.1.1 起重机额定起重能力性能表、使用说明书齐全。 3.1.2 有业主提供的正式地勘报告。 3.1.3 绘制好施工现场设备摆放布置图。 3.1.4 被吊装设备的施工图齐全。 3.1.5 设计及其他技术文件齐全,施工图纸业经会审,施工方案业经批准,技术交底已经完成。 3.2施工现场准备工作 3.2.1 安装施工前,设备基础(包括其他预制构件)须办理土建与安装的交接验收。土建施工队应向安装施工队提交施工技术资料;基础上应画出标高基准线、横中心线,相应的建筑(构筑)物上应标有坐标轴线。 3.2.2 设备调平和缓冲载荷的用的垫铁已加工完毕。 3.2.3 设备摆放用的道木已经准备齐全。 3.2.4 吊车行走区域地基已进行了处理。 3.2.5 吊装所用的吊车以及其它机索具已准备妥当。 3.2.6 安装塔需用的设备仪器已准备齐全。 3.2.7 施工所需的水、电以及其它工具齐全,能保证连续施工。 4 施工部署的基本原则及思路: 4.1本着“先大后小、从里往外、先难后易、先地面后框架、平行流水、立体交叉”的原则。尽量缩短大型起重机的在场施工周期,在安排大型设备的吊装施工时,以能够连续、集中使用大型起重机,依次进行大型设备的吊装施工为宜。

旋风分离器的设计(苍松参考)

旋风分离器的设计 姓名:顾一苇 班级:食工0801 学号:2008309203499 指导老师:刘茹 设计成绩:

华中农业大学食品科学与技术学院 食品科学与工程专业 2011年1月14日 目录 第一章、设计任务要求与设计条件 (3) 第二章、旋风分离器的结构和操作 (4) 第三章、旋风分离器的性能参数 (6) 第四章、影响旋风分离器性能的因素 (8) 第五章、最优类型的计算 (11) 第六章、旋风分离器尺寸说明 (19) 附录 1、参考文献 (20)

任务要求 1.除尘器外筒体直径、进口风速及阻力的计算 2.旋风分离器的选型 3.旋风分离器设计说明书的编写 4.旋风分离器三视图的绘制 5.时间安排:2周 6.提交材料含纸质版和电子版 设计条件 风量:900m3/h ; 允许压强降:1460Pa 旋风分离器类型:标准型 (XLT型、XLP型、扩散式) 含尘气体的参数: ?气体密度:1.1 kg/m3 ?粘度:1.6×10-5Pa·s ?颗粒密度:1200 kg/m3 ?颗粒直径:6μm

旋风分离器的结构和操作 原理: ?含尘气体从圆筒上部长方形切线进口进入,沿圆筒内壁作旋转流动。 ?颗粒的离心力较大,被甩向外层,气流在内层。气固得以分离。 ?在圆锥部分,旋转半径缩小而切向速度增大,气流与颗粒作下螺旋运动。 ?在圆锥的底部附近,气流转为上升旋转运动,最后由上部出口管排出; ?固相沿内壁落入灰斗。 旋风分离器不适用于处理粘度较大,湿含量较高及腐蚀性较大的粉尘,气量的波动对除尘效果及设备阻力影响较大。 旋风分离器结构简单,造价低廉,无运动部件,操作范围广,不受温度、压力限制,分离效率高。一般用于除去直径5um以上的尘粒,也可分离雾沫。对于直径在5um以下的烟尘,一般旋风分离器效率已不高,需用袋滤器或湿法捕集。其最大缺点是阻力大、易磨损。

SPC-0000YJ01-02 旋风分离器技术规格书

江汉石油管理局勘察设计研究院设计证书编号:A142001005 勘察证书编号:170003-kj 工艺设备室分离器技术规格书项目号:DD12001 文件号:SPC-0000YJ02 CADD号:SPC-0000YJ01-000.DOC 延1井区开发先导试验区地面工程 站场部分 设计阶段:施工图 日期:2012.07 第 1 页共 6 页0 版 目录 1.范围 (2) 2.术语 (2) 3.投标技术文件的要求 (2) 4.投标商资格及要求 (2) 5.规范及标准 (2) 6.技术参数 (3) 7.性能要求 (3) 8.材料 (4) 9.设计、制造、检验与验收 (4) 10.包装、运输 (6) 11.技术文件及要求 (6) 12.现场验收 (7) 编制校对审核

