一元二次方程题型分类的总结
- 格式:doc
- 大小:380.50 KB
- 文档页数:10
一元二次方程应用题总结分类及经典例题1、列一元二次方程解应用题的特点列一元二次方程解应用题是列一元一次方程解应用题的继续和发展,从xx 解应用题的方法来讲,列出一元二次方程解应用题与列出一元一次方程解应用题是非常相似的,由于一元一次方程未知数是一次,因此这类问题大部分都可通过算术方法来解决.如果未知数出现二次,用算术方法就很困难了,正由于未知数是二次的,所以可以用一元二次方程解决有关面积问题,经过两次增长的平均增长率问题,数学问题中涉及积的一些问题,经营决策问题等等.2、列一元二次方程解应用题的一般步骤和列一元一次方程解应用题一样,列一元二次方程解应用题的一般步骤是:“审、设、列、解、答”.(1)“审”指读懂题目、审清题意,明确已知和未知,以及它们之间的数量关系.这一步是解决问题的基础;(2)“设”是指设元,设元分直接设元和间接设元,所谓直接设元就是问什么设什么,间接设元虽然所设未知数不是我们所要求的,但由于对xx有利,因此间接设元也十分重要.恰当灵活设元直接影响着xx与xx的难易;(3)“列”是xx,这是非常重要的步骤,xx就是找出题目中的等量关系,再根据这个相等关系列出含有未知数的等式,即方程.找出相等关系xx是解决问题的关键;(4)“解”就是求出所xx的解;(5)“答”就是书写答案,应注意的是一元二次方程的解,有可能不符合题意,如线段的xx不能为负数,降低率不能大于100%等等.因此,解出方程的根后,一定要进行检验.3、数与数字的关系两位数=(十位数字)×10+个位数字三位数=(百位数字)×100+(十位数字)×10+个位数字4、翻一番翻一番即表示为原量的2倍,翻两番即表示为原量的4倍.5、增长率问题(1)增长率问题的有关公式:增长数=基数×增长率实际数=基数+增长数(2)两次增长,且增长率相等的问题的基本等量关系式为:原来的×(1+增长率)增长期数=后来的说明:(1)上述相等关系仅适用增长率相同的情形;(2)如果是下降率,则上述关系式为:原来的×(1-增长率)下降期数=后来的6、利用一元二次方程解几何图形中的有关计算问题的一般步骤(1)整体地、系统地审读题意;(2)寻求问题中的等量关系(依据几何图形的性质);(3)设未知数,并依据等量关系列出方程;(4)正确地求解方程并检验解的合理性;(5)写出答案.7、xx解应用题的关键(1)审题是设未知数、xx的基础,所谓审题,就是要善于理解题意,弄清题中的已知量和未知数,分清它们之间的数量关系,寻求隐含的相等关系;(2)设未知数分直接设未知数和间接设未知数,这就需根据题目中的数量关系正确选择设未知数的方法和正确地设出未知数.8、xx解应用题应注意:(1)要充分利用题设中的已知条件,善于分析题中隐含的条件,挖掘其隐含关系;(2)由于一元二次方程通常有两个根,为此要根据题意对两根加以检验.即判断或确定方程的根与实际背景和题意是否相符,并将不符合题意和实际意义的(一)传播问题1.市政府为了解决市民看病难的问题,决定下调药品的价格。
一元二次方程必考题型
(原创实用版)
目录
一、一元二次方程的概述
二、一元二次方程的必考题型
三、如何解决一元二次方程的必考题型
四、总结
正文
【一、一元二次方程的概述】
一元二次方程是指形如 ax+bx+c=0 的方程,其中 a、b、c 为已知数,且 a≠0。
它是初中数学中的重要内容,也是高中数学的基础知识。
一元二次方程的解法主要包括配方法、公式法和韦达定理等。
【二、一元二次方程的必考题型】
在一元二次方程的考试中,以下几种题型是经常出现的:
1.根据一元二次方程的根与系数的关系,求解方程的根。
2.给定一元二次方程的根,求解方程。
3.根据一元二次方程的解的判别式,判断方程的根的情况。
4.利用一元二次方程的解法,解决实际问题。
【三、如何解决一元二次方程的必考题型】
1.对于第一种题型,我们可以根据一元二次方程的根与系数的关系,直接得出答案。
2.对于第二种题型,我们可以利用一元二次方程的求根公式,将已知的根代入公式,解出方程。
3.对于第三种题型,我们可以根据一元二次方程的解的判别式,判断方程的根的情况。
如果判别式大于 0,则方程有两个不相等的实数根;如果判别式等于 0,则方程有两个相等的实数根;如果判别式小于 0,则方程无实数根。
4.对于第四种题型,我们首先需要根据题目的要求,列出一元二次方程,然后利用一元二次方程的解法,求解方程,最后得出答案。
【四、总结】
一元二次方程是数学中的基础知识,也是各类考试中的常考点。
一元二次方程应用题总结分类及经典例题1、列一元二次方程解应用题的特点列一元二次方程解应用题是列一元一次方程解应用题的继续和发展,从列方程解应用题的方法来讲,列出一元二次方程解应用题与列出一元一次方程解应用题是非常相似的,由于一元一次方程未知数是一次,因此这类问题大部分都可通过算术方法来解决.如果未知数出现二次,用算术方法就很困难了,正由于未知数是二次的,所以可以用一元二次方程解决有关面积问题,经过两次增长的平均增长率问题,数学问题中涉及积的一些问题,经营决策问题等等.2、列一元二次方程解应用题的一般步骤和列一元一次方程解应用题一样,列一元二次方程解应用题的一般步骤是:“审、设、列、解、答”.1“审”指读懂题目、审清题意,明确已知和未知,以及它们之间的数量关系.这一步是解决问题的基础;2“设”是指设元,设元分直接设元和间接设元,所谓直接设元就是问什么设什么,间接设元虽然所设未知数不是我们所要求的,但由于对列方程有利,因此间接设元也十分重要.恰当灵活设元直接影响着列方程与解方程的难易;3“列”是列方程,这是非常重要的步骤,列方程就是找出题目中的等量关系,再根据这个相等关系列出含有未知数的等式,即方程.找出相等关系列方程是解决问题的关键;4“解”就是求出所列方程的解;5“答”就是书写答案,应注意的是一元二次方程的解,有可能不符合题意,如线段的长度不能为负数,降低率不能大于100%等等.