当前位置:文档之家› 常见发动机参数、发动机类型

常见发动机参数、发动机类型

常见发动机参数、发动机类型
常见发动机参数、发动机类型

●发动机描述

发动机(英文:Engine),又称为引擎,是一种能够把一种形式的能转化为另一种更有用的能的机器,通常是把化学能转化为机械能(把电能转化为机器能的称谓电动机)。装配在汽车上都主要以汽油或柴油为原料,现在的新能源汽车则包括电动、氢气等形式。

发动机描述这个参数主要是简要地描述一下这款车的发动机,我们标准的描述方式是:排气量+排列形式+汽缸数+发动机特殊功能。

例如宝马335i的“3.0升直列6缸双涡轮增压直喷发动机”,奔驰C200的“1.8升直列4缸机械增压发动机”。

●发动机放置位置

根据发动机相对车身所处的位置和自身安置的方向,我们将发动机放置按以下两种划分。

◆发动机放置以前后轴划分:

发动机整体在前轮轴前面的称为“前置发动机”(常用英文”F”表示),绝大部分轿车都是前置发动机。

发动机整体在前后轴之间的称为“中置发动机”(常用英文”M”表示),很多双座的超级跑车均采用这种布置方式,例如:兰博基尼LP640,法拉利F430等。

发动机整体在后轮轴后面的称为“后置发动机”(常用英文”R”表示),这类车型比较少,典型代表车型就是保时捷911。

◆发动机位置以曲轴纵横标准划分:

发动机位置以曲轴位置为标准,我们将发动机分为横向式(常用英文”Q”表示)和纵向式(常用英文”L”表示)两种放置类型。

曲轴和车体方向成直角的叫横置发动机,一般前驱车均为横置发动机,例如:大众速腾、标致307、丰田凯美瑞等。

曲轴和车体方向平行的叫纵置发动机,一般后驱车和全驱车多数都为纵置发动机,例如:奔驰C级、宝马3系、丰田锐志等。不过也有特例,奥迪就是典型的前驱车,但是纵置发动机。

可能您还有点不明白,说的再简单点,如果您站在车头前方,如果发动机横向放在你眼前就是横置式发动机,纵向呈现在你眼前则为纵置式发动机。

丰田凯美瑞240G采用发动机横置

宝马3系采用发动机纵置

所以在我们的数据库中,发动机放置位置这一项,就有出现6种情况,分别是:前置发动机,横向;前置发动机,纵向;中置发动机,横向;中置发动机,纵向;后置发动机,横向;后置发动机,纵向。

●发动机结构形式

发动机结构形式就是汽缸的排列形式,主要有以下几种方式:

◆直列发动机(LineEngine)

发动机所有汽缸均按同一角度肩并肩排成一个平面,气缸是按直线排列的,我们称这样的发动机为直列发动机。

直列发动机特点:它的优点是缸体和曲轴结构十分简单,而且使用一个汽缸盖,制造成本较低,尺寸紧凑。直列发动机稳定性高,低速扭矩特性好并且燃料消耗也较少;但缺点是随排量汽缸数的增加长度大大增加。所以直列发动机一般都是4缸机,少数有6缸机,比如宝马著名的直列6缸发动机。

◆ V型发动机

将所有汽缸分成两组,把相邻汽缸以一定夹角布置一起,使两组汽缸形成有一个夹角的平面,从侧面看汽缸呈V字形,故称V型发动机。因为V型发动机是两组汽缸,所以汽缸数均是偶数,如常见的:V6、V8、V10、V12等,而且V型发动机排量都比较大,一般都在2.5L 以上。

V型发动机特点:V型发动机高度和长度尺寸小,在汽车上布置起来较为方便,也能够为驾驶舱留出更大的空间。V型发动机汽缸对向布置,还可抵消一部分震动,使发动机运转更平顺;V型发动机的缺点则是必须使用两个汽缸盖,结构较为复杂、成本较高。另外其宽度加大后,发动机两侧空间较小,不易再安排其它装置。

◆ W型发动机

W型发动机是德国大众专属发动机技术。其原理是:将V型发动机的每侧汽缸再进行小角度的错开,简单点说,W型发动机的汽缸排列形式是由两个小V形组成一个大W形,严格说来W型发动机还应属V型发动机的变种。

W发动机特点:W型比V型发动机做得更短一些,有利于节省空间,同时重量也可轻些;缺点是它的宽度更大,使得发动机室更满。

大众旗下的辉腾6.0和奥迪的A8L 6.0都采用了W12发动机,布加迪威龙则是采用了8.0L W16发动机,W型发动机一般都是大排量的发动机。

◆ H型水平对置发动机

如果将直列发动机看成夹角为0度的V型发动机,当两排汽缸的夹角扩大为180度,汽缸水平对置排列,就是水平对置发动机了。

水平对置发动机特点:由于它的汽缸为“平放”,因此降低了汽车的重心,同时又能让车头设计得又扁又低。这些因素都能增强汽车的行驶稳定性。水平对置的汽缸布局是一种对称稳定结构,这使得发动机的运转平顺性比V型发动机更好,运行时的功率损耗也是最小。不过由于两排汽缸水平放置,所以造成发动机缸体很宽,使得发动机舱排列会变的比较复杂,所以很少有厂家采用。

目前只有两家公司采用水平对置发动机,分别是斯巴鲁和保时捷。

◆转子发动机

上面我们讲解的几种都是通过汽缸内活塞的往复运动最终驱动车子前进,都是往复式式发动机,发动机及气缸本身都是相对不动的。而转子发动机则是一种三角活塞旋转式发动机,它采用三角转子旋转运动来控制压缩和排放。

与往复式发动机相比,转子发动机取消了无用的直线运动,因而同样功率的转子发动机尺寸较小,重量较轻,而且振动和噪声较低,具有较大优势。转子发动机的运动特点是三角转子的中心绕输出轴中心公转的同时,三角转子本身又绕其中心自转。在三角转子转动时,以三角转子中心为中心的内齿圈与以输出轴中心为中心的齿轮啮合,齿轮固定在缸体上不转动,内齿圈与齿轮的齿数之比为3比2。

上述运动关系使得三角转子顶点的运动轨迹(即汽缸壁的形状)似“8”字形。三角转子把汽缸分成三个独立空间,三个空间各自先后完成进气、压缩、做功和排气,三角转子自转一周,发动机点火做功三次。由于以上运动关系,输出轴的转速是转子自转速度的3倍,这与往复运动式发动机的活塞与曲轴1:1的运动关系完全不同。

转子发动机特点:转子发动机的优点十分明显,它尺寸较小、重量较轻、功率很大,并且震动和噪声极低。缺点是转子技术复杂,制造成本极其高昂,耐用性也低于传统发动机。经典实例:现在使用转子发动机的仅有马自达一家厂家,RX-8跑车使用的就是1.3L的转子发动机。

◆混合动力系统

故名思意,混合动力系统就是在传统的汽柴发动机的基础上,加上一种其他能源的动力系统。现在普遍应用的是油电混合系统,即在汽柴发动机的车上,再加上一个电动机,两个发动机一起工作。

混合动力系统其实是一种在未研究出替代能源之前的一种折中方案,他的最大优点是能够有效地降低油耗。现在市场上比较常见的混合动力车型有:丰田普锐斯、本田思域混合动力、雷克萨斯RX400H等。

◆自然吸气

我们一般常见的发动机多数为自然吸气式发动机,自然吸气发动机是利用汽缸内产生的负压力,将外部空气吸入,跟人类吸取空气一样,这种吸气方式的发动机称为自然吸气发动机。

自然吸气发动机特点是:动力输出非常平顺,不会因为转速的变化而出现骤然的猛加速,而且使用寿命更长,维修更为简便。

◆涡轮增压

涡轮增压发动机是依靠涡轮增压器来加大发动机进气量的一种发动机,涡轮增压器(Tubro)实际上就是一个空气压缩机。它是利用发动机排出的废气作为动力来推动涡轮室内的涡轮(位于排气道内),涡轮又带动同轴的叶轮位于进气道内,叶轮就压缩由空气滤清器管道送来的新鲜空气,再送入气缸。当发动机转速加快,废气排出速度与涡轮转速也同步加快,空气压缩程度就得以加大,发动机的进气量就相应地得到增加,就可以增加发动机的输出功率了。