江汉石油管理局勘察设计研究院说明书 项目号:DD12001 文件号:SPC-0000YJ01-02 CADD号:SPC-0000YJ01—02-000.DOC 第 7 页共 7 页 页 0 版 1.范围 1.1 本技术规格书适用于延1井区开发先导试验区地面工程用旋风分离器的设计、制造、检验及验收的基本要求。 1.2 本设备的主要功能是尽可能除去输送介质中携带的液相和固相杂质,以保证管道及设备的正常运行。 2.术语 本技术规格书的术语定义如下: 项目:延1井区开发先导试验区地面工程 业主: 中石化华东分公司 设计方: 中国石化集团江汉油田管理局勘察设计研究院 投标商:是指按照本技术规格书的要求为此工程设计、制造、运输成套设备的公司或厂家。 业主和设计方保留变更和解释技术规格书的权利,所有变更应以书面形式通知所有投标者。3.投标技术文件的要求 3.1 所有提供的投标文件和图纸均需有文件列表和编号。 3.2 所有设计图纸的图名,文件的封面和索引,用户手册应是中文版。 3.3 所有投标文件和图纸,包括计算公式的单位制应是国际单位制:SI。 3.4 投标商可根据经验、技术和产品,推荐和提供和本技术规格书不同的方案。这些方案应用中文加以详细和完整的描述,以供业主和设计方评估和决策。 4.投标商资格及要求 4.1 旋风分离器的投标商应具有与压力和类别相匹配的压力容器设计和制造资格,并具有至少五年以上旋风分离设备的设计业绩和至少三年以上同类压力容器的制造经验。同时具有符合国家压力容器安全监察机构有关法规要求及按ISO 9001要求的质量管理体系。 4.2 投标商应提供同类产品在长距离大口径天然气管道上的业绩、设计、制造能力证明及提供长期技术支持的能力。 4.3 投标商需递交中文版的简介,内容包括为本项目设计、制造、供货、售后服务和技术支持。 5.规范及标准 旋风分离器的设计、制造、检验与验收应遵循以下法规、规范、标准: 5.1 法规、规范、标准 5.1.1 法规:《固定式固定式压力容器安全技术监察规程》 TSG R0004-2009; 5.1.2 规范:《钢制压力容器》 GB150-2011; 5.1.3 标准: ASME VIII,div.1; 5.2 与上述规范和标准相关的国内外规范和标准。

旋风分离器设计计算的研究.

文章编号:1OO8-7524C 2OO3D O8-OO21-O3 IMS P 旋风分离器设计计算的研究 蔡安江 C 西安建筑科技大学机电工程学院, 陕西西安 摘要:在理论研究和设计实践的基础上, 提出了旋风分离器的设计计算方法O 关键词:旋风分离器9压力损失9分级粒径9计算中图分类号:TD 922+-5 文献标识码:A 71OO55D O 引言 旋风分离器在工业上的应用已有百余年历 离器性能的关键指标压力损失AP 作为设计其筒体直径D O 的基础, 用表征旋风分离器使用性能的关键指标分级粒径dc 作为其筒体直径D O 的修正依据, 来高效~准确~低成本地完成旋风分离器的设计工作O 1 压力损失AP 的计算方法 压力损失AP 是设计旋风分离器时需考虑的关键因素, 对低压操作的旋风分离器尤其重要O 旋风分离器压力损失的计算式多是用实验数据关联成的经验公式, 实用范围较窄O 由于产生压力损失的因素很多, 要详尽计算旋风分离器各部分的压力损失, 我们认为没有必要O 通常, 压力损失的表达式用进口速度头N H 表示较为方便O 进口速度头N H 的数值对任何旋风分离器将是常数O 目前, 使用的旋风分离器为减少压

力损失和入口气流对筒体内气流的撞击~干扰以及其内旋转气流的涡流, 进口形式大多从切向进口直入式改为18O ~36O 的蜗壳式, 但现有文献上的压力损失计算式均只适用于切向进口, 不具有通用性, 因此, 在参考大量实验数据的基础上, 我们提出了压力损失计算的修正公式, 即考虑入口阻力系数, 使其能适用于各种入口型式下的压力损失计算O 修正的压力损失计算式是: 史O 由于它具有价格低廉~结构简单~无相对运动部件~操作方便~性能稳定~压力损耗小~分离效率高~维护方便~占地面积小, 且可满足不同生产特殊要求的特点, 至今仍被广泛应用于化工~矿山~机械~食品~纺织~建材等各种工业部门, 成为最常用的一种分离~除尘装置O 旋风分离器的分离是一种极为复杂的三维~二相湍流运动, 涉及许多现代流体力学中尚未解决的难题, 理论研究还很不完善O 各种旋风分离器的设计工作不得不依赖于经验设计和大量的工业试验, 因此, 进行提高旋风分离器设计计算精度~提高设计效率, 降低设计成本的研究工作就显得十分重要O 科学合理地设计旋风分离器的关键是在设计过程中充分考虑其所分离颗粒的特性~流场参数和运行参数等因素O 一般旋风分离器常规设计的关键是确定旋风分离器的筒体直径D O , 只要准确设计计算出筒体直径D O , 就可以依据设计手册完成其它结构参数的标准化设计O 鉴于此, 我们在理论研究和设计实践的基础上, 提出了分级用旋风分离器筒体直径D O 的计算方法O 即用表征旋风分 收稿日期:2OO3-O3-O3 -21- AP = CjPV j 7N H 2