因此,解出方程的根后,一定要进行检验.3、数与数字的关系两位数=十位数字×10+个位数字三位数=百位数字×100+十位数字×10+个位数字4、翻一番翻一番即表示为原量的2倍,翻两番即表示为原量的4倍.5、增长率问题1增长率问题的有关公式:增长数=基数×增长率实际数=基数+增长数2两次增长,且增长率相等的问题的基本等量关系式为:原来的×1+增长率增长期数=后来的说明:1上述相等关系仅适用增长率相同的情形;2如果是下降率,则上述关系式为:原来的×1-增长率下降期数=后来的6、利用一元二次方程解几何图形中的有关计算问题的一般步骤1整体地、系统地审读题意;2寻求问题中的等量关系依据几何图形的性质;3设未知数,并依据等量关系列出方程;4正确地求解方程并检验解的合理性;5写出答案.7、列方程解应用题的关键1审题是设未知数、列方程的基础,所谓审题,就是要善于理解题意,弄清题中的已知量和未知数,分清它们之间的数量关系,寻求隐含的相等关系;2设未知数分直接设未知数和间接设未知数,这就需根据题目中的数量关系正确选择设未知数的方法和正确地设出未知数.8、列方程解应用题应注意:1要充分利用题设中的已知条件,善于分析题中隐含的条件,挖掘其隐含关系;2由于一元二次方程通常有两个根,为此要根据题意对两根加以检验.即判断或确定方程的根与实际背景和题意是否相符,并将不符合题意和实际意义的一传播问题1.市政府为了解决市民看病难的问题,决定下调药品的价格;某种药品经过连续两次降价后,由每盒200元下调至128元,则这种药品平均每次降价的百分率为2.有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了个人;3.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,每个支干长出小分支;4.参加一次足球联赛的每两队之间都进行一场比赛,共比赛45场比赛,共有个队参加比赛;5.参加一次足球联赛的每两队之间都进行两次比赛,共比赛90场比赛,共有个队参加比赛;6.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了182件,这个小组共有多少名同学7.一个小组有若干人,新年互送贺卡,若全组共送贺卡72张,这个小组共有多少人8.某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台二平均增长率问题变化前数量×1 x n=变化后数量1.青山村种的水稻2001年平均每公顷产7200公斤,2003年平均每公顷产8450公斤,水稻每公顷产量的年平均增长率为;2.某种商品经过两次连续降价,每件售价由原来的90元降到了40元,求平均每次降价率是;3.周嘉忠同学将1000元压岁钱第一次按一年定期含蓄存入“少儿银行”,到期后将本金和利息取出,并将其中的500元捐给“希望工程”,剩余的又全部按一年定期存入,这时存款的年利率已下调到第一次存款时年利率的60%,这样到期后,可得本金和利息共530元,求第一次存款时的年利率.利息税为20%,只需要列式子;4.某种商品,原价50元,受金融危机影响,1月份降价10%,从2月份开始涨价,3月份的售价为元,求2、3月份价格的平均增长率;5.某药品经两次降价,零售价降为原来的一半,已知两次降价的百分率相同,求每次降价的百分率6.为了绿化校园,某中学在2007年植树400棵,计划到2009年底使这三年的植树总数达到1324棵,求该校植树平均每年增长的百分数;7.王红梅同学将1000元压岁钱第一次按一年定期含蓄存入“少儿银行”,到期后将本金和利息取出,并将其中的500元捐给“希望工程”,剩余的又全部按一年定期存入,这时存款的年利率已下调到第一次存款时年利率的90%,这样到期后,可得本金和利息共530元,求第一次存款时的年利率.假设不计利息税三商品销售问题售价—进价=利润单件利润×销售量=总利润单价×销售量=销售额1.某商店购进一种商品,进价30元.试销中发现这种商品每天的销售量P件与每件的销售价X元满足关系:P=100-2X销售量P,若商店每天销售这种商品要获得200元的利润,那么每件商品的售价应定为多少元每天要售出这种商品多少件2.某玩具厂计划生产一种玩具熊猫,每日最高产量为40只,且每日产出的产品全部售出,已知生产ⅹ只熊猫的成本为R元,售价每只为P元,且R、P与x的关系式分别为R=500+30X,P=170—2X;1当日产量为多少时每日获得的利润为1750元2若可获得的最大利润为1950元,问日产量应为多少3.某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克;现该商品要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元4. 服装柜在销售中发现某品牌童装平均每天可售出20件,每件盈利40元;为了迎接“六一”儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存;经市场调查发现,如果每件童装每降价4元,那么平均每天就可多售出8件;要想平均每天在销售这种童装上盈利1200元,那么每件童装应降价多少元5. 西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克;为了促销,该经营户决定降价销售;经调查发现,这种小型西瓜每降价元/千克,每天可多售出40千克;另外,每天的房租等固定成本共24元;该经营户要想每天盈利200元,应将每千克小型西瓜的售价降低多少元6. 益群精品店以每件21元的价格购进一批商品,该商品可以自行定价,若每件商品售价a 元,则可卖出350-10a 件,但物价局限定每件商品的利润不得超过20%,商店计划要盈利400元,需要进货多少件每件商品应定价多少7. 利达经销店为某工厂代销一种建筑材料这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理;当每吨售价为260元时,月销售量为45吨;该经销店为提高经营利润,准备采取降价的方式进行促销;经市场调查发现:当每吨售价每下降10元时,月销售量就会增加吨;综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元;1当每吨售价是240元时,计算此时的月销售量;2在遵循“薄利多销”的原则下,问每吨材料售价为多少时,该经销店的月利润为9000元;3小静说:“当月利润最大时,月销售额也最大;”你认为对吗请说明理由;8. 