涡轮增压特点:一般增压后的发动机动力能比原发动机增加40%或更高;而缺点就是我们常说的“迟滞性”。不过目前经过技术改进,发动机在较低转速时增压器就可以介入,“迟滞性”感觉已很小。目前,除了单涡轮发动机外,很多运动型车为追求高性能还会搭载了双涡轮甚至四涡轮发动机。

典型实例:萨博是涡轮增压发动机的最初应用者,他的全系车型都是用涡轮增压发动机。比较常见的还有:大众迈腾1.8TSI,别克君威的2.0T、1.6T都是涡轮增压发动机,宝马335i 使用的是双涡轮增压发动机,布加迪威龙则搭载了8.0L W16四涡轮增压发动机。

◆机械增压

机械增压器采用皮带与发动机曲轴皮带盘连接,利用发动机转速来带动机械增压器内部叶片,以产生增压空气送入引擎进气歧管内,以此达到增压并使发动机输出动力变高的目的。

机械增压特点:机械增压优点是“全时介入”,使其在低转速下便可获得增压,加速感受相当线性化没有增压迟滞感;缺点就是依靠发动机曲轴带动的机械增压器,将损耗一定量发动机的动力,高转速损耗明显,燃油经济性降低,这点就不如涡轮增压系统好了。目前,普通轿车多采用单机械增压,而一些超跑为了获取更大动力,还搭载装配两台增压器的双增压发动机,这两个增压器各为一半汽缸服务。

典型实例:现在国内比较常见的机械增压发动机有奔驰C200k上的1.8L机械增压发动机,奥迪的3.0T上的3.0L机械增压发动机等。

●混合气形成方式

◆化油器

化油器式是一种已经被淘汰的燃油供给方式,主要利用高速气流将汽油雾化,并与空气充分混合,然后汽缸将混合气吸入并点燃做工。

化油器的缺点是控制不够精确,在正常驾驶时不能迅速对发动机负荷的改变作出反映,调整混合气浓度。致使发动机经常处于不充分燃烧的状态,所以尾气排放中有害物质含量无法满足日益严格的排放法规,同时会产生较高的油耗,到上世纪90年代末,即被国家明令禁止生产,现在已经完全被淘汰了。

使用车型:1994年产普桑JV化油器发动机、90年代的夏利等。

◆单点电喷

以喷油嘴取代了化油器,进气总管中的节流阀体内设置一只喷射器,对各缸实施集中喷射,汽油被喷入进气气流中,形成可燃混合气,由进气岐观分配到各个气缸内。

单点电喷实现了电子控制,供油量精确度有所提高。但是,化油器和单点喷射存在一个共性的缺陷,燃油雾化与进气混合的位置处于进气管距离气缸的最远端,油气混合后,要分配给各个气缸,无法实现精确的按比例并且均匀的油气混合,所以油耗高且动力低。所以单点电喷现在基本也被淘汰了,使用的车型很少。

使用车型:吉利豪情1.3L 三缸单点电喷发动机、奇瑞首款风云1.6L发动机。

◆多点电喷

与单点电喷不同,多点电喷每个气缸都由单独的喷油嘴喷射燃油。燃油喷嘴安装于进气管最靠近气缸的位置,燃油喷射与进气混合在进气门之前,实行各缸分别供油。多点电喷是现在的主流技术,目前大多数车型都采用了多点电喷发动机。。

多点喷射能够按照每个气缸的需求实现精确的按需供油,因此,显著降低了油耗和排放。但是,这种“缸外喷射混合”的缺点在于,进入气缸的混合气只能够通过气门的开闭来被动控制,不能完全适应发动机不同工况的需求。并且,油气混合受进气气流的影响较大,还会吸附在进气管壁和气门上形成积碳,造成浪费,并影响发动机性能。

◆直喷式

燃油喷嘴安装于气缸内,直接将燃油喷入气缸内与进气混合。喷射压力也进一步提高,使燃油雾化更加细致,真正实现了精准地按比例控制喷油并与进气混合,并且消除了缸外喷射的缺点。

传统的汽油发动机是通过电脑采集凸轮位置以及发动机各相关工况从而控制喷油嘴将

汽油喷入进气歧管。汽油在歧管内开始混合,然后再进入到汽缸中燃烧。空气跟汽油的最佳混合比是14.7/1(也叫理论空燃比),传统发动机由于汽油跟空气是在进气歧管内混合,

那么他们只能均匀的混合在一起,所以必须达到理论空燃比才能获得较好的动力性和经济性,但由于喷油嘴离燃烧室有一定的距离,汽油同空气的混合情况受进气气流和气门开关的影响较大,并且微小的油颗粒会吸附在管道壁上,这就的理论空燃比很难达到,这是传统发动机无法解决的一个问题。

要想解决这一难题,就必须把燃油直接喷射到汽缸中去,直喷式汽油发动机采用类似于柴油发动机的供油技术,通过一个活塞泵提供所需的100bar以上的压力,将汽油提供给位于汽缸内的电磁喷射器。然后通过电脑控制喷射器将燃料在最恰当的时间直接注入燃烧室,通过对燃烧室内部形状的设计,让混合气能产生较强的涡流使空气和汽油充分混合。然后使火花塞周围区域能有较浓的混合气,其他周边区域有较稀的混合气,保证了在顺利点火的情况下尽可能的实现稀薄燃烧。

现在很多厂家都开始采用汽油直喷技术,比如大众的1.8TSI,奥迪的3.2FSI,宝马的3.0L双涡轮增压直喷发动机,别克君越上的3.0L汽油直喷发动机等。

●排气量

指活塞从上止点到下止点所扫过得气体容积,又称为单缸排量,它取决于缸径和活塞行程。发动机排量是各缸工作容积得总和,一般用于毫升(ml)来表示,排气量是发动机最重要的结构参数之一。

排气量简单计算公式:活塞直径mm×活塞直径mm×行程mm×0.7854(为一固定常数) / 1000(换算为cc数)×汽缸数

理论上排气量越大,功率和扭距就会越大。但这也不是绝对的,关键看对发动机的调校。同一款发动机,用在跑车上功率调教就会比用在越野车上高,反之越野车的扭矩会比跑车上的高。追求的目的不同,对发动机的调教也会有差别。同时,由于增压技术的介入,小排量已拥有超越更高排量发动机动力的水平。

●最大功率

最大功率也叫最大马力,功率的单位是千瓦(kw),马力的单位是匹(PS),1千瓦=1.36匹。

输出功率与发动机的转速关系很大,随着转速的增加,发动机的功率也相应提高。到了一定的转速以后,功率就不会在增加了,而会成下降趋势。所以,最大功率的标注会同时标注千瓦数与相应的发动机转速,转速的表达方式是每分钟多少转(rpm)。

所以,完整的发动机最大功率表达方式是:千瓦(匹)/转速,例如100kw(136ps)/6000rpm。

通常最大功率决定了汽车的最高速度。

●最大扭矩

扭矩是发动机性能的一个重要参数,是指发动机运转时从曲轴端输出的平均力矩,俗称为发动机的“转劲”。扭矩的大小也是和发动机转速有关系的,在不同的转速会有不同的扭矩,所以扭矩的单位是牛顿.米/转速(N.m/rpm)。