大型设备、塔类设备吊装方案

1、工程概述 2.4 万吨/年XXXX 装置共有各类设备134 台,且大(重)型设备共7 台,其中反应器 (R0301)净重113t,外形尺寸为? 5200*22380mm;热气过滤器(M0401A/B )净重63.3t ,外形尺寸? 5600*12200mm ;结晶器(R0401 )净重58.8t , 外形尺寸? 5600*19710mm。(其它详见附表))由于该装置设备布置采用了流程化和同类设备集中化的布置原则,装置内绝大多数 设备为厂房内封闭式,设备布置非常集中,加之吊装作业环境较为狭窄,设备吊装机具布置难度较大,吊装机具需多次移位,劳动强度增大,设备吊装工期也较长。特编此吊装方案指导施工,也是保安全、保工期的关键所在。鉴于上述原因采用履带式大型吊车吊装的方法。 2、编制依据 2.1、**省XXXX 设计院提供条件图 2.2《、化工机器安装工程施工及验收规范》HGJ203-83 2.3、《中低压化工设备施工及验收规范》 HGJ209-83 2.4《、高压化工设备施工及验收规范》HGJ208-83 2.5、《化工工程建设起重施工规范》HGJ201-83 2.6、******* 公司提供吊车性能表 3、机械设备吊装安装前具备下列条件 3.1、技术资料应具备下列条件: 3.1.1、机械设备出厂合格证明书。 3.1.2、制造厂的有关重要零件和部件的制造、装配等质量检验证书及机器的运转记录。 3.1.3、机械与设备安装有关图纸及安装使用说明书。 3.1.4、有关的安装规范及有关方案。 3.2、设备吊装前现场应具备下列条件: 3.2.1、土建工程已基本结束并办理基础中间交接手续。 3.2.2、运输和消防道路畅通。 3.2.3、吊装用的起重运输设备具备条件。 3.3、设备安装前的基础验收处理:

旋风分离器的设计

旋风分离器的设计公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

旋风分离器的设计 姓名:顾一苇 班级:食工0801 指导老师:刘茹 设计成绩: 华中农业大学食品科学与技术学院 食品科学与工程专业 2011年1月14日 目录 第一章、设计任务要求与设计条件 (3) 第二章、旋风分离器的结构和操作 (4) 第三章、旋风分离器的性能参数 (6) 第四章、影响旋风分离器性能的因素 (8) 第五章、最优类型的计算 (11) 第六章、旋风分离器尺寸说明 (19) 附录 1、参考文献 (20) 任务要求 1.除尘器外筒体直径、进口风速及阻力的计算 2.旋风分离器的选型 3.旋风分离器设计说明书的编写 4.旋风分离器三视图的绘制

5.时间安排:2周 6.提交材料含纸质版和电子版 设计条件 风量:900m3/h ; 允许压强降:1460Pa 旋风分离器类型:标准型 (XLT型、XLP型、扩散式) 含尘气体的参数: 气体密度: kg/m3 粘度:×10-5Pa·s 颗粒密度:1200 kg/m3 颗粒直径:6μm 旋风分离器的结构和操作 原理: 含尘气体从圆筒上部长方形切线进口进入,沿圆筒内壁作旋转流动。 颗粒的离心力较大,被甩向外层,气流在内层。气固得以分离。 在圆锥部分,旋转半径缩小而切向速度增大,气流与颗粒作下螺旋运动。 在圆锥的底部附近,气流转为上升旋转运动,最后由上部出口管排出; 固相沿内壁落入灰斗。 旋风分离器不适用于处理粘度较大,湿含量较高及腐蚀性较大的粉尘,气量的波动对除尘效果及设备阻力影响较大。 旋风分离器结构简单,造价低廉,无运动部件,操作范围广,不受温度、压力限制,分离效率高。一般用于除去直径5um以上的尘粒,也可分离雾沫。对于

旋风分离器设计

旋风分离器设计中应该注意的问题 旋风分离器被广泛的使用已经有一百多年的历史。它是利用旋转气流产生的离心力将尘粒从气流中分离出来。旋风分离器结构简单,没有转动部分。但人们还是对旋风分离器有一些误解。主要是认为它效率不高。还有一个误解就是认为所有的旋风分离器造出来都是一样的,那就是把一个直筒和一个锥筒组合起来,它就可以工作。旋风分离器经常被当作粗分离器使用,比如被当做造价更高的布袋除尘器和湿式除尘器之前的预分离器。 事实上,需要对旋风分离器进行详细的计算和科学的设计,让它符合各种工艺条件的要求,从而获得最优的分离效率。例如,当在设定的使用范围内,一个精心设计的旋风分离器可以达到超过99.9%的分离效率。和布袋除尘器和湿式除尘器相比,旋风分离器有明显的优点。比如,爆炸和着火始终威胁着布袋除尘器的使用,但旋风分离器要安全的多。旋风分离器可以在1093 摄氏度和500 ATM的工艺条件下使用。另外旋风分离器的维护费用很低,它没有布袋需要更换,也不会因为喷水而造成被收集粉尘的二次处理。 在实践中,旋风分离器可以在产品回收和污染控制上被高效地使用,甚至做为污染控制的终端除尘器。 在对旋风分离器进行计算和设计时,必须考虑到尘粒受到的各种力的相互作用。基于这些作用,人们归纳总结出了很多公式指导旋风分离器的设计。通常,这些公式对具有一致的空气动力学形状的大粒径尘粒应用的很好。在最近的二十年中,高效的旋风分离器技术有了很大的发展。这种技术可以对粒径小到5微米,比重小于1.0的粒子达到超过99%的分离效率。这种高效旋风分离器的设计和使用很大程度上是由被处

