第3章 连续信号的频谱——傅里叶变换.
- 格式:ppt
- 大小:3.38 MB
- 文档页数:197
第三章连续信号的频谱介绍连续信号的频谱是指将连续信号在频域上的表示,它能够展示信号在不同频率上的能量分布情况。
频谱分析是信号处理中的重要内容,能够帮助我们理解信号的特性,并进行信号的分析与处理。
在本章中,我们将详细介绍连续信号的频谱分析方法和相关概念。
1.连续信号的频谱连续信号是指在时间上是连续变化的信号,可以通过连续时间的函数来表示。
在频域上,连续信号可以通过傅里叶变换来表示。
傅里叶变换将信号从时域转换到频域,给出了信号在不同频率上的能量分布情况。
连续信号的频谱是傅里叶变换结果的模值,它反映了信号在不同频率上的能量大小。
2.连续傅里叶变换连续傅里叶变换(CFT)是一种将连续信号从时域转换到频域的方法。
通过对连续信号进行积分运算,可以得到信号的频谱表示。
连续傅里叶变换的公式如下:F(ω) = ∫f(t)e^(-jωt)dt其中,F(ω)表示频率为ω的频谱,f(t)表示时域信号,e^(-jωt)是复指数函数。
通过计算不同频率ω下的复指数函数与信号的积分,可以得到连续信号的频谱。
3.连续信号的频谱性质连续信号的频谱具有以下几个重要性质:-零频率分量:频谱中的零频率分量表示了信号的直流分量,即信号在频域上的平均能量。
它在频谱中通常位于中心位置。
-频谱对称性:如果原始信号是实数信号,则频谱具有共轭对称性,即F(ω)=F*(-ω),其中F*(-ω)表示F(ω)的共轭复数。
-线性性质:信号的线性组合的频谱等于各个信号频谱的线性组合。
-平移性质:将信号在时域上平移,会导致频谱在频域上平移同样的量。
- 抽样定理:如果信号的最高频率为f_max,则抽样频率f_s至少应为2f_max才能完整地恢复信号。
4.频谱分析方法为了获取连续信号的频谱信息,需要进行频谱分析。
-傅里叶变换:利用积分运算将信号从时域转换到频域。
-快速傅里叶变换(FFT):快速傅里叶变换是一种高效的傅里叶变换算法,能够快速计算信号的频谱。
-功率谱密度(PSD):功率谱密度是对信号能量在频域上进行定量描述的方法,可以用于分析信号的频率成分。
第三章傅里叶变换(一)三角函数形式的傅里叶级数满足狄利赫里条件的周期函数f。
)可由三角函数的线性组合来表示,若f(t)的周期为T,角频率3 =之,频率f =',傅里叶级数展开表达式 1 1 T 1 T1 1为f (t)= a +£[a cos(〃3t)+ b sin (〃3t)n=1各谐波成分的幅度值按下式计算a = —f t o+T1 f (t)dto T t o a =」t o+T1 f (t)cos (n3 t)dt n T t1ob = — j t o+ T1 f (t)sin(n3 t)dt n T t1o其中n = 1,2, •••狄利赫里条件:(1)在一个周期内,如果有间断点存在,则间断点的数目应是有限个;(2)在一个周期内,极大值和极小值的数目应是有限个;(3)在一个周期内,信号是绝对可积的,即』t o+T|f (t)dtt等于有限值。
t o(二)指数形式的傅里叶级数周期信号的傅里叶级数展开也可以表示为指数形式,即f (t)= £F (n3)ej n31 n1n二一8其中F = — f t o+T1f 0-加3 t dt n T1 t o 其中n为从一8到+8的整数。
3.1m号的傅里叶级!瞬析(三)函数的对称性与傅里叶系数的关系(1)偶函数由于f。
)为偶函数,所以f(t)sin(旭t)为奇函数,则1b = — J t o+ T i f (t)sin (n① t)dt = 0 n T t11 0所以,在偶函数的傅里叶级数中不会含有正弦项,只可能含有直流项和余弦项。
(2) 奇函数由于f (t)为奇函数,所以f(t)cos (n o t )为奇函数,则1a =— J t0+T f (tb t = 00 T t10a = — J t0+T1 f (t)cos (n0 t)dt = 0 n T t11t0所以,在奇函数的傅里叶级数中不会含有直流项和余弦项,只可能包含正弦项(3)奇谐函数(f (t )=-f [ t + T ])I 27半波对称周期函数的傅里叶级数中,只会含有基波和奇次谐波的正、余弦项,而不会含有偶次谐波项,这也是奇谐函数名称的由来。