扭矩越大,发动机输出的“劲”就越大。扭矩决定了汽车的加速能力,爬坡能力和牵引力量。

●压缩比

压缩比就是发动机混合气体被压缩的程度,用压缩前的气缸总容积与压缩后的气缸容积(即燃烧室容积)之比来表示。为了能更直观全面的了解,我们还需要明白以下几个相关的概念。

往复式发动机:

简单地讲,就是在发动机气缸中,有一只活塞周而复始地做着直线往复运动,且一直循环不已。在周而复始又持续不断的工作行程之中有其一定的运动行程范围。

最大行程容积与最小行程容积:

就发动机某个气缸而言,当活塞的行程到达最低点,此时的位置点便称为下止点,整个气缸包括燃烧室所形成的容积便是最大行程容积。当活塞反向运动,到达最高点位置时,这个位置点便称为上止点,所形成的容积为整个活塞运动行程是最小行程容积。

压缩比的表示和范围:

压缩比就是这最大行程容积与最小容积的比值。常见的汽油发动机压缩比表示方法为9.0:1、9.5:1或10.5:1等。汽油发动机压缩比一般是8-11,柴油发动机压缩比一般是18-23。

压缩比与发动机性能的关系:

压缩比越高就意味着发动机的动力越大。通常低压压缩比一般在10以下,高压压缩比在10以上。目前所知汽油发动机的压缩比最高已经达到了12:1。

压缩比与冷却系统的关系:

发动机的运转正常的工作温度都设计在80—110℃之间。压缩比太高可能会导致汽油自燃、预燃,而引起爆震的发生,使发动机无力、损坏机械元件。所以,在提升压缩比的同时又能使发动机保持正常的工作温度是至关重要的。

发动机冷却系统

爆震:

正常燃烧是由火花塞的电极间隙附近形成火焰核心,此火焰燃烧速度为30—40米/秒。而爆震则是远离火花塞的末端未燃混合气经过压缩后达到自燃温度,自身产生火焰提前引燃,此火焰燃烧速度为200—1000米/秒以上。比正常燃烧的火焰传播速度高几十倍,很容易造成发动机损坏。

压缩比与90号、93号、97号汽油:

汽油发动机压缩比越高,引发爆震的可能性越大。我们通常说的标号90号、93号、97号汽油,标号越高,辛烷值越高,抗爆性能就越强,当然价钱也越贵。

增压与可变压缩比:

增压就是将空气预先压缩然后再供入气缸,以期提高空气密度、增加进气量的一项技术。现今运用在汽车的增压系统有两大主流:机械增压、涡轮增压。发动机在低速时,增压作用滞后,等发动机加速至一定转速后,增压系统会开始工作,在同等行程容积下,空气密度的提升就相当于压缩比的提高。

机械增压

压缩比与环保:

众所周知,发动机气缸的压缩比高时,燃烧的温度也相对的升高,则排放出来的废气中氮氧化合物的含量也就增加,会引起污染。如何才能达到动力与环保的最佳平衡点,也是现今发动机技术的着重研究课题。

●汽缸数

汽缸:

举个简单的例子,见过医院打针用的针管吧?里面推药的是活塞,那个外壳就可以看做是汽缸。按照冷却方式分为水冷发动机气缸体和风冷发动机气缸体。

汽缸数:

汽车发动机常用缸数有3、4、6、8、10、12、16缸。一般家用轿车发动机采用4缸居多,售价多在20万以下。6缸以上的车型售价基本都高于20万元。

而8缸甚至更多缸数的发动机则是被中大型豪华车和超级跑车所采用。这其中,具备1001匹马力的布加迪威龙就是16缸发动机的典型代表车型。

布加迪威龙

汽缸数与发动机性能的关系:

一般来说,在同等缸径下,缸数越多,排量越大功率越高,也就是最高速越高。在同等排量下,缸数越多,缸径越小,转速越高扭矩越大,也就是加速度越快。

●每缸气门数

气门:

指汽缸的进气门和排气门。进气门直接连接进气歧管是发动机用来吸入混合气(或新鲜空气)的入口;排气门则连接着排气歧管,是发动机排出燃烧废气的出口。

汽车尺寸参数

1、外形尺寸 外形尺寸包括车长、车宽和车高三方面尺寸。车长即沿汽车长度方向前后两极端之间的距离(mm);车宽即沿汽车宽度方向两侧极端之间的距离(mm);车高是指汽车最高点至地面间的距离(mm),如图中的b、g、h所示。 汽车尺寸参数示意图 a-轴距;b-车长;c-前悬;d-后悬;e-前轮距; f-后轮距;g-车宽;h-车高;j-离地间隙。 2、轴距 轴距是指汽车两轴中心线之间的距离(mm),如上图中的a。对多轴汽车,轴距应从前至后分别注明相邻两轴间距离,总轴距为各轴距之和。 3、轮距 轮距是指汽车同一轴上左右两轮中心面之间的距离(mm),如上图中的e、f。若为双轮胎时,则为同一轴左右双轮中心面之间的距离。 4、前后悬

前悬是指汽车最前端至通过前轴轴线的垂面间的距离(mm),如上图中c;后悬是指汽车最后端至通过后轴轴线的垂面间的距离(mm),如上图中d。 5、最小离地间隙 最小离地间隙是指汽车满载时,汽车最低点至地面的距离(mm),如上图中j 。 汽车主要技术参数反映汽车的技术性能以及适用范围,主要有以下几项: 1、整车参数 1) 外形尺寸:长×高×宽 2) 重量参数:整车自重(千克)、总质量(千克)、载质量(千克)、空载轴荷分配等。 3) 通过性及机动性参数:最小离地间隙(一般为驱动桥壳最底点与地面之间的距离)、前悬、后悬、接近角、离去角、轴距、轮距、最小转弯半径。 4) 容量参数:载质量、座位数、货厢容积、行李厢容积、燃油箱容积等。 5) 性能参数:有最高转速、最大爬坡度、起步加速时间、各挡加速时间、百公里油耗量、制动距离等。 2、发动机参数 1) 发动机型号与生产厂家。 2) 发动机形式:包括冲程数、缸数、汽缸排列方式(直列用"l"表示,v型排列用"v"表示)、汽油机还是柴油机等。 3) 冷却方式:是风冷还是水冷。 4) 性能参数:包括最大功率、最大扭矩以及最低燃料消耗率等。还给出最大功率和最大扭矩时对应发动机转速。 5) 尺寸参数:包括发动机排量、压缩比、缸径×行程、外形尺寸与重量等。 6) 燃油供给方式:是化油器式还是燃油喷射方式。 7) 废气排放控制装置。 3、底盘参数 1) 传动系