国家为了加强对香烟产销的宏观管理,对销售香烟实行征收附加税政策. 现在知道某种品牌的香烟每条的市场价格为70元,不加收附加税时, 每年产销100万条,若国家征收附加税,每销售100元征税x 元叫做税率x%, 则每年的产销量将减少10x 万条.要使每年对此项经营所收取附加税金为168万元,并使香烟的产销量得到宏观控制,年产销量不超过50万条,问税率应确定为多少9. 春秋旅行社为吸引市民组团去天水湾风景区旅游,推出了如图1对话中收费标准.某单位组织员工去天水湾风景区旅游,共支付给春秋旅行社旅游费用27000元.请问该单位这次共有多少员工去天水湾风景区旅游四面积问题判断清楚要设什么是关键1. 一个直角三角形的两条直角边的和是14cm,面积是24cm 2,两条直角边的长分别是;2.一个直角三角形的两条直角边相差5㎝,面积是7㎝2,斜边的长是; 3.一个菱形两条对角线长的和是10㎝,面积是12㎝2,菱形的周长是;结果保留小数点后一位 4. 为了绿化学校,需移植草皮到操场,若矩形操场的长比宽多14米,面积是3200平方米则操场的长为米,宽为米;5. 若把一个正方形的一边增加2cm,另一边增加1cm,得到的矩形面积的2 倍比正方形的面积多11cm 2,则原正方形的边长为cm.6. 如图,在长为10cm,宽为8cm 的矩形的四个角上截去四个全等的正方形,使得留下的图形图中阴影部分面积是原矩形面积的80%,所截去的小正方形的边长是;7. 张大叔从市场上买回一块矩形铁皮,他将此矩形铁皮的四个角各剪去一个边长为1米的正方形后,剩下的部分刚好能围成一个容积为15立方米的无盖长方体箱子,且此长方体箱子的底面长比宽多2米,现已购买这种铁皮每平方米需20元如果人数超过25人,每增加1人,人均旅游费用降低20元,但人均旅游费用不得低700元. 如果人数不超过25人,人均旅游费用为1000元.钱,问张大叔购买这张铁皮共花了是元钱8.如图,在宽为20m ,长为30m ,的矩形地面上修建两条同样宽且互相垂直的道路,余分作为耕地为551㎡;则道路的宽为是;9.如图某农场要建一个长方形的养鸡场,鸡场的一边靠墙墙长18m,另三边用木栏围成,木栏长35m;①鸡场的面积能达到150m2吗②鸡场的面积能达到180m2吗如果能,请你给出设计方案;如果不能,请说明理由;3若墙长为a m,另三边用竹篱笆围成,题中的墙长度a m对题目的解起着怎样的作用五工程问题1.某公司需在一个月31天内完成新建办公楼的装修工程.如果由甲、乙两个工程队合做,12天可完成;如果由甲、乙两队单独做,甲队比乙队少用10天完成.1求甲、乙两工程队单独完成此项工程所需的天数.2如果请甲工程队施工,公司每日需付费用2000元;如果请乙队施工,公司每日需付费用1400元.在规定时间内:A.请甲队单独完成此项工程出.B请乙队单独完成此项工程;C.请甲、乙两队合作完成此项工程.以上三种方案哪一种花钱最少2.搬运一个仓库的货物,如果单独搬空,甲需10小时完成,乙需12小时完成,丙需15小时完成,有货物存量相的两个仓库A和B,甲在A仓库,乙在B仓库同时开始搬运货物,丙开始帮助甲搬运,中途又转向帮助乙,最后两个仓库的货物同时搬完,丙帮助甲乙各多少时间列式子3.乙两人都以不变的速度在环形路上跑步,相向而行,每隔2分钟相遇一次;同向而行,每隔6分钟相遇一次,已知甲比乙跑得快,求甲、乙每分钟各跑几圈4.某油库的储油罐有甲、乙两个注油管,单独开放甲管注满油罐比单独开放乙管注满油罐少用4小时,两管同时开放3小时后,甲管因发生故障停止注油,乙管继续注油9小时后注满油罐,求甲、乙两管单独开放注满油罐时各需多少小时六行程问题1、A、B两地相距82km,甲骑车由A向B驶去,9分钟后,乙骑自行车由B出发以每小时比甲快2km的速度向A驶去,两人在相距B点40km处相遇;问甲、乙的速度各是多少甲、乙二人分别从相距20千米的A、B两地以相同的速度同时相向而行,相遇后,二人继续前进,乙的速度不变,甲每小时比原来多走1千米,结果甲到达B地后乙还需30分钟才能到达A地,求乙每小时走多少千米.3、甲、乙两个城市间的铁路路程为1600公里,经过技术改造,列车实施了提速,提速后比提速前速度增加20公里/小时,列车从甲城到乙城行驶时间减少4小时,这条铁路在现有的安全条件下安全行驶速度不得超过140公里/小时.请你用学过的数学知识说明在这条铁路现有的条件下列车还可以再次提速.4、甲、乙两人分别骑车从A,B两地相向而行,甲先行1小时后,乙才出发,又经过4小时两人在途中的C地相遇,相遇后两人按原来的方向继续前进;乙在由C地到达A地的途中因故停了20分钟,结果乙由C地到达A地时比甲由C地到达B地还提前了40分钟,已知乙比甲每小时多行驶4千米,求甲、乙两人骑车的速度;七、增长率问题:1、恒利商厦九月份的销售额为200万元,十月份的销售额下降了20%,商厦从十一月份起加强管理,改善经营,使销售额稳步上升,十二月份的销售额达到了万元,求这两个月的平均增长率.2、某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台3、王红梅同学将1000元压岁钱第一次按一年定期含蓄存入“少儿银行”,到期后将本金和利息取出,并将其中的500元捐给“希望工程”,剩余的又全部按一年定期存入,这时存款的年利率已下调到第一次存款时年利率的90%,这样到期后,可得本金和利息共530元,求第一次存款时的年利率.假设不计利息税4、周嘉忠同学将1000元压岁钱第一次按一年定期含蓄存入“少儿银行”,到期后将本金和利息取出,并将其中的500元捐给“希望工程”,剩余的又全部按一年定期存入,这时存款的年利率已下调到第一次存款时年利率的60%,这样到期后,可得本金和利息共530元,求第一次存款时的年利率.利息税为20%,只需要列式子5、市政府为了解决市民看病难的问题,决定下调药品的价格;某种药品经过连续两次降价后,由每盒200元下调至128元,则这种药品平均每次降价的百分率为七、动态几何:1、已知:如图3-9-3所示,在△ 中, .