理气体和尘粒的特性以及旋风分离器的形状决定的。同时,对进入和离开旋风分离器的管道和粉尘排放系统都必须进行正确的设计。工艺过程中气体和尘粒的特性的变化也必须在收集过程中被考虑。当然,使用过程中的维护也是不能忽略的。 1、进入旋风分离器的气体 必须确保用于计算和设计的气体特性是从进入旋风分离器的气体中测量得到的,这包括它的密度,粘度,温度,压力,腐蚀性,和实际的气体流量。我们知道气体的这些特性会随着工艺压力,地理位置,湿度,和温度的变化而变化。 2、进入旋风分离器的尘粒 和气体特性一样,我们也必须确保尘粒的特性参数就是从进入旋风分离器的尘粒中测量获得的。很多时候,在想用高效旋风分离器更换低效旋风分离器时,人们习惯测量排放气流中的尘粒或已收集的尘粒。这种做法值得商榷,有时候是不对的。 获得正确的尘粒信息的过程应该是这样的。首先从进入旋风分离器的气流中获得尘粒样品,送到专业实验室决定它的空气动力学粒径分布。有了这个粒径分布就可以计算旋风分离器总的分离效率。 实际生产中,进入旋风分离器的尘粒不是单一品种。不同种类的尘粒比重和物理粒径分布都不相同。但空气动力学粒径分布实验有机地将它们统一到空气动力学粒径分布中。 3、另外影响旋风分离器的设计的因素包括场地限制和允许的压降。例如,效率和场地限制可能会决定是否选用并联旋风分离器,或是否需要加大压降,或两者同时采用。 4、旋风分离器的形状 旋风分离器的形状是影响分离效率的重要因素。例如,如果入口

物料循环系统施工方案

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 物料循环系统施工方案 1 物料循环系统安装方案 1、工程概况 1.1 工程简介从江凯迪生物质能发电厂拟安装一台 120t/h 循环流化床锅炉,锅炉为杭州锅炉厂生产,锅炉型号 KG120-540/13. 34-FSWZ1 锅炉,配30MW 汽轮发电机组。 本锅炉为型布置,自然循环,露天布置。 物料循环系统由旋风分离器、返料装置、分离器出口烟道组成。 锅炉炉膛后方布置有两个旋风分离器,由进口烟道将炉膛的后墙烟气出口与旋风分离器连接,并形成了气密的烟气通道,使烟气进入两个旋风分离器进行离心分离,将气固两相流中的大部分固体粒子分离下来,通过立管进入反料装置,继而送回燃烧室,分离后的较清洁的烟气经过中心筒,流入出口烟道,最后进入尾部烟道对流受热面。 旋风分离器由进口烟道、旋风筒、锥体和中心筒组成。 除中心筒外,所有组件均由 =10mm碳钢钢板卷制而成,内敷保温、耐火防磨材料。 旋风筒为蜗壳形,中心筒为锥型,由 =12mm,1Cr20Ni14Si2 材料卷制而成。 每个旋风分离器的重量通过焊在旋风筒外壳上的 4 个支座,支撑在钢梁上,并垫有石墨板可沿径向自由膨胀。 1 / 17

旋风分离器与燃烧室之间,装有耐高温的膨胀节,以补偿其 胀差。 1. 2 作业项目范围锅炉分离器及附属设备安装。 1. 3 主要工程量序号项目名称重量(kg)备注 1 分离 器筒体 32468. 96 2 分离器中心筒 2321. 26 3 分离器出口烟道10630 4 水冷返料装置 24300 5 返料斜腿 6800 1. 4 工期要求 计划开工日期为 2019 年 03 月 15 日,竣工日期为 2019 年 03 月 30 日。 2、编写依据 2. 1 DL/T5210. 2-2009《电力建设施工质量 验收及评价规程》(锅炉篇); 2. 2 DL 5190. 2-2019《电力建设 施工及验收技术规范》(锅炉机组篇); 2 2. 3 《电力建设安全 工作规程》(火力发电厂) 2019 版; 2. 4 DL/T869-2019《火力 发电厂焊接技术规程》; 2. 5 《电力建设安全健康与环境管理工 作规定》; 2. 6 《从江凯迪电厂锅炉专业施工组织设计》; 2. 7 锅炉厂图纸; 2. 8 有效的设计变更单和工程联系单。 2. 9 工程建设标准强制性条文(电力工程部分) 3、施 工作业前条件要求 3. 1 技术准备 3. 1. 1 熟悉杭州锅炉厂提供的 图纸,编制方案。 3. 1. 2 进行施工现场危险源和环境因素识别;制定防范措施。 3. 1. 3 组织施工班组进行技术交底会,让施工人员熟悉图 纸及作业指导书,学习施工规范,掌握施工工艺; 3. 2 作业人员