Y系列电动机安装尺寸培训讲学

Y系列电动机安装尺 寸

Y系列电动机安装尺寸 B3 B3: 机座带底脚, 端盖上无凸缘的结构型式. 机座极数 安装尺寸 (mm)外形尺寸 (mm) A B C D E F G H K AB AC AD HD L 80 2.4.6.8 125 100 50 19 40 6 15.5 80 10 165 175 145 214 295 90S 2.4.6.8 140 100 56 24 50 8 20 90 10 180 195 155 250 315 90L 2.4.6.8 140 125 56 24 50 8 20 90 10 180 195 155 250 340 100L 2.4.6.8 160 140 63 28 60 8 24 100 12 205 215 180 270 385 112M 2.4.6.8 190 140 70 28 60 8 24 112 12 230 240 190 300 400 132S 2.4.6.8 216 140 89 38 80 10 33 132 12 270 275 210 345 470 132M 2.4.6.8 216 178 89 38 80 10 33 132 12 270 275 210 345 510 160M 2.4.6.8 254 210 108 42 110 12 37 160 15 320 330 255 420 615 160L 2.4.6.8 254 254 108 42 110 12 37 160 15 320 330 255 420 670 180M 2.4.6.8 279 241 121 48 110 14 42.5 180 15 355 380 280 455 700 180L 2.4.6.8 279 279 121 48 110 14 42.5 180 15 355 380 280 455 740 200L 2.4.6.8 318 305 133 55 110 16 49 200 19 395 420 305 545 770 225S 4.8 356 286 149 60 140 18 53 225 19 435 470 335 555 815 225M 2 356 311 149 55 110 16 49 225 19 435 470 335 555 820 4.6.8 356 311 149 60 140 18 53 225 19 435 470 335 555 845 250M 2 406 349 168 60 140 18 53 250 24 490 510 370 615 910 4.6.8 406 349 168 65 140 18 58 250 24 490 510 370 615 910 280S 2 457 368 190 65 140 18 58 280 24 550 580 410 680 985 4.6.8 457 368 190 75 140 20 67.5 280 24 550 580 410 680 985 280M 2 457 419 190 65 140 18 58 280 24 550 580 410 680 1035 4.6.8 457 419 190 75 140 20 67.5 280 24 550 580 410 680 1035 315S 2 508 406 216 65 140 18 58 315 28 635 645 530 845 1160 4.6.8.10 508 406 216 80 170 22 71 315 28 635 645 530 845 1270 315M 2 508 457 216 65 140 18 58 315 28 635 645 530 845 1190 4.6.8.10 508 508 216 80 170 22 71 315 28 635 645 530 845 1300 315L 2 508 508 216 65 140 18 58 315 28 635 645 530 845 1190 4.6.8.10 508 508 216 80 170 22 71 315 28 645 645 530 845 1300 355M 2 610 560 245 75 140 20 67.5 355 28 730 710 655 1010 1500 4.6.8.10 610 630 254 95 170 25 86 355 28 730 710 655 1010 1530 355L 2 610 630 254 75 140 20 67.5 355 28 730 710 655 1010 1500 4.6.8.10 610 630 254 95 170 25 86 355 28 730 710 655 1010 1530 Y系列电动机技术数据 型号功率 满载 堵转电 流/额 堵转转 矩/额定 最大转矩 /额定转 转动惯 量 重量电流(A) 速度效率功率因

汽车运行工况(教案)

第一章 汽车使用条件及性能指标 第二节 汽车运行工况 汽车是在一定的道路和交通条件下完成运输任务的。为了提高汽车运输生产率,降低运输成本,必须研究汽车在所运行的交通和道路条件下的运行状况。 为了研究汽车与运行条件的适应性,通常采用多参数描述汽车运行状况,并称之为汽车运行工况。即汽车在使用条件下,汽车驾驶人以其自己的经验、技艺操纵车辆,完成一定任务时,汽车及其各零部件、总成的各种参数变化及技术状态。 汽车运行工况的参数包括汽车速度、变速器挡位、发动机转速、加速踏板(油门)开度、制动频度、加速度、油耗、污染物排放等。在特定的汽车运行工况研究中,还包括发动机曲轴瞬时转速、输出功率、输出转矩、油耗、冷却液温度、各总成润滑油温度、各挡使用频度、离合器动作频度等。 汽车运行工况调查的内容,可根据研究任务的需要而增减。通过对测试汽车运行工况数据的统计分析,求得汽车运行工况参数样本的分布规律及其数学特征;进而在无偏性、一致性和有效性的原则下,推断出汽车运行工况参数的总体分布和数学特征。 汽车运行工况是一个随机过程,受到许多因素的影响,如道路状况、交通流量、气候条件

以及汽车自身技术性能的变化等。 汽车运行工况的研究常采用测试统计方法和计算机数字仿真方法。 一、汽车运行工况调查 在汽车运行工况研究中,工况调查是首先要进行的工作。通过运行工况调查,掌握在特定的使用条件下,表征汽车运行状况各参数的变化范围和变化规律,为评价车辆的合理运用以及车辆性能、结构能否满足使用要求提供基础资料。 汽车运行工况测试是汽车运行工况调查的一个重要步骤。通过汽车运行试验及试验后的数据处理和统计分析完成运行工况调查。 汽车运行工况调查的主要内容有:选择反映汽车运行状况,具有代表性的路线,并取得道路资料和交通状况的调查数据;同步测取在汽车行驶过程中的车速、发动机转速、油耗、加速踏板开度及挡位使用和变化情况;在调查路线(或路段)内的累积停车次数和累积制动次数等。必要时还要记录交通流情况,如交通量、交通构成等。 在汽车运行试验中,主要使用非电量的电测法,即在测量部位安装将非电量状态参数转换为电信号的传感器,将信号直接或经放大后传送至测量仪表和记录器(如计算机硬盘、磁带机、光线示波器、x-y记录仪),供统计分析使用。 在测试汽车运行工况时,风速、气温、海拔高度等试验条件应符合有关规定,或对测试参

电动机外形及安装尺寸

外形及安装尺寸

机座号 安装及外形尺寸 A B C D E F G H K M N P S T n AB AC AD HD HF L L* 80M125100501940615.5801016513020012 3.54165175150205260290335 90S140100562450820901016513020012 3.54180195160225270320365 90L140125562450820901016513020012 3.54180195160225270350400 100L160140632860824100122151802501544205215180250300385410 112M190140702860824112122151802501544245240190270320405450 132S2161408938801033132122652303001544280275210320380480535 132M2161788938801033132122652303001544280275210320380520575 160M254210108421101237160153002503501954330335265385450605660 160L254254108421101237160153002503501954330335265385450650705 180M279241121481101442.5180153002503501954355380285425500670730 180L279279121481101442.5180153002503501954355380285425500710770 200L318305133551101649200193503004001954395420315475550780850 225S35628614955/6011016/1849/53225194003504501958435475345530610825910 225M35631114955/60110/14016/1849/53225194003504501958435475345530610825/850905//935 250M40634916860/651401853/582502450045055019584905153855706509351035 280S45736819065/7514018/2058/67.528024500450550195855058541064072010201120 280M45741919065/7514018/2058/67.528024500450550195855058541064072010701170 315S50840621665/80140/17018/2258/713152860055066024687446455768659001240/12701360/1390 315M50845721665/80140/17018/2258/713152860055066024687446455768659001310/13401460/1490 315L50850821665/80140/17018/2258/713152860055066024687446455768659001310/13401460/1490注:分子为两极电动机的数据,分母为四、六、八极电动机数据。

汽轮机各种工况(TRL、THA、T-MCR、VWO等)

1.额定功率(铭牌功率TRL)是指在额定的主蒸汽及再热蒸汽参数、背压11.8KPa 绝对压力,补给水率3%以及回热系统正常投入条件下,考虑扣除非同轴励磁、润滑及密封油泵等所耗功率后,制造厂能保证在寿命期内任何时间都能安全连续地在额定功率因素、额定氢压(氢冷发电机)下发电机输出的功率。此时调节阀应仍有一定裕度,以保证满足一定调频等需要。在所述额定功率定义条件下的进汽量称为额定进汽量。 2.最大连续功率(T-MCR)是指在1.额定功率条件下,但背压为考虑年平均水温等因素确定的背压,(设计背压)补给水率为0%的情况下,制作厂能保证在寿命期内安全连续在额定功率因素、额定氢压(氢冷发电机)下发电机输出的功率。该功率也可作为保证热耗率和汽耗率的功率。保证热耗率考核工况:系指在上述条件下,将出力为额定功率时的热耗率和汽耗率作为保证,此工况称为保证热耗率的考核工况。 3.阀门全开功率(VWO)是指汽轮机在调节阀全开时的进汽量以及所述T-MCR 定义条件下发电机端输出的功率。一般在VWO下的进汽量至少应为额定进汽量的1.05倍。此流量应为保证值。上述所指是由主汽轮机机械驱动或由主汽轮机供汽给小汽轮机驱动的给水泵,所需功率不应计算在额定功率中,但进汽量是按汽动给水泵为基础的,如果采用电动给水泵时,所需功率应自额定功率中减除(但在考核热耗率和汽耗率时是否应计入所述给水泵耗工,可由买卖双方确定)。 二.锅炉 1.锅炉额定蒸发量,即是汽轮机在TRL工况下的进汽量。对应于:汽轮机额定功率TRL,指在额定进汽参数下,背压11.8KPa,3%的补给水量时,发电机端带额定电功率MVA。