点从点开始沿边向点以1cm/s的速度移动,点从点开始沿边向点以2cm/s的速度移动.1如果分别从同时出发,那么几秒后,△ 的面积等于4cm22如果分别从同时出发,那么几秒后, 的长度等于5cm3在1中,△ 的面积能否等于7cm2说明理由.八、其他类型题:1、象棋比赛中,每个选手都与其他选手恰好比赛一局,每局赢者记2分,输者记0分.如果平局,两个选手各记1分,领司有四个同学统计了中全部选手的得分总数,分别是1979,1980,1984,1985.经核实,有一位同学统计无误.试计算这次比赛共有多少个选手参加.2、机械加工需要用油进行润滑以减少摩擦,某企业加工一台大型机械设备润滑用油量为90千克,用油的重复利用率为60%,按此计算,加工一台大型机械设备的实际耗油量为36千克.为了建设节约型社会,减少油耗,该企业的甲、•乙两个车间都组织了人员为减少实际耗油量进行攻关.1甲车间通过技术革新后,加工一台大型机械设备润滑油用油量下降到70千克,用油的重复利用率仍然为60%.问甲车间技术革新后,加工一台大型机械设备的实际耗油量是多少千克2乙车间通过技术革新后,不仅降低了润滑用油量,•同时也提高了用油的重复利用率,并且发现在技术革新的基础上,润滑用油量每减少1千克,用油量的重复利用率将增加%.这样乙车间加工一台大型机械设备的实际耗油量下降到12千克.问乙车间技术革新后,加工一台大型机械设备润滑用油量是多少千克用油的重复利用率是多少。
一元二次方程题型总结【一】一元二次方程的定义与解【题型一】应用一元二次方程的定义,求字母的值例1、当a 为何值时,关于x 的方程(a -1)x |a|+1+2x -7=0是一元二次方程?【题型二】一元二次方程解的应用例1、关于x 的一元二次方程(a -1)x 2+x+|a|-1=0的一个根是0,则实数a 的值为( )A .-1B .0C .-1D .-1或1例2、已知多项式ax 2-bx+c ,当x=1时,它的值是0;当x=-2时,它的值是1(1)试求a+b 的值(2)直接写出关于x 的一元二次方程ax 2+bx+c=0的一个根【题型三】一元二次方程拓展开放型题例1、已知关于x 的方程(k 2-1)x 2-(k+1)x -2=0(1)当k 取何值时,此方程为一元一次方程?并求出此方程的根(2)当k 取何值时,此方程为一元二次方程?写出这个一元二次方程的二次项系数、一次项系数、常数项。
巩 固 练 习1、下列方程中,是一元二次方程的为( )A. x 2= -1B. 2x (x -1)+1=2x 2C. x 2+3x=2xD. ax 2+bx+c -0 2、已知关于x 的方程mx 2+(m -1)x -1=2x 2-x ,当m 取什么值时,这个方程是一元二次方程?3、若关于x 的一元二次方程(a -2)x 2+ 是一元二次方程,则a 的取值范围是4、把方程 (x -1)2-3x (x -2)=2(x+2)+1化成一般形式,并写出它的二次项系数、一次项系数和常数项5、若a 是方程x 2-3x+1=0的一个根,求2a 2-5a -2+231a +的值6、若关于x 的方程ax 2+bx+c=0(a≠0)中,abc 满足a+b+c=0和a -b+c=0,则方程的根是( )A. 1,0B. -1,0C. 1,-1D. 1,27、已知x=1是一元二次方程ax 2+bx -40=0的一个解,且a≠b ,求2222a b a b--的值【二】一元二次方程的解法一、直接开平方法1、下列方程能用直接开平方法求解的是( )A. 5x 2+2=0B. 4x 2-2x -1=0C. 12(x -2)2=4 D. 3x 2+4=2 2、若关于x 的一元二次方程5x 2-k=0有实数根,则k 的取值范围是_________3、已知(a 2+b 2-1)2=9,则a 2+b 2=_________4、已知一元二次方程ax 2+bx+c=0的一个根是1,且a ,b 满足等式4,求方程13y 2-2c=0的根5、用开平方法解下列方程(1)2 9(x 1)25-= (2)()26x 181-= (3)(x -1)2=(3x -4)2二、配方法1、(1)x 2--____)2 (2)3x 2+12x+____=3(x+____)2 (3)12x 2-5x+____=12(x -____)2 2、若x 2+ax+9是关于x 的完全平方式,则常数a 的值是__________3、多项式4x 2+1加上一个单项式后,成为一个整式的完全平方,那么加上的这个单项式可以是4、一元二次方程x 2-px+1=0配方后为(x -q)2=15,那么一元二次方程x 2-px -1=0配方后为( )A. (x -4)2=17B. (x+4)2=15C. (x+4)2=17D. (x -4)2=17或(x+4)2=175、若x 为任意实数,则x 2+4x+7的最小值为__________★★★★当x=_______时,代数式3x 2-2x+1有最_______(填大或小)值为_______6、用配方法证明:关于x 的方程(m 2-12m+37)x 2+3mx+1=0,无论m 为何值,此方程都是一元二次方程。
一元二次方程经典题型汇总将一元二次方程化为完全平方形式,然后两边开平方根,得到方程的解。
2、因式分解法:将一元二次方程化为两个一次因式的乘积形式,然后根据乘积为零的性质求解。
3、配方法:通过添加或减少一个适当的常数,将一元二次方程化为完全平方形式,然后利用完全平方公式求解。
4、公式法:利用求根公式,直接求解一元二次方程的解。
三、例题解析1、用直接开平方法求解方程x2+6x+9=0.解:将方程变形为(x+3)2=0,然后两边开平方根,得到x=-3.所以方程的解为x=-3.2、用因式分解法求解方程x2-5x+6=0.解:将方程因式分解为(x-2)(x-3)=0,然后根据乘积为零的性质得到x=2或x=3.所以方程的解为x=2或x=3.3、用配方法求解方程2x2-5x+2=0.解:为了将方程化为完全平方形式,需要在方程两边同时加上一个适当的常数,使得方程的左边成为一个完全平方。