水冷壁、旋风分离器安装

1工程概况 1.1青海盐湖工业股份有限公司金属镁一体化供热中心的3、4、5、6#锅炉为华西能 源工业股份有限公司生产的480T/H的循环流化床锅炉。该锅炉为单汽包、自然循环、循环流化床燃烧方式。锅炉主要由一个膜式水冷壁炉膛,两台汽冷式旋风分离器和一个由汽冷包墙包覆的尾部竖井(HRA)三部分组成。运转层8m设置混凝土平台。锅炉炉膛宽度为20193mm,炉膛深度为7492 mm。炉膛内布置有屏式受热面:六片屏式过热器管屏和六片水冷蒸发屏。中部是两个并列的汽冷式旋风分离器,分离器下部接回送装置至炉膛。在尾部竖井中从上到下依次布置有高温过热器、低温过热器、省煤器和空气预热器。过热器系统中设有两级喷水减温器。 2编制依据 2.1四川华西能源工业股份有限公司提供的锅炉省煤器、过热器设备图纸及有关技 术资料。 2.2《电力建设施工及验收技术规范》(锅炉机组篇)。 2.3《电力建设施工质量验收及评价规程》〈锅炉机组篇〉 DL/T5210.2—2009 2.4青海火电工程公司盐湖镁业供热中心安装工程项目《施工组织总体设计》。 2.5青海火电工程公司盐湖镁业供热中心安装工程项目《锅炉专业施工组织设计》。 2.6工程建设强制性标准的有关规定。 2.7《电力建设安全工作规程》(火力发电厂)DL5009.1-2002。 2.8 国家电网公司电力建设安全健康与环境管理工作规定。 3锅炉主要参数 3.1华西能源工业股份有限公司生产的480T/H循环流化床锅炉技术参数。 型号:HX480/9.8-Ⅱ2

额定蒸发量:480t/h 过热蒸汽压力:9.8MPa 过热蒸汽温度:540℃ 锅筒工作压力:10.99MPa 给水温度:215℃ 排烟温度:145℃左右 锅炉效率:90.8% 4主要工作量 4.1工作量见下表 序号设备名称重量(㎏)备注 1 上部水冷壁27970 含顶棚水冷壁 2 中部水冷壁79699 不含集箱重量 3 风室水冷壁47041 不含集箱重量 4 下部水冷壁56756 不含集箱重量 5 水冷蒸发屏34213 不含集箱重量 6 旋风分离器入口直段管屏14922 含集箱重量 7 旋风分离器直段管屏67381 含集箱重量 8 旋风分离器锥段管屏50242 含集箱重量 9 水冷壁上部刚性梁117251 10 水冷壁下部刚性梁26857 11 风室低部刚性梁10101 5主要设备技术数据 序号设备名称 设备安装 标高(㎜)设备规格设备材质 设备重量 (㎏) 件数(件) 1 前水下集箱6100 φ273×36 3114、 3193、3193 20G/GB5310 630、768、 768 各1

大型设备吊装施工方案样本

大型设备吊装施工方案

1.概述 80万吨/年重油催化裂解装置的大型设备须使用大型吊车进行吊装,依据工程量清单中的设备重量和现场安装条件,本装置有34台设备需要使用450t汽车吊和250t履带吊车进行吊装安装。为确保设备的吊装安全稳妥的顺利进行及确保大型吊装机具的安全使用,特编制本吊装方案,须严格遵照执行。本吊装方案主要介绍两器的吊装方法、工艺要求及吊装管理程序,其他设备仅列出拟用吊装机械,不进行吊装作业的陈述。 序号位号名称规格 重量 (t) 安装 高度 主吊车 配合 吊车 1 R2101/R210 2 同轴式沉降-再生器φ6400/ 9200/ 6600×50862420.258 +1200 GMK7450 QUY50 2 T2201 催化分馏塔φ4200×54050 144.604 +0 GMK7450 QUY50 3 T2202 轻柴油汽提塔φ1400×17585 8.055 +0 GMK7450 QUY50 4 T2301 吸收塔φ2200×42710 55.51 +0 GMK7450 QUY50 5 T2302 解吸塔φ2800×42774 86.44 +0 GMK7450 QUY50 6 T2303 再吸收塔φ1600×28041 21.09 +0 GMK7450 QUY50 7 T2304 稳定塔φ2800×49762 83.56 +0 GMK7450 QUY50 8 V2101 冷催化剂罐φ3800×20708 34.75 +3800 GMK7450 QUY50 9 V2102 废催化剂罐φ3800×18708 32.05 +5800 GMK7450 QUY50 10 V2103 热催化剂罐φ3800×20708 34.8 +3800 GMK7450 QUY50 11 R2101A 再生立管-提升管反应器φ1000×44690 34.565 GMK7450 QUY50 12 R2103 外取热器φ2500×15898 +1200 GMK7450 QUY50 13 V2106 水封罐φ3400×5500 25.593 +200 GMK7450 QUY50 14 V2114 再生烟气降压孔板φ2234×10000卧27.308 +7400 GMK7450 15 V2201/V2202 原料油罐/回炼油罐φ2800×36453 39.51 +0 GMK7450 QUY50 16 V2203 分馏塔顶油气分离器φ4200×12216卧32.121 +6200 GMK7450 17 V2302 气压机出口油气分离器φ3600×11928卧32.311 +6900 GMK7450 18 V2401 中压汽水分离器φ1800×8826卧26.612 +30500 GMK7450 19 V2407A 水封罐φ3400×5500 29.782 +200 GMK7450 QUY50 20 V2407B 水封罐φ3400×5500 29.782 +200 GMK7450 QUY50 21 B2401 余热锅炉+200 GMK7450 QUY50 22 E2203A 分馏塔顶油气-热水换热器φ1200卧17.21 +26100 GMK7450 23 E2203B 分馏塔顶油气-热水换热器φ1200卧17.21 +26100 GMK7450 24 E2203C 分馏塔顶油气-热水换热器φ1200卧17.21 +26100 GMK7450 25 E2203D 分馏塔顶油气-热水换热器φ1200卧17.21 +26100 GMK7450 26 E2203E 分馏塔顶油气-热水换热器φ1200卧17.21 +26100 GMK7450 27 E2203F 分馏塔顶油气-热水换热器φ1200卧17.21 +26100 GMK7450 28 E2206A 顶循环回流油-热水换热器φ1200卧15.07 +20300 GMK7450 29 E2206B 顶循环回流油-热水换热器φ1200卧15.07 +20300 GMK7450 30 E2301 压缩富气空冷器39.5 +13000 GMK7450 31 E2308 稳定塔顶空冷器39.5 +13000 GMK7450 32 主风机电机+6000 GMK7450 33 备机电机+6000 GMK7450 34 CY2104 三级旋风分离器φ4200×9208 38.26 +17000 GMK7450