2.锅炉额定蒸发量,也对应汽轮机TMCR工况。对应于:汽轮机最大连续出力TMCR,指在额定进汽参数下,背压4.9KPa,0%补给水量,汽轮机进汽量与TRL 的进汽量相同时在发电机端所带的电功率MVA。 3.锅炉最大连续出力(BMCR),即是汽轮机在VWO工况下的汽轮机最大进汽量。对应于:汽轮机阀门全开VWO工况,指在额定进汽参数下,背压 4.9KPa,0%补给水量时汽轮机的最大进汽量。 注: a.汽机进汽量和锅炉蒸发量是按机组采用汽动给水泵考虑的。 b.在TMCR工况下考核汽机热耗和锅炉效率的保证值。在VWO工况下考核汽机最大进汽量和锅炉最大连续出力保证值。 c.一般说,汽机TMCR时的出力比之TRL时的出力大5%左右。汽机VWO时的进汽量比之TMCR时的进汽量多3~5%,出力则多4~4.5%。 d.如若厂用汽需用量较大时,锅炉BMCR的蒸发量考虑比汽机VWO时的进汽量再增多3%左右。 e.不考虑超压条件。 f.TMCR工况下汽机背压4.9KPa为我国北方地区按冷却水温为20℃的取值。在我国南方地区可根据实际冷却水温取值,调整为5.39KPa或更高些。 600MW机组 1机组热耗保证工况(THA工况)机组功率(已扣除励磁系统所消耗的功率)为600MW时,额定进汽参数、额定背压、回热系统投运、补水率为0%.2铭牌工况(TRL工况)机组额定进汽参数、背压11.8KPa、补水率3%,回热系统投运下安全连续运行,发电机输出功率(已扣除励磁系统所消耗的功率)

汽车主要参数的选择分解

汽车主要参数的选择 一、汽车主要尺寸的确定 汽车的主要尺寸有外廓尺寸、轴距、轮距、前悬、后悬、货车车头长度和车箱尺寸等。 1、外廓尺寸 GBl589 —89 汽车外廓尺寸限界规定汽车外廓尺寸长:货车、越野车、整体式客车不应超过12m ,单铰接式客车不超过18m ,半挂汽车列车不超过16.5m ,全挂汽车列车不超过20m ;不包括后视镜,汽车宽不超过2.5m ;空载、 顶窗关闭状态下,汽车高不超过4m ;后视镜等单侧外伸量 不得超出最大宽度处250mm ;顶窗、换气装置开启时不得超出车高300mm 。 不在公路上行驶的汽车,其外廓尺寸不受上述规定限制。 轿车总长L a是轴距L、前悬L F和后悬L R的和。它与轴距L 有下述关系:L a=L /C。式中,C为比例系数,其值在0.52?0.66之间。发动机前置前轮驱动汽车的C值为0.62?0.66 , 发动机后置后轮驱动汽车的C值约为0.52?0.56。 轿车宽度尺寸一方面由乘员必需的室内宽度和车门厚度来决定,另一方面应保证能布置下发动机、车架、悬架、转向系和车轮等。轿车总宽B a与车辆总长L a之间有下述近似 关系:B a=( L a /3)+(1 95+60)mm 。后座乘三人的轿车,B a 不应小于1410mm

影响轿车总高H a的因素有轴间底部离地高度h m,板及下部零件高h p,室内高h B和车顶造型高度h t等。 轴间底部离地高h m应大于最小离地间隙h min。由座位高、乘员上身长和头部及头上部空间构成的室内高h B 一般在1120?1380mm 之间。车顶造型高度大约在20?40mm 范围内变化。 2、轴距L 轴距L对整备质量、汽车总长、最小转弯直径、传动轴长度、纵向通过半径有影响。当轴距短时,上述各指标减小。此外,轴距还对轴荷分配有影响。轴距过短会使车厢(箱)长 度不足或后悬过长;上坡或制动时轴荷转移过大,汽车制动性和操纵稳定性变坏;车身纵向角振动增大,对平顺性不利;万向节传动轴的夹角增大。 原则上轿车的级别越高,装载量或载客量多的货车或客车轴距取得长。对机动性要求高的汽车轴距宜取短些。为满足市场需要,工厂在标准轴距货车基础上,生产出短轴距和长轴距的变型车。不同轴距变型车的轴距变化推荐在O.4-0.6m 的范围内来确定为宜。 汽车的轴距可参考表1-5提供的数据选定。 表I一 5 各类汽车的轴距和轮距

Y系列电动机安装尺寸

Y系列电动机安装尺寸 B3 B3: 机座带底脚, 端盖上无凸缘的结构型式. 机座极数 安装尺寸 (mm)外形尺寸 (mm) A B C D E F G H K AB AC AD HD L 80 2.4.6.8 125 100 50 19 40 6 15.5 80 10 165 175 145 214 295 90S 2.4.6.8 140 100 56 24 50 8 20 90 10 180 195 155 250 315 90L 2.4.6.8 140 125 56 24 50 8 20 90 10 180 195 155 250 340 100L 2.4.6.8 160 140 63 28 60 8 24 100 12 205 215 180 270 385 112M 2.4.6.8 190 140 70 28 60 8 24 112 12 230 240 190 300 400 132S 2.4.6.8 216 140 89 38 80 10 33 132 12 270 275 210 345 470 132M 2.4.6.8 216 178 89 38 80 10 33 132 12 270 275 210 345 510 160M 2.4.6.8 254 210 108 42 110 12 37 160 15 320 330 255 420 615 160L 2.4.6.8 254 254 108 42 110 12 37 160 15 320 330 255 420 670 180M 2.4.6.8 279 241 121 48 110 14 42.5 180 15 355 380 280 455 700 180L 2.4.6.8 279 279 121 48 110 14 42.5 180 15 355 380 280 455 740 200L 2.4.6.8 318 305 133 55 110 16 49 200 19 395 420 305 545 770 225S 4.8 356 286 149 60 140 18 53 225 19 435 470 335 555 815 225M 2 356 311 149 55 110 16 49 225 19 435 470 335 555 820 4.6.8 356 311 149 60 140 18 53 225 19 435 470 335 555 845 250M 2 406 349 168 60 140 18 53 250 24 490 510 370 615 910 4.6.8 406 349 168 65 140 18 58 250 24 490 510 370 615 910 280S 2 457 368 190 65 140 18 58 280 24 550 580 410 680 985 4.6.8 457 368 190 75 140 20 67.5 280 24 550 580 410 680 985 280M 2 457 419 190 65 140 18 58 280 24 550 580 410 680 1035 4.6.8 457 419 190 75 140 20 67.5 280 24 550 580 410 680 1035 315S 2 508 406 216 65 140 18 58 315 28 635 645 530 845 1160 4.6.8.10 508 406 216 80 170 22 71 315 28 635 645 530 845 1270 315M 2 508 457 216 65 140 18 58 315 28 635 645 530 845 1190 4.6.8.10 508 508 216 80 170 22 71 315 28 635 645 530 845 1300 315L 2 508 508 216 65 140 18 58 315 28 635 645 530 845 1190 4.6.8.10 508 508 216 80 170 22 71 315 28 645 645 530 845 1300 355M 2 610 560 245 75 140 20 67.5 355 28 730 710 655 1010 1500 4.6.8.10 610 630 254 95 170 25 86 355 28 730 710 655 1010 1530 355L 2 610 630 254 75 140 20 67.5 355 28 730 710 655 1010 1500 4.6.8.10 610 630 254 95 170 25 86 355 28 730 710 655 1010 1530