可以发现,2x2-5x+2=2(x-1)(x-2)+2,所以方程可以化为2(x-1)2=0.然后利用完全平方公式,得到x=1或x=2.所以方程的解为x=1或x=2.4、用公式法求解方程3x2-4x+1=0.解:根据求根公式,方程的解为x=[4±√(16-4*3*1)]/(2*3),化简可得到x=1/3或x=1.所以方程的解为x=1/3或x=1.四、练题1、用直接开平方法求解方程2x2-12x+18=0.2、用因式分解法求解方程x2+7x+10=0.3、用配方法求解方程x2+4x-5=0.4、用公式法求解方程x2-2x+1=0.5、求解方程2x2-5x-3=0的解法有哪些?分别求出方程的解。
答案:1、将方程变形为x2-6x+9=0,然后利用直接开平方法,得到x=3.所以方程的解为x=3.2、将方程因式分解为(x+5)(x+2)=0,然后根据乘积为零的性质,得到x=-5或x=-2.所以方程的解为x=-5或x=-2.3、为了将方程化为完全平方形式,需要在方程两边同时加上一个适当的常数,使得方程的左边成为一个完全平方。
一元二次方程的应用(设未知数——找等量关系——求解——检验)一、商品销售问题售价—进价=利润单价×销售量=销售额一件商品的利润×销售量=总利润1、某种服装,平均每天可以销售20件,每件盈利44元,在每件降价幅度不超过10元的情况下,若每件降价1元,则每天可多售出5件,如果每天要盈利1600元,每件应降价多少元?2、某化工材料经售公司购进了一种化工原料,进货价格为每千克30元.物价部门规定其销售单价不得高于每千克70元,也不得低于30元.市场调查发现:单价每千克70元时日均销售60kg;单价每千克降低一元,日均多售2kg。
在销售过程中,每天还要支出其他费用500元(天数不足一天时,按一天计算).如果日均获利1950元,求销售单价3、某商店购进一种商品,进价30元.试销中发现这种商品每天的销售量P(件)与每件的销售价X(元)满足关系:P=100-2X销售量P,若商店每天销售这种商品要获得200元的利润,那么每件商品的售价应定为多少元?每天要售出这种商品多少件?4、某玩具厂计划生产一种玩具熊猫,每日最高产量为40只,且每日产出的产品全部售出,已知生产ⅹ只熊猫的成本为R(元),售价每只为P(元),且RP与x的关系式分别为R=500+30X,P=170—2X。
(1)当日产量为多少时每日获得的利润为1750元?(2)若可获得的最大利润为1950元,问日产量应为多少?二、行程问题路程=速度*时间相遇路程=速度和*相遇时间追及问题=速度差*追及时间顺水速度=船速(静水中的速度)+ 水流速度逆流速度=船速(静水中的速度)—水流速度1、甲乙二人分别从相聚20千米的A、B两地以相同的速度同时相向而行,相遇后,二人继续前进,乙的速度不变,甲每小时比原来多走1千米,结果甲到达B地后乙还需30分钟才能到达A地,求乙每小时走多少千米?2、甲、乙两个城市间的铁路路程为1600公里,经过技术改造,列车实施了提速,提速后比提速前速度增加20公里/小时,列车从甲城到乙城行驶时间减少4小时,这条铁路在现有的安全条件下安全行驶速度不得超过140公里/小时.请你用学过的数学知识说明在这条铁路现有的条件下列车还可以再次提速.3、一个自行车队进行训练,训练时所有队员都以35千米/时的速度前进,突然,1号队员以45千米/时的速度独自前进,行进10千米后调转车头,仍以45千米/时的速度往回骑,直到与其他队员会合,1号队员从离队开始到与队员重新会合,经过了多少时间。
一元二次方程与实际问题题型归纳在我们的数学学习中,一元二次方程是一个非常重要的知识点,它不仅在理论上有着重要的地位,而且在解决实际问题中也有着广泛的应用。
接下来,让我们一起来归纳一下一元二次方程在实际问题中的常见题型。
一、增长率问题增长率问题是一元二次方程在实际生活中常见的应用之一。
例如,某公司去年的利润为 100 万元,今年的利润比去年增长了 20%,明年预计在今年的基础上再增长 10%,求明年的利润。
设明年的利润为 x 万元,今年的利润为 100×(1 + 20%)= 120 万元,明年的利润为 120×(1 + 10%)= x 万元,整理可得方程:\\begin{align}120×(1 + 10%)&=x\\120×11&=x\\132&=x\end{align}\在这类问题中,通常设原来的量为 a,平均增长率为 x,增长后的量为 b,经过 n 次增长后的公式为:\(b = a(1 + x)^n\);若为平均降低率,则公式为:\(b = a(1 x)^n\)。
二、面积问题面积问题也是常见的题型之一。
比如,要在一块长方形的土地上建造一个花园,已知长方形的长比宽多 10 米,面积为 2400 平方米,求长方形的长和宽。
设长方形的宽为 x 米,则长为(x + 10)米,根据长方形面积公式可得方程:\\begin{align}x(x + 10)&=2400\\x^2 + 10x 2400&=0\\(x 40)(x + 60)&=0\end{align}\解得\(x = 40\)或\(x =-60\)(舍去),所以长方形的宽为 40 米,长为 50 米。
解决面积问题时,关键是要根据图形的形状和面积公式,找出等量关系,列出方程。
三、销售利润问题销售利润问题常常涉及到商品的进价、售价、销售量和利润等因素。
例如,某商品的进价为每件 20 元,售价为每件 30 元,每天可卖出 100 件。
一元二次方程应用题七大题型
1. 求解物体运动距离
题型:一个物体从静止开始运动,加速度为 a,运动时间为 t。
求物体运动的距离。
公式:距离 = (1/2) 加速度时间²
2. 求解物体最终速度
题型:一个物体从静止开始运动,加速度为 a,运动时间为 t。
求物体最终速度。
公式:最终速度 = 加速度时间
3. 求解物体运动时间
题型:一个物体从静止开始运动,最终速度为 v,加速度为 a。
求物体运动的时间。
公式:时间 = 最终速度 / 加速度
4. 求解物体加速度
题型:一个物体从静止开始运动,运动时间为 t,最终速度为v。
求物体加速度。
公式:加速度 = 最终速度 / 时间
5. 求解运动物体速度
题型:一个物体从静止开始运动,在 t1 时刻速度为 v1,在
t2 时刻速度为 v2。
求物体在 t3 时刻的速度。
公式:速度 = (最终速度 - 初始速度) / (最终时间 - 初始
时间)
6. 求解运动物体加速度变化率
题型:一个物体的加速度从 a1 变化到 a2,时间间隔为Δt。
求加速度的变化率。