旋风分离器计算结果

旋风除尘器性能的模拟计算 一、下图为旋风除尘器几何形状及尺寸,如图1所示,图中D、L 及入口截面的长宽比在数值模拟中将进行变化与调整,其余参数保持不变。 图1 旋风分离器几何形状及尺寸(正视图)

旋风分离器的空间视图如图2所示。 图2 旋风分离器空间视图 二、旋风分离器数值仿真中的网格划分 仿真计算时,首先对旋风除尘器进行网格划分处理,计算网格采用非结构化正交网格,如图3所示。 图3 数值仿真时旋风分离器的网格划分(空间)

图4为从空间不同角度所观测到的旋风分离器空间网格。 图4 旋风分离器空间网格空间视图 本数值仿真生成的非结构化空间网格数大约为125万,当几何尺寸(如D、L及长宽比)改变时,网格数会略有变化。 三、对旋风分离器的数值模拟仿真 采用混合模型,应用Eulerian(欧拉)模型,欧拉方法,对每种工况条件下进行旋风分离器流场与浓度场的计算,计算残差<10-5,每种工况迭代约50000步,采用惠普工作站计算,CPU耗时约12h。 以下是计算结果的后处理显示结果。由于计算算例较多,此处仅列出了两种工况条件下的计算后处理结果。 图5是L=1.3m,D=1.05m 入口长宽比1:3,入口速度10m/s时,在y=0截面(旋风分离器中心截面)上粒径为88微米烟尘的体积百分数含量分布图。可以明显看出由于旋风除尘器的离心作用,灰尘被甩到外壁附近,而在靠近中心排烟筒下方筒壁四周,烟尘的体积浓度最大。

粒径88微米烟尘的空间浓度分布(空间) 粒径88微米烟尘的浓度分布(旋风分离器中心截面)

粒径200微米烟尘的空间浓度分布(空间) 粒径200微米烟尘的浓度分布(旋风分离器中心截面) 图5 L=1.3m、D=1.05m、长宽比1:3,入口速度10m/s时烟尘空间分布

旋风分离器设计

旋风分离器: 旋风分离器,是用于气固体系或者液固体系的分离的一种设备。工作原理为靠气流切向引入造成的旋转运动,使具有较大惯性离心力的固体颗粒或液滴甩向外壁面分开。旋风分离器的主要特点是结构简单、操作弹性大、效率较高、管理维修方便,价格低廉,用于捕集直径5~10μm以上的粉尘,广泛应用于制药工业中。 主要功能: 旋风分离器设备的主要功能是尽可能除去输送气体中携带的固体颗粒杂质和液滴,达到气固液分离,以保证管道及设备的正常运行,在西气东输工程中,旋风分离器是较重要的设备。 机构简介: 旋风分离器,是用于气固体系或者液固体系的分离的一种设备。工作原理为靠气流切向引入造成的旋转运动,使具有较大惯性离心力的固体颗粒或液滴甩向外壁面分开。是工业上应用很广的一种分离设备。 工作原理: 旋风分离器是利用气固混合物在作高速旋转时所产生的离心力,将粉尘从气流中分离出来的干式气固分离设备。由于颗粒所受的离心力远大于重力和惯性力,所以分离效率较高。 常用的(切流)切向导入式旋风分离器的分离原理及结构如图所示。主要结构是一个圆锥形筒,筒上段切线方向装有一个气体入口管,圆筒顶部装有插入筒内一定深度的排气管,锥形筒底有接受细粉的出