标况工况

气体的标准状态分三种: 1、1954年第十届国际计量大会(CGPM)协议的标准状态是:温度273.15K(0℃),压力101.325KPa。世界各国科技领域广泛采用这一标态。 2、国际标准化组织和美国国家标准规定以温度288.15K(15℃),压力101.325KPa作为计量气体体积流量的标态。 3、我国《天然气流量的标准孔板计算方法》规定以温度293.15K(20℃),压力101.325KPa 作为计量气体体积流量的标准状态。 气体状态方程:PV=nRT 工况与标况换算:P1*V1/T1=P2*V2/T2 对于气体来说不同的压力,其体积会差很大(气体很易压缩),当然体积流量会差很大,同径条件下不同工况下的流速自然也会差很大,比方同直径蒸汽管线对于10bar和3.5bar时最大流量是不同的。 工艺计算时用工况或用标况取决于你查的图表、用的常数,两种状态的计算都是可能出现的。比方在定义压缩机参数时,我们常用标况下的参数来给厂家提条件,同时我们也提供温度大气压力等参数供做工况下的校正,这么做的好处是我们可以用同一个状态来表明参数,就如同泵的性能曲线都是用清水来说的,没人会说汽油的性能曲线是什么,原油的性能曲线又是什么。 在很多计算中用的都是工况,比方计算流速时。 否把你所提问题的介质说下。 Qn=Zn/Zg * (Pg+Pa)/Pn * Tn/Tg * Qg Qn标况流量 Zn标况状态下的压缩因子 Zg 工况状态下的压缩因子 Pg相对压力,就是通常说的压力多少 Pa标准大气压 Pg+Pa工况下的绝对压力 Pn标况压力,通常为1标准大气压 Tn标况温度 Tg工况温度 Qg工况流量 带n的是标况参数,带g的是工况参数。 一般情况下也没那么复杂, 二者指的都是在一个大气压下,区别只是温度的不同: 标况是0摄氏度;工况是20摄氏度。

汽车主要参数的选择

汽车主要参数的选择 一、汽车主要尺寸的确定 汽车的主要尺寸有外廓尺寸、轴距、轮距、前悬、后悬、货车车头长度和车箱尺寸等 1.外廓尺寸 GBl589—89汽车外廓尺寸限界规定汽车外廓尺寸长:货车、越野车、整体式客车不应超过12m ,单铰接式客车不超过18m ,半挂汽车列车不超过16.5m ,全挂汽车列车不超过20m ;不包括后视镜,汽车宽不超过2.5m ;空载、顶窗关闭状态下,汽车高不超过4m ;后视镜等单侧外伸量不得超出最大宽度处250mm ;顶窗、换气装置开启时不得超出车高300mm 。 不在公路上行驶的汽车,其外廓尺寸不受上述规定限制。 轿车总长a L 是轴距L 、前悬F L 和后悬R L 的和。它与轴距L 有下述关系:a L =L /C 。式中,C 为比例系数,其值在0.52~0.66之间。发动机前置前轮驱动汽车的C 值为0.62~0. 66,发动机后置后轮驱动汽车的C 值约为0.52~0.56。 轿车宽度尺寸一方面由乘员必需的室内宽度和车门厚度来决定,另一方面应保证能布置下发动机、车架、悬架、转向系和车轮等。轿车总宽a B 与车辆总长a L 之间有下述近似关系: a B =(a L /3)+(195±60)mm 。后座乘三人的轿车,a B 不应小于1410mm 。 影响轿车总高a H 的因素有轴间底部离地高m h ,地板及下部零件高p h ,室内高B H 和车顶造型高度t h 等。 轴间底部离地高入m 应大于最小离地间隙m in h 。由座位高、乘员上身长和头部及头上部空间构成的室内高B h 一般在l120~1380mm 之间。车顶造型高度大约在20~40mm 范围内变化。 2.轴距L 轴距L 对整备质量、汽车总长、最小转弯直径、传动轴长度、纵向通过半径有影响。当轴距短时,上述各指标减小。此外,轴距还对轴荷分配有影响。轴距过短会使车厢(箱)长度不足或后悬过长;上坡或制动时轴荷转移过大,汽车制动性和操纵稳定性变坏;车身纵向角振动增大,对平顺性不利;万向节传动轴的夹角增大。

反渗透膜的主要性能参数与运行工况条件

1 反渗透膜的主要性能参数与运行工况条件 1.1 反渗透的主要性能参数[8] 1) 透水率。是指单位时间透过单位膜面积的水量。主要取决于膜的材质和结构等因素,但一定的反渗透膜其透水率则取决于运行条件;a. 透水率随温度的升高而增加,随工作压力的增加成比例的上升;b. 透水率随进水浓度的增加而下降;c. 透水率随回收率的增加而下降。 2) 回收率。即供水对渗透液的转换率,直接影响除盐系统的成本。对于苦盐水的回收率大约为90 %;高苦盐水降为60 %-65 %;工业海水系统回收率是35 %-45 %。 3) 膜通量。是表明通过膜表面的一个特定区域的水流速度。 对于地表水是8 GFD-14 GFD(13 L/ m3·h-23 L/ m3·h) ;经过反渗透出水是14 GFD-18 GFD(23 L/ m3·h -30 L/ m3·h) ;对于海水为7 GFD-8 GFD。 1.2 反渗透装置的运行工况条件[8] 为了确保反渗透装置安全可靠运行,选择一定适宜的工况条件是非常必要的。反渗透装置的主要工况条件为进水pH值、进水温度与运行压力。 1) 进水pH 值。对于醋酸纤维膜运行时,水以偏酸性为宜,pH值一般控制在4~7之间,在此范围外加速膜的水解与老化。目前认为pH值在5-6 之间最佳。膜的水解不仅会引起产水量的减少,而且会造成膜对盐去除能力的持续性降低,直至膜损坏为止。 2) 进水温度对产水量有一定的影响,温度增加1 ℃,膜的透水能力增加约2.7 %。反渗透膜的进水温度底限为5℃-8℃,此时的渗滤速率很慢。当温度从11℃升至25℃时,产水量提高50 %。但当温度高于30℃时,大多数膜变得不稳定,加速水解的速度。一般醋酸纤维膜运行与保管的最高温度为35℃,宜控制在25℃-35℃之间。 3) 运行压力。渗透压与原水中的含盐量成正比,与膜无关。提高运行压力后,膜被压密实,盐透过率会减少,水的透过率会增加,提高水的回收率。但当压力超过一定限度时会造成膜的老化,膜的变形加剧,透水能力下降。 1.3 影响反渗透运行参数的主要因素[9] 膜的水通量和脱盐率是反渗透过程中关键的运行参数,这两个参数将受到压力、温度、回收率、给水含盐量、给水PH值因素的影响。 (1)压力 给水压力升高使膜的水通量增大,压力升高并不影响盐透过量。在盐透过量不变的情况下,水通量增大时产品水含盐量下降,脱盐率提高了。 (2)温度