公式:加速度变化率 = (最终加速度 - 初始加速度) / 时间间隔
7. 求解运动物体速度变化率
题型:一个物体的速度从 v1 变化到 v2,时间间隔为Δt。
求速度的变化率。
公式:速度变化率 = (最终速度 - 初始速度) / 时间间隔。
一元二次方程常见题型总结一元二次方程常见题型总结题型1:一元二次方程的概念1.若方程$(a-1)x^2-3x+2=0$是关于$x$的一元二次方程,则$a$的取值范围为【】(A)$a\neq1$(B)$a>1$(C)$a\neq1$(D)$a>1$答案:$a\neq1$2.若$1-3$是方程$x^2-2x+c=0$的一个根,则$c$的值为【】(A)$-2$(B)$4/3$(C)$3/2$(D)$4$答案:$4/3$3.已知关于$x$的一元二次方程$(k+4)x^2+3x+k^2+3k-4=0$的一个根为$0$,且$k$的值为【】答案:$k=-4$或$k=1$题型2:一元二次方程的解法4.一个等腰三角形的底边长是$6$,腰长是一元二次方程$x^2-7x+12=0$的一个根,则此三角形的周长是【】(A)$12$(B)$13$(C)$14$(D)$12$或$14$答案:$14$5.方程$(x+3)^2=5(x+3)$的解为__________。
答案:$x=-2$或$x=2$6.用适当的方法解下列方程:1)$4x^2-144=0$;(2)$2x^2+3x=3$;(3)$x^2-2x-24=0$;(4)$x(2x-5)=4x-10$。
题型3:一元二次方程根的判别式及根与系数的关系定理7.已知$a,b,c$为常数,点$P(a,c)$在第二象限,则关于$x$的方程$ax^2+bx+c=0$的根的情况是【】(A)有两个相等的实数根(B)有两个不相等的实数根(C)没有实数根(D)无法判断答案:$B$8.若关于$x$的一元二次方程$x^2+(2k-1)x+k^2-1=0$没有实数根,则$k$的取值范围为__________。
答案:$k1$9.已知关于$x$的一元二次方程$x^2+(2k+1)x+k^2=0$有两个不相等的实数根。
1)求$k$的取值范围;2)设方程的两个实数根分别为$x_1,x_2$,当$k=1$时,求$x_1^2+x_2^2$的值。
一元二次方程题型汇总一、填空题: 1、方程(x –1)(2x +1)=2化成一般形式是 ,它的二次项系数是 .2、关于x 的方程是(m 2–1)x 2+(m –1)x –2=0,那么当m 时,方程为一元二次方程; 当m 时,方程为一元一次方程.3、方程0322=+x x 的根是 .4、当k = 时,方程0)1(2=+++k x k x 有一根是0.5、若方程kx 2–6x +1=0有两个实数根,则k 的取值范围是 .6、设x 1、x 2是方程3x 2+4x –5=0的两根,则=+2111x x .x 12+x 22= . 7、关于x 的方程2x 2+(m 2–9)x +m +1=0,当m = 时,两根互为倒数; 当m = 时,两根互为相反数.8、若x 1 =23-是二次方程x 2+ax +1=0的一个根,则a = , 该方程的另一个根x 2 = .9、方程x 2+2x +a –1=0有两个负根,则a 的取值范围是 .10、若p 2–3p –5=0,q 2-3q –5=0,且p ≠q ,则=+2211pq . 11、分解因式:122--x x = ,2232y xy x --= .12、请写出一个一元二次方程使它有一个根为3 , .13、如果把一元二次方程 x 2–3x –1=0的两根各加上1作为一个新一元二次方程的两根, 那么这个新一元二次方程是 .14、已知方程0)1(2=+++k x k x 的两根平方和是5,则k = .二、选择题:1、方程012=--kx x 的根的情况是( )(A )方程有两个不相等的实数根 (B )方程有两个相等的实数根(C )方程没有实数根 (D )方程的根的情况与k 的取值有关2、已知方程22=+x x ,则下列说中,正确的是( )(A )方程两根和是1 (B )方程两根积是2(C )方程两根和是-1 (D )方程两根积是两根和的2倍3、已知方程062=--kx x 的两个根都是整数,则k 的值可以是( )(A )—1 (B )1 (C )5 (D )以上三个中的任何一个4、若一元二次方程 2x (kx -4)-x 2+6 = 0 无实数根,则k 的最小整数值是( )(A )-1 (B )2 (C )3 (D )4 5、若c 为实数,方程x 2-3x +c =0的一个根的相反数是方程x 2+3x -3=0的一个根,那么方程x 2 -3x +c =0的根是( )(A )1,2 (B )-1,-2 (C )0,3 (D )0,-3 6、若一元二次方程ax 2+bx +c = 0 (a ≠0) 的两根之比为2:3,那么a 、b 、c 间的关系应当是( ) (A )3b 2=8ac (B )a c a b 2325922= (C )6b 2=25ac (D )不能确定 三、解下列方程:(1)9)12(2=-x (2)42)2)(1(+=++x x x(3) 3x 2–4x –1=0 (4)4x 2–8x +1=0(用配方法)四、求证:不论k 取什么实数,方程x 2-(k+6)x+4(k- 3)=0一定有两个不相等的实数根.五、若方程 x 2+mx -15 = 0 的两根之差的绝对值是8,求m的值.六、某商店4月份销售额为50万元,第二季度的总销售额为182万元,,求月平均增长率.七、 已知a 、b 、c 为三角形三边长,且方程b (x 2-1)-2ax+c (x 2+1)=0有两个相等的实数根.试判断此三角形形状,说明理由.八、综合应用题1. 分式1872---x x x 的值是0,则__________=x 2. 已知053)23(6522=+++-+-x x m m m m ,是关于x 的二次方程, 则m =图1图233. 设b a ,是一个直角三角形两条直角边的长,且12)1)((2222=+++b a b a ,则这个直角三角形的斜边长为4. 如果两个连续整数的积为210,那么这两个数是5. 已知实数x 满足+++x x x 22101=x ,那么x x 1+的值为 6.