粉口。含尘气流一般以12—30m/s速度由进气管进入旋风分离器时,气流将由直线运动变为圆周运动。旋转气流的绝大部分,沿器壁自圆筒体呈螺旋形向下朝锥体流动。此外,颗粒在离心力的作用下,被甩向器壁,尘粒一旦与器壁接触,便失去惯性力,而靠器壁附近的向下轴向速度的动量沿壁面下落,进入排灰管,由出粉口落入收集袋里。旋转下降的外旋气流,在下降过程中不断向分离器的中心部分流入,形成向心的径向气流,这部分气流就构成了旋转向上的内旋流。内、外旋流的旋转方向是相同的。最后净化气经排气管排出器外,一部分未被分离下来的较细尘粒也随之逃逸。自进气管流入的另一小部分气体,则通过旋风分离器顶盖,沿排气管外侧向下流动,当到达排气管下端时,与上升的内旋气流汇合,进入排气管,于是分散在这部分上旋气流中的细颗粒也随之被带走,并在其后用袋滤器或湿式除尘器捕集。 净化天然气通过设备入口进入设备内旋风分离区,当含杂质气体沿轴向进入旋风分离管后,气流受导向叶片的导流作用而产生强烈旋转,气流沿筒体呈螺旋形向下进入旋风筒体,密度大的液滴和尘粒在离心力作用下被甩向器壁,并在重力作用下,沿筒壁下落流出旋风管排尘口至设备底部储液区,从设备底部的出液口流出。旋转的气流在筒体内收缩向中心流动,向上形成二次涡流经导气管流至净化天然气室,再经设备顶部出口流出。 特点: 旋风分离器的主要特点是结构简单、操作弹性大、效率较高、管

大型设备吊装方案

1.概述 80万吨/年重油催化裂解装置的大型设备须使用大型吊车进行吊装,依据工程量清单中的设备重量和现场安装条件,本装置有34台设备需要使用450t汽车吊和250t履带吊车进行吊装安装。为确保设备的吊装安全稳妥的顺利进行及确保大型吊装机具的安全使用,特编制本吊装方案,须严格遵照执行。本吊装方案主要介绍两器的吊装方法、工艺要求及吊装管理程序,其他设备仅列出拟用吊装机械,不进行吊装作业的陈述。

2.编制依据 中国石油----勘察设计研究院提供的设备工程量清单中的设备重量; 《石油化工施工安全技术规程》SH3505-1999; 《大型设备吊装工程施工工艺标准》SH/T3515-2003; 《起重机械安全规程》; 大型吊车GMK7450、SCX2500及QAY200的性能表; 80万重催装置的现场实际情况。 3.吊装准备 ⑴做好技术准备工作,吊装施工前应根据设备图纸,逐一对照核实设备的材质和重量以及外形尺寸,根据设备铭牌,落实清楚设备。 ⑵应根据总图对分段吊装、组装的设备进行方位检查,事先标记,以便于组对。 ⑶落实好设备附属结构、管道的工作量,根据工作量组织精干的技术水平高的施工人员,一旦设备进场,随即进行附属结构、管道的安装工作。 ⑷做好吊装与运输之间的对接,要求运输时的设备放置便于现场卸车和吊装,不进行二次倒位。 ⑸由于需要大吊车进场作业,所以要将现场大吊车作业地面事先平整、压实、铺垫处理好。大吊车作业地面平整要求如下: ①设备安装中使用的大型履带式吊车作业、行走、吊装地面铺400mm厚的毛石及碎石,用压路机分层压实,压实后进行检查,地耐力应不小于15t/m2。 ②铺好压实的路面宽度应能满足吊车的工作使用,铺设压实的长度应满足吊车进出施工现场和吊装作业需要。 ⑹吊装前,应做好安装的临时设施的准备。并组织落实好吊装、运输需要的工装及其他需用的施工机具。 ⑺设备吊装需用的吊耳制作、焊接完毕,并经检查合格。 ⑻根据编制并经审核批准的吊装方案进行详细的技术交底。所有进场进行吊装作业的施工人员必须进行安全教育和培训。 4. 设备吊装措施 4.1吊装组织 为确保设备吊装工作顺利进行,强化吊装施工的现场管理,成立以其项目经理为首各类人员组成的吊装施工组织机构。机构的组成见下图。

旋风分离器的工艺计算

旋风分离器的工艺计算 》 : *

目录 一.前言 (3) 应用范围及特点 (3) 分离原理 (3) 分离方法 (4) ) 性能指标 (4) 二.旋风分离器的工艺计算 (4) 旋风分离器直径的计算 (5) 由已知求出的直径做验算 (5) 计算气体流速 (5) < 计算旋风分离器的压力损失 (5) 旋风分离器的工作范围 (6) 进出气管径计算 (6) 三.旋风分离器的性能参数 (6) 分离性能 (6) ~ 临界粒径d pc (7) 分离效率 (8) 旋风分离器的压强降 (8) 四.旋风分离器的形状设计 (9) 五.入口管道设计 (10) $ 六.尘粒排出设计 (10) 七.算例(以天然气作为需要分离气体) (11) 工作原理 (11) 基本计算公式 (12) 算例 (13) ( 八.影响旋风分离器效率的因素 (14) 气体进口速度 (14) 气液密度差 (14) 旋转半径 (14) 参考文献 (15) …