常用电动机参数总汇

常用电动机参数总汇 1、电动机轴的中心高度尺寸系列如下: 电动机轴的中心高度如下(单位m m ): 36 、 40 、 45 、 50 、 56 、 63 、 71 、 89 、 90 、 100 、 112 、 132 、 150 、 180 、 200 、 225 、 250 、 280 、 315 、 355 、 400 、 450 、 500 、 560 、 630 、 710 、 800 、 900 、 1000 。 2、电动机轴的中心高度尺寸的误差系列如下: 电动机轴的中心高度尺寸的误差分别为:25 ~ 50m m 范围内的误差是 -0.4m m , 50 ~ 250m m 范围内的误差是 -0.5m m , 250~ 630m m 范围内的误差是 -1.0m m , 630~ 1000m m 范围内的误差是 -1.0m m 。 3、电动机的安装形式: 电动机的安装形式有两种:立式(B )与 卧式(V )。 4、电动机的结构形式: 电动机的常用结构形式有以下几种:○ 1:B 3型(端盖式轴承有两个,机座有地脚,端盖上无凸缘,地脚安装。) ○2:B 6型、B 7型、B 8型 (端盖式轴承有两个,机座有地脚,分别安装在墙上或天花板上。) 5、电动机的防护等级: 电动机的防护等级分为防接触的防护等级和防水的防护等级。 I P 23 :表示防止大于12m m 的固体进入,且防淋水的电动机。 I P 44 :表示防止大于1m m 的固体进入,且防溅水水的电动机。 6、交流电动机的类型分类: 按照电动机的转子绕组形式分为笼型和绕线型 。 按照电动机的尺寸分为大型电动机、中型电动机、小型电动机 。 按照电动机的防护形式分为开启式、防护式、封闭式 。 7、交流电动机的铁芯长度代号: S — 代表短机座 M — 代表中机座 L — 代表长机座 8、Y 系列( I P 44)封闭式三相异步电动机的技术数据列表如下: 防 接 触 的 防 护 等 级 0 1 2 3 4 5 防止大于50m m 固体进入的电机 防止大于12m m 固体进入的电机 防止大于2.5m m 固体进入的电机 防止大于1m m 固体进入的电机 防止大于50m m 固体进入的电机 防尘电动机 防 水 的 防 护 等 级 0 1 2 3 4 5 6 7 8 无防护的电动机 防滴电动机 15°防滴电动机 防淋水电动机 防溅水电动机 防喷水电动机 防海浪电动机 防浸水电动机 潜水电动机

中央空调冷水机组运行参数和工况分析(教学参考)

中央空调冷水机组运行参数和工况分析 1、蒸发压力与蒸发温度 离心式冷水机组具有满液卧式壳管式蒸发器,制冷剂液体在壳内管间蒸发、沸腾,吸收管内冷水从空调房间带来的热量。蒸发器内具有的制冷剂压力和温度,是制冷的饱和压力和饱和温度,可以通过设置在蒸发器上的压力表和温度计测出。蒸发压力和蒸发温度两个参数中,测得其中一个,可以通过制冷工质的热力性质表查到另外一个。不同的制冷剂在冷水机组中,要得到同样的蒸发温度,而各自对应的蒸发压力是完全不同的。 在冷水机组运行中,蒸发温度、蒸发压力与冷水带入蒸发器的热量有密切关系。热负荷大时,蒸发器冷水的回水温度升高,引起蒸发器温度升高,对应的蒸发压力也升高。相反,当热负荷减少时,冷水回水温度降低,其蒸发温度和蒸发压力均降低。实际运行中空调房间的热负荷减少时,冷水回水温度降低,其蒸发温度和蒸发压力均摊降低。 实际运行中空调房间的热负荷在24h中是不断变化的,为了使机组的工作性能适应这种变化,一般采用自动控制对机组实行能量调节,来维持蒸发器内的压力和温度,相对稳定在一个很小的波动范围。蒸发器内压力和温度波动范围的大小,完全取决于热负荷变化的频率和机组本身的自控调节性能。一般情况下冷水机组的制冷量,必须大于机组必须负担的热负荷量,否则,将无法在运行中得到满意的空调效果。 根据我国JB/T3355-1998标准规定,冷水机组的额定的工况为冷冻水出水温度7℃,冷却水回水温度30℃。其他相应的参数为冷冻水回水温度12℃,冷却水出水为35℃。又根据国家标准GB/T18403.1-2001,冷水机组的额定的工况为冷冻水进出水温12℃/7℃,冷却水进出水温30℃/35℃。所以冷水机组在出厂时工况为冷冻水进出水温12℃/7℃,冷却水进出水温30℃/35℃。所以冷水机组在出厂时若订货方没有特殊要求,冷水机组的自动控制及保护元件的整定值,将使冷水机组保持在额定工况下的运行状态,提高冷水的出水温度,对机组的经济性十分有利。 运行中,在满足空调使用要求的情况下,应尽可能提高冷水出水温度。如果实际使用中机组长期运行的冷水出水温度不是7℃,订货时应在合同上注明所需要的冷水出水温度要求。因此,在机组的实际运行操作中,应根据空调对象的具体要求,可将冷水出水温度提高,也可以适当降低。一般情况下,蒸发温度较冷水出水温度低2℃~4℃。蒸发温度则常控制在3℃~5℃范围内。过高的蒸发温度往往难以达到所要求的空调效果,而过低的蒸发温度,不但增加了机组的能量消耗,又容易造成蒸发管道冻裂。 蒸发温度与冷水出水温度之差,随蒸发器热负荷增减而分别增大或减少。在同样负荷情况下,温差增大则传热系数减少。此外,该温差大小与传热面积有关,而且管内水侧的污垢情况,管外润滑积聚的多少,对温差也有一定影

电机安装尺寸表

机座带底脚、端盖上无凸缘的电动机安装尺寸 机座号极 数 安装尺寸及公差 外形尺寸 Overall dimension A A/2 B C D E F G1)H K2) AB AC AD HD L 基本 尺寸 基本 尺寸 极限 偏差 基本 尺寸 基本 尺寸 极限 偏差 基本 尺寸 极限 偏差 基本 尺寸 极限 偏差 基本 尺寸 极限 偏差 基本 尺寸 极限 偏差 基本 尺寸 极限 偏差 基本 尺寸 极限 偏差 位置度 公差 80M 2、4 125 62.5 ±0.50 100 50 ±1.5 19 +0.009 -0.004 40 ±0.310 6 -0.030 -0.036 15.5 -0.10 80 -0.5 10 +0.360 ф1.0 165 175 150 175 290 90S 2、4、6 140 70 100 56 24 50 8 20 -0.20 90 180 195 160 195 315 90L 125 340 100L 160 80 140 63 ±2.0 28 60 ±0.370 24 100 12 +0.430 205 215 180 245 380 112M 190 95 140 70 112 245 240 190 265 400 132S 2、4、6、8 216 108 140 89 38 +0.018 +0.002 80 10 33 132 280 275 210 315 475 132M 178 515 160M 254 127 ±0.75 210 108 ±3.0 42 110 ±0.430 12 0 -0.043 37 160 15 ф1.5 330 335 265 385 605 160L 254 650 180M 279 139.5 241 121 48 14 42.5 180 355 380 285 430 670

汽车外形尺寸

汽车知识:汽车外型尺寸介绍 一、外形尺寸参数 汽车设计中由设计师去弥定的外形尺寸包括:长、宽、高、轴距、轮距、前后悬长和离地距等。各参数的含义见下图: 二、各级汽车的尺寸标准 弥定汽车尺寸所要考虑的因素主要是机械布局和使用要求,其中机械布局视乎厂家各自的设计方案有所差异;使用要求则主要由汽车所针对的目标市场级别而定。下表是根据经验总结的各主要级别(主要乘用车)的常见尺寸范围: 单位:米 长度宽度高度轴距典型代表 欧洲、亚洲轿车: 小型两厢轿车 3.6-4 1.5-1.7 1.3-1.5 2.2-2.5 夏利 小型三厢轿车 4.1-4.4 1.3-1.5 2.3-2.6 丰田COROLLA 中型轿车 4.3-4.7 1.7-1.8 1.3-1.5 2.6-2.8 捷达 中大型轿车 4.6-4.9 1.7-1.9 1.3-1.6 2.7-2.9 日产CEFIRO 大型轿车 4.8- 5.2 1.8-2 1.4-1.6 2.8-3.2 奔驰S-CLASS 其他车种: 中型越野车 4.5-4.9 1.7-2 1.7-2.0 2.5-2.8 三菱PAJERO 中型MPV 4.4-4.8 1.7-1.9 1.5-1.9 2.7-3 丰田PREVIA 中型皮卡(pickup) 4.7-5 1.6-1.8 1.4-1.6 2.7-2.9 丰田HILUX 特殊规格: 日本轻自动车(K-CAR) <3.7 <1.5 不限不限奥拓 美国标准大型房车