如图中的每个图是由若干盆花组成的形如三角形的图案,每条边(包括两个顶点)有n(n>1)盆花,每个图案花盆的总数是s 按此推断s 与n 的关系是 .n=2,s=3n=3,s=6n=4,s=9 7.观察下列一组图形,根据其变化规律,可得第10个图形中三角形的个数为8.等腰三角形的两边的长是方程091202=+-x x 的两个根,则此三角形的周长为 ( )A. 27B. 33C. 27和33D.以上都不对9. 合肥百货大搂服装柜在销售中发现:“宝乐”牌童装平均每天可售出20件,每件盈利40元.为了迎接“十•一”国庆节,商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存.经市场调查发现:如果每件童装降价4元,那么平均每天就可多售出8件.要想平均每天销售这种童装上盈利1200元,那么每件童装因应降价多少元?10. 解答题:方程01)3()1(12=--+++x m x m m ;(1)m 取何值时是一元二次方程,并求出此方程的解;(2)m 取何值时是一元一次方程;11.已知a 、b 、c 均为实数且0)3(11222=+++++-c b a a ,求方程02=++c bx ax 的根;12.试证明关于x 的方程012)208(22=+++-ax x a a 无论a 取何值,该方程都是一元二次方程;13.两个正方形,小正方形的边长比大正方形的边长的一半多4cm ,大正方形的面积比小正方形的面积的2倍少32cm2,求大小两个正方形的边长。
一元二次方程题型分类总结知识梳理一元二次方程⎪⎩⎪⎨⎧*⇒韦达定理根的判别解与解法考点类型一 概念只含有一个未知数........,并且②未知数的最高次数是.........2.,这样的③整式方程....就是一元二次方程。
)0(02≠=++a c bx“未知数的最高次数是2”:①该项系数不为“0”;②未知数指数为“2”;③若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以讨论。
例1、下列方程中是关于x 的一元二次方程的是( )A ()()12132+=+x xB 02112=-+x xC 02=++c bx axD 1222+=+x x x 变式:当k 时,关于x 的方程3222+=+x x kx 是一元二次方程。
例2、方程()0132=+++mx x m m 是关于x 的一元二次方程,则m 的值为。
★1、方程782=x 的一次项系数是 ,常数项是 。
★2、若方程()021=--m x m 是关于x 的一元一次方程,⑴求m 的值;⑵写出关于x 的一元一次方程。
★★3、若方程()112=•+-x m x m 是关于x 的一元二次方程,则m 的取值范围是 。
★★★4、若方程nx m +x n -2x 2=0是一元二次方程,则下列不可能的是( )A.m=n=2B.m=3,n=1C.n=2,m=1D.m=n=1考点类型二 方程的解例1、已知322-+y y 的值为2,则1242++y y 的值为 。
例2、关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值为 。
例3、已知关于x 的一元二次方程()002≠=++a c bx ax 的系数满足b c a =+,则此方程必有一根为 。
例4、已知b a ,是方程042=+-m x x 的两个根,c b ,是方程0582=+-m y y 的两个根,则m 的值为 。
★1、已知方程0102=-+kx x 的一根是2,则k 为 ,另一根是 。
★2、已知关于x 的方程022=-+kx x 的一个解与方程311=-+x x 的解相同。
⑴求k 的值; ⑵方程的另一个解。
★3、已知m 是方程012=--x x 的一个根,则代数式=-m m 2 。
★★4、已知a 是0132=+-x x 的根,则=-a a 622。
★★5、方程()()02=-+-+-a c x c b x b a 的一个根为( ) A 1- B 1 C c b - D a -★★★6、若=•=-+y x 则y x 324,0352 。
考点类型三 解法()m x m m ±=⇒≥=,02※※对于()m a x =+2,()()22n bx m ax +=+等形式均适用直接开方法例1、解方程:();08212=-x ()216252x -=0; ()();09132=--x例2、若()()2221619+=-x x ,则x 的值为 。
)A.12322-=+x xB.()022=-x C.x x -=+132 D.092=+x)()021=--x x x x 21,x x x x ==⇒或0”,()()22n bx m ax +=+,()()()()c x a x b x a x ++=++ , 0222=++a ax x例1、()()3532-=-x x x 的根为( )A 25=xB 3=xC 3,2521==x x D 52=x 例2、若()()044342=-+++y x y x ,则4x+y 的值为 。
变式1:()()=+=-+-+2222222,06b 则a b a b a 。
变式2:若()()032=+--+y x y x ,则x+y 的值为 。
变式3:若142=++y xy x ,282=++x xy y ,则x+y 的值为 。
例3、方程062=-+x x 的解为( )A.2321=-=,x xB.2321-==,x xC.3321-==,x xD.2221-==,x x例4、解方程: ()04321322=++++x x例5、已知023222=--y xy x ,则yx y x -+的值为 。
变式:已知023222=--y xy x ,且0,0>>y x ,则y x y x -+的值为 。