第三章傅里叶变换本章提要:◆傅里叶级数(Fourier Series)◆非周期信号的傅里叶变换◆傅里叶变换的性质◆周期信号的傅里叶变换◆采样信号和采样定理J.B.J. 傅里叶(Fourier)◆1768年生于法国◆1807年提出“任何周期信号都可用正弦函数级数表示”,但其数学证明不很完善。
◆拉普拉斯赞成,但拉格朗日反对发表◆1822年首次发表在《热的分析理论》◆1829年狄里赫利第一个给出收敛条件周期信号都可表示为谐波关系的正弦信号的加权和非周期信号都可用正弦信号的加权积分表示傅里叶分析方法的应用:(1)泊松(Possion)、高斯(Gauss)等将其应用于电学中;(2)在电力系统中,三角函数、指数函数及傅里叶分析等数学工具得到广泛的应用。
(3)20世纪以后,在通信与控制系统的理论研究与实际应用中开辟了广阔的前景。
(4)力学、光学、量子物理和各种线性系统分析等得到广泛而普遍的应用。
§ 3.1 周期信号的傅立叶级数◆三角函数形式的傅里叶级数◆复指数形式的傅里叶级数◆几种典型周期信号的频谱◆吉伯斯现象一、三角函数形式的傅里叶级数∞Tianjin University Tianjin University二、复指数形式的傅里叶级数周期信号的复数频谱图三、几种典型周期信号的频谱+-1T t tjn ωTianjin UniversityTianjin University∞n A τωτ思考题:KHz T f T 100101011 26=⨯===-,πω2. 奇函数:f (t )= -f (-t)1tω只含正弦项n F =3.奇谐函数T四、吉伯斯现象)(t f有限项的N越大,误差越小例如: N=11§ 3.2 非周期信号的傅立叶变换∞从物理意义来讨论傅立叶变换(FT)Tianjin University Tianjin UniversityTianjin UniversityTianjin University )0>arctg -=)(t f时域中信号变化愈尖锐,其频域所包含的高频分量就愈丰富;反之,信号在时域中变化愈缓慢,其频域所包含的低频分量就愈多。
第三章傅里叶变换3-1 概述对于一件复杂的事情,人们总是从简单的一步开始做起,富丽堂皇的高楼大厦,是人们一块砖一块砖垒起来的。
为了简化问题的求解,人们往往也使用“变换分析”这种技巧,所起“变换”大家可能会感到陌生,其实我们在中学时已经运用了“变换分析”技巧,大家一定还记得对数运算,它实际上也是一种数学变换,我们知道两个数的乘积的对数等于两个数的对数和,两个数的商的对数等于这两个数的对数差,利用对数这个运算规则我们可以将数的乘积运算转换(准确地说变换)为数的加法运算,可以将数的除法运算转换(变换)为数的减法运算,可见“变换分析”给我们解决问题带来了方便,傅里叶变换就是给我们分析问题和解决问题极为方便的数学工具。
线性非时变系统的卷积分析实际上是基于将输入信号分解为一组加权延时的单位冲激(或样值)激励的线性组合。
本章将讨论信号和系统的另一种表示,其基本观点还是将信号分解为一组简单函数的线性组合,但是这里用的简单函数不是单位冲激(或样值)而是三角函数(或复指数函数)。
用“三角函数和”表示信号的想法至少可以追溯到古代巴比伦时代,当时他们利用这一想法来预测天体运动。
这一问题的近代研究始于1748年,欧拉在振动弦的研究中发现:如果在某一时刻振动弦的形状是标准振动(谐波)模的线性组合,那么在其后任何时刻,振动弦的形状也是这些振动模的线性组合。
另外,欧拉还证明了在该线性组合中,其后的加权系数可以直接从前面时间的加权系数中导出。
欧拉的研究成果表明了:如果一个线性非时变系统输入可以表示为周期复指数或正弦信号的线性组合,则输出也一定能表示成这种形式。
现在大家已经认识到,很多有用的信号都能用复指数函数的线性组合来表示,但是在18世纪中期,这一观点还进行着激烈的争论。
1753年D.伯努利(D.Bernoulli)曾声称:一根弦的实际运动都可以用标准(谐波)振荡模的线性组合来表示。
而以J.L.拉格朗日(grange)为代表的学者强烈反对使用三角级数来研究振动弦运动的主张,他反对的论据就是基于他自己的信念,即不可能用三角级数来表示一个具有间断点的函数。