5.2-5.5 1.8-2.1 1.3-1.5 2.8-3.3 林肯TOWNCAR 美国标准多用途车(SUV) 5-5.5 1.8-2.2 1.8-2.2 2.8-3.2 别克GL8 一级方程式赛车 4.2-4.4 <1.8 0.9-1 2.8-3.1 其中我们看到美国车的尺寸比欧、日的标准大很多,这主要是因为美国地大车少,油价低廉,对于汽车空间的要求远大于对省油性能的要求。日本则正好相反,为了改善道路拥挤情况,日本政府对汽车的税收等级是以外形尺寸(主要是占地面积长*宽)来划分的,车身越大使用费用越高。因此日本汽车造型设计所追求的是“空间利用率”,即在有限的车身尺寸下争取最大的内厢空间。可以说日本车造得紧凑的目的是为了符合法规;欧洲人也热衷于小型车,但他们造小车的主要目的是省油和使用方便;而美国人的生活环境决定了他们用不着把汽车造得太紧凑。 三、如何弥定具体尺寸 确定汽车尺寸首先要服从机械布局,然后要满足各项应有的功能,如必须具备载客、载货的空间等。下面详谈各尺寸的具体确定方法: 1、长度 长度是对汽车的用途、功能、使用方便性等影响最大的参数。因此一般以长度来划分车身等级。车身长意味着纵向可利用空间大,这是显而易见的;但太长的车身会给调头、停车造成不便。4米长与5米长的汽车在驾驶感觉上会有很大的差异,一般中小型乘用车长4米左右,接近5米长的可算作大型车了。 2、宽度 宽度主要影响乘坐空间和灵活性。对于乘用轿车,如果要求横向布置的三个坐位都有宽阔的乘坐感(主要是足够的肩宽),那么车宽一般都要达到1.8M。近年由于对安全性的要求,车门壁的厚度有所增加,因此车宽也普遍增加。日本车对宽度的限制比较严,大部分在1.8M以下,欧洲车则倾向增大车宽。但是车身太宽会降低在市区行走、停泊的方便性,因此对于轿车来说车宽2M是一个公认的上限。接近2米或超过2米的车都会很难驾驶。道路用车(大货车、大客车)的车宽一般也不能超过2.5米。 对于车外倒后镜不能折叠的车辆,规格表上的宽度一般把外伸倒后镜也包括在内,因而有些欧洲轿车规格表上的宽度接近甚至超过2米(例如FIATMULTIPLA宽度为2010mm),各位明察即可。 3、高度 车身高度直接影响重心(操控性)和空间。大部分轿车高度在1.5米以下,与人体的自然坐姿高度相比低很多,主要是出于降低全车重心的考虑,以确保高速拐弯时不会翻车。MPV、面包车等为了营造宽阔的乘坐(头部空间)和载货空间,车身一般比较高(1.6米以上),但随之使整车重心升高,过弯时车身侧倾角度大;这是高车身车种的一个重大特性缺陷。此外在日本,香港等一些地区,大部分的室内停车场都有高度限制,一般为1.6米,这也是确定车高的重要考虑因素。小型车为了在有限的占地面积内扩大车厢空间,近年有向上发展的趋势,如丰田的YARIS(高1500mm)和标致206(1430mm),以及一批超过1.7M的日本K-CAR级RV(如铃木WAGONR),车身都比传统的小型车高出很多,重心升高导致的主动安全性下降是必然的。 4、轴距 在车长被确定后,轴距是影响乘坐空间最重要的因素,因为占绝大多数的2厢和3厢轿车,乘员的坐位都是布置在前后轴之间的。长轴距使乘员的纵向空间增大,直接得益的是对乘坐舒适性影响很大的脚部空间。在行驶性能方面,长轴距能提高直路巡航的稳定性,但转向灵活性下降,回旋半径增大。因此在稳定性和灵活性之间必须作出取舍,取得适当的平衡。 5、前、后悬 从前图可见:车长=前悬+后悬+轴距。所以轴距越长,前后悬便越短。最短的悬殊长可以短至只有车轮,即为车轮半径1/2。但除了一些小型车要竭力增加轴矩来扩大乘坐空间外,一般轿车的悬长都不能太短,一来轴

Y系列电动机安装参数与尺寸

Y系列三相异步电动机外形及安装尺寸

三相异步电动机的额定值刻印在每台电动机的铭牌上,一般包括下列几种: 1.型号:为了适应不同用途和不同工作环境的需要,电动机制成不同的系列,每种系列用各种型号表示。例如 Y 132 M- 4 Y →三相异步电动机,其中三相异步电动机的产品名称代号还有:YR为绕线式异步电动机;YB为防爆型异步电动机;YQ为高起动转距异步电动机。 132→机座中心高(mm) M →机座长度代号 4 →磁极数 2.接法:这是指定子三相绕组的接法。一般鼠笼式电动机的接线盒中有六根引出线,标有U1、V1 、W1、U2、V2、W2。其中:U1 U2是第一相绕组的两端;V1 V2是第二相绕组的两端;W1 W2是第三相绕组的两端。

如果U1、V1 、W1分别为三相绕组的始端(头) ,则U2、V2、W2是相应的末端(尾)。这六个引出线端在接电源之前,相互间必须正确联接。联接方法有星形(Y)联接和三角形()联接两种(下图所示)。通常三相异步电动机自3kW以下者,联接成星形;自4kW以上者, 联接成三角形。 3.额定功率PN:是指电动机在制造厂所规定的额定情况下运行时, 其输出端的机械功率,单位一般为千瓦(kW)。 对三相异步电机,其额定功率:PN=UNINηNcosN 式中ηN和cosN分别为额定情况下的效率和功率因数。 4.额定电压UN:是指电动机额定运行时,外加于定子绕组上的线电压,单位为伏(V)。 一般规定电动机的工作电压不应高于或低于额定值的5%。当工作电压高于额定值时,磁通将增大,将使励磁电流大大增加,电流大于额定电流,使绕组发热。同时,由于磁通的增大,铁损耗(与磁通平方成正比)也增大,使定子铁心过热;当工作电压低于额定值时,引起输出转矩减小,转速下降,电流增加,也使绕组过热,这对电动机的运行也是不利的。 我国生产的Y系列中、小型异步电动机,其额定功率在3kW以上的,额定电压为380 V,绕组为三角形联接。额定功率在3 kW及以下的,额定电压为380/220V,绕组为Y/联接(即电源线电压为380 V时,电动机绕组为星形联接;电源线电压为220 V时,电动机绕组为三角形联接)。 5.额定电流IN:是指电动机在额定电压和额定输出功率时,定子绕组的线电流,单位为安(A)。 当电动机空载时,转子转速接近于旋转磁场的同步转速,两者之间相对转速很小,所以转子电流近似为零, 这时定子电流几乎全为建立旋转磁场的励磁电流。当输出功率增大时,转子电流和定子电流都随着相应增大,如下图中的I1=f(P2)曲线所示。图中是一台l0kW三相异步电动机的工作特性曲线。 6.额定频率fN:我国电力网的频率为50赫兹(Hz),因此除外销产品外,国内用的异步电动机的额定频率为50赫兹。 7.额定转速nN:是指电动机在额定电压、额定频率下,输出端有额定 功率输出时, 转子的转速,单位为转/分(r/min)。由于生产机械对转速的要求不同,需要生产不同磁极数的异步电动机,因此有不同的转速等级。最常用的是四个极的异步电动机(n0=l500 r/min)。 8.额定效率ηN:是指电动机在额定情况下运行时的效率, 是额定输出功率与额定输入功率的比值。即 ηN=×100%=×100%

相关主题
文本预览
相关文档 最新文档