★1、下列说法中:①方程02=++q px x 的二根为1x ,2x ,则))((212x x x x q px x --=++② )4)(2(862--=-+-x x x x .③)3)(2(6522--=+-a a b ab a ④ ))()((22y x y x y x y x -++=-⑤方程07)13(2=-+x 可变形为0)713)(713(=-+++x x正确的有( )A.1个B.2个C.3个D.4个★2、以71+与71-为根的一元二次方程是()A .0622=--x xB .0622=+-x xC .0622=-+y yD .0622=++y y★★3、⑴写出一个一元二次方程,要求二次项系数不为1,且两根互为倒数: ⑵写出一个一元二次方程,要求二次项系数不为1,且两根互为相反数: ★★4、若实数x 、y 满足()()023=++-+y x y x ,则x+y 的值为( )A 、-1或-2B 、-1或2C 、1或-2D 、1或25、方程:2122=+xx 的解是 。
★★★6、已知06622=--y xy x ,且0>x ,0>y ,求y x y x --362的值。
★★★7、方程()012000199819992=-⨯-x x 的较大根为r ,方程01200820072=+-x x 的较小根为s ,则s-r 的值为 。
()002≠=++a c bx 222442a ac b a b x -=⎪⎭⎫ ⎝⎛+⇒ ※在解方程中,多不用配方法;但常利用配方思想求解代数式的值或极值之类的问题。
例1、 试用配方法说明322+-x x 的值恒大于0。
例2、 已知x 、y 为实数,求代数式74222+-++y x y x 的最小值。
例3、 已知,x、y y x y x 0136422=+-++为实数,求y x 的值。
例4、 分解因式:31242++x x★★1、试用配方法说明47102-+-x x 的值恒小于0。
★★2、已知041122=---+x x x x ,则=+x x 1 . ★★★3、若912322-+--=x x t ,则t 的最大值为 ,最小值为 。
★★★4、如果4122411-++-=--++b a c b a ,那么c b a 32-+的值为 。
)04,02≥-≠ac b a 且aac b b x 242-±-=,()04,02≥-≠ac b a 且例1、选择适当方法解下列方程:⑴().6132=+x ⑵()().863-=++x x ⑶0142=+-x x⑷01432=--x x ⑸()()()()5211313+-=+-x x x x例2、在实数范围内分解因式:(1)3222--x x ; (2)1842-+-x x . ⑶22542y xy x --说明:①对于二次三项式c bx ax ++2的因式分解,如果在有理数范围内不能分解, 一般情况要用求根公式,这种方法首先令c bx ax ++2=0,求出两根,再写成 c bx ax ++2=))((21x x x x a --.②分解结果是否把二次项系数乘进括号内,取决于能否把括号内的分母化去.⑴求代数式的值; ⑵解二元二次方程组。
例1、 已知0232=+-x x,求代数式()11123-+--x x x 的值。
例2、如果012=-+x x ,那么代数式7223-+x x 的值。
例3、已知a 是一元二次方程0132=+-x x 的一根,求1152223++--a a a a 的值。
例4、用两种不同的方法解方程组⎩⎨⎧=+-=-)2(.065)1(,6222y xy x y x说明:解二元二次方程组的具体思维方法有两种:①先消元,再降次;②先降次,再消元。
但都体现了一种共同的数学思想——化归思想,即把新问题转化归结为我们已知的问题.考点类型四 根的判别式b 2-4ac①定根的个数;②求待定系数的值;③应用于其它。
例1、若关于x 的方程0122=-+x k x 有两个不相等的实数根,则k 的取值范围是 。
例2、关于x 的方程()0212=++-m mx x m 有实数根,则m 的取值范围是( )A.10≠≥且m mB.0≥mC.1≠mD.1>m例3、已知关于x 的方程()0222=++-k x k x(1)求证:无论k 取何值时,方程总有实数根;(2)若等腰∆ABC 的一边长为1,另两边长恰好是方程的两个根,求∆ABC 的周长。
例4、已知二次三项式2)6(92-++-m x m x 是一个完全平方式,试求m 的值.例5、m 为何值时,方程组⎩⎨⎧=+=+.3,6222y mx y x 有两个不同的实数解?有两个相同的实数解?★1、当k 时,关于x 的二次三项式92++kx x 是完全平方式。
★2、当k 取何值时,多项式k x x 2432+-是一个完全平方式?这个完全平方式是什么?★3、已知方程022=+-mx mx 有两个不相等的实数根,则m 的值是 .★★4、k 为何值时,方程组⎩⎨⎧=+--+=.0124,22y x y kx y (1)有两组相等的实数解,并求此解;(2)有两组不相等的实数解;(3)没有实数解.★ ★★5、当k 取何值时,方程04234422=+-++-k m m x mx x 的根与m 均为有理数?考点类型五 方程类问题中的“分类讨论”例1、关于x 的方程()03212=-++mx x m⑴有两个实数根,则m 为 ,⑵只有一个根,则m 为 。
例2、 不解方程,判断关于x 的方程()3222-=+--k k x x 根的情况。
例3、如果关于x 的方程022=++kx x 及方程022=--k x x 均有实数根,问这两方程是否有相同的根?若有,请求出这相同的根及k 的值;若没有,请说明理由。
考点类型六 应用解答题⑴“碰面”问题;⑵“复利率”问题;⑶“几何”问题;⑷“最值”型问题;⑸“图表”类问题1、五羊足球队的庆祝晚宴,出席者两两碰杯一次,共碰杯990次,问晚宴共有多少人出席?2、某小组每人送他人一张照片,全组共送了90张,那么这个小组共多少人?3、北京申奥成功,促进了一批产业的迅速发展,某通讯公司开发了一种新型通讯产品投放市场,根据计划,第一年投入资金600万元,第二年比第一年减少31,第三年比第二年减少21,该产品第一年收入资金约400万元,公司计划三年内不仅要将投入的总资金全部收回,还要盈利31,要实现这一目标,该产品收入的年平均增长率约为多少?(结果精确到0.1,61.313≈)4、某商店经销一种销售成本为每千克40元的水产品,据市场分析,若按每千克50元销售,一个月能售出500千克,销售单价每涨1元,月销售量就减少10千克,针对此回答:(1)当销售价定为每千克55元时,计算月销售量和月销售利润。