' 旋风分离器的工艺计算 摘要:分离器已经使用十分广泛无论在家庭生活中还是工业生产,而且种类繁多每种都有各自的优缺点。现阶段旋风分离器运用比较广泛,它的性能的好坏主要决定于旋风分离器性能的强弱。这篇文章主要是讨论旋风分离器工艺计算。旋风分离器是利用离心力作用净制气体,主要功能是尽可能除去输送介质气体中携带的固体颗粒杂质和液滴,以达到气固液分离,以保证管道及设备的正常运行。在本篇文章中,主要是对旋风分离器进行工艺计算。 [ 关键字:旋风分离器、工艺计算 一.前言 旋风分离器设备的主要功能是尽可能除去输送介质气体中携带的固体颗粒杂质和液滴,达到气固液分离,以保证管道及设备的正常运行。它是利用旋转气流产生的离心力将尘粒从气流中分离出来。旋风分离器结构简单,没有转动部分制造方便、分离效率高,并可用于高温含尘气体的分离,而得到广泛运用。 ' 旋风分离器采用立式圆筒结构,内部沿轴向分为集液区、旋风分离区、净化室区等。内装旋风子构件,按圆周方向均匀排布亦通过上下管板固定;设备采用裙座支撑,封头采用耐高压椭圆型封头。设备管口提供配对的法兰、螺栓、垫片等。 通常,气体入口设计分三种形式: a) 上部进气 b) 中部进气 c) 下部进气 对于湿气来说,我们常采用下部进气方案,因为下部进气可以利用设备下部空间,对直径大于300μm或500μm的液滴进行预分离以减轻旋风部分的负荷。而对于干气常采用中部进气或上部进气。上部进气配气均匀,但设备直径和设备高度都将增大,投资较高;而中部进气可以降低设备高度和降低造价。 应用范围及特点 旋风分离器适用于净化大于1-3微米的非粘性、非纤维的干燥粉尘。它是一种结构简单、

锅炉水冷壁吊装方案

XXXX工程145t/h 循环流化床锅炉水冷壁吊装施工方案 编制: 审核: 批准: 施工单位:XXXXXX公司 年月日

目录 一.工程概况 (1) 二.编制依据 (2) 三.作业准备及条件 (2) 四.吊装顺序选择 (3) 五.吊装描述及核算 (4) 六.本工项目执行的强条内容 (11) 七.安全技术措施 (11) 八.文明施工 (13) 九. 危害因素及控制措施(见附件1) (13) 附件1 危害因素及控制措施 (14) 附件2 QAY350吊车性能参数表 (16) 附件3 QAY350吊车特性曲线图 (17) 附件4 QY100H-3吊车性能表 (18) 附件5 QY100H-3吊车特性曲线图 (19)

一.工程概况 1.1工程概况 XXXX公司145t/h锅炉安装工程,5#炉为单锅筒自然循环流化床锅炉,系XXXXX公司生产的HX-145/13.7-Ⅱ型循环流化床锅炉。本锅炉为超高温超高压,单锅筒横置式,单炉膛,超高压自然循环,全悬吊结构,全钢架型布置。锅炉采用紧身封闭,全钢结构,运转层标高7m。炉膛采用膜式水冷壁,锅炉中部是高温汽冷式旋风分离器,尾部竖井烟道布置两级两组对流过热器,过热器下方布置两组省煤器及一、二次风各两组空气预热器。 锅炉的炉膛断面尺寸为8960×4640mm。燃烧室各面墙全部采用膜式水冷壁,由光管和扁钢焊制而成,底部为水冷布风板。燃烧室四周及顶部的管子节距均为80mm,前后各111根管子,两侧水冷壁各有58根Ф60×6mm管子,管子材料为20G-GB5310。前后水冷壁下部密相区处的管子与垂直线成一夹角,构成上大下小的锥体。水冷壁及其附着在水冷壁上的零部件全部重量都通过吊杆装置吊在顶板上,锅炉运行时水冷壁向下热膨胀,为防止整个炉膛的刚性和抵抗炉内正压燃烧引的起的水冷壁变形,在水冷壁外侧四周装有多层刚性梁。 锅炉基本参数如下: 额定蒸发量 145 t/h 额定蒸汽温度 540 ℃ 额定蒸汽压力(表压) 13.7 MPa 给水温度 150 ℃ 锅炉排烟温度 138 ℃ 空气预热器进风温度 28 ℃ 一次热风温度 180 ℃ 二次热风温度 180 ℃ 主要工作量 水冷壁系统包括前、后、左、右侧水冷壁,其中上水冷壁重45.659t,中水冷壁重39.107t,下水冷壁重45.924t,风室水冷壁12.942 t,水冷壁集箱重12.935t,水冷壁固定装置及刚性梁重量为39.368t,工作量总重为195.935t。 1.2工程特点 本锅炉为循环流化床锅炉,在工艺和吊装技术要求方面都比较高,现场场地狭窄且工地在海边,风较大。前后水冷壁吊装迎风面大,水冷壁吊装难度大。给安装工作带来很大困难。

相关主题
文本预览
相关文档 最新文档