工况在线监测系统方案
- 格式:ppt
- 大小:12.77 MB
- 文档页数:56
在线监测技术⽅案烟尘、烟⽓连续在线监测系统(技术⽅案)⽬录1. 系统总则 (1)2. 系统组成 (2)2.1 ⽓态污染物监测 (2)2.1.1 取样和预处理单元 (2)2.1.2 SR-200分析仪 (3)2.1.3 O2含量监测 (3)2.2 颗粒物监测 (4)2.3 烟⽓参数监测 (4)2.3.1 流速测量 (4)2.3.2 压⼒测量 (5)2.3.3 温度测量 (5)2.4 数据采集与处理 (5)3. 系统特点 (6)4. ⼯程安装 (7)4.1 需⽅要提供的公⽤条件 (7)4.2 设计分⼯ (7)4.3 系统安装与实施 (7)5. 现场安装指导、调试和验收 (10)6. 质量保证和售后服务 (11)7. 供货范围表及报价 (12)1、系统总则本系统设备的功能设计、结构、性能、安装和试验等⽅⾯的技术要求,均符合国家有关环境保护标准要求,满⾜《固定污染源烟⽓排放连续监测技术规范》(GB/T76-2007)、《污染源在线⾃动监控(监测)系统数据传输标准》(HJ/T 212-2005)等国家标准性⽂件执⾏。
本⼯程的CEMS系统由⽓态污染物监测⼦系统、颗粒物监测⼦系统、烟⽓参数监测⼦系统及数据采集与处理⼦系统组成,系统组成如下图:图⼀、CEMS系统组成图⽓态污染物监测⼦系统:由取样单元、预处理单元和分析单元等组成。
取样单元:由电加热取样探头、电加热取样管线和反吹系统等组成。
预处理单元:由流量传感器、精细过滤器、压缩机冷凝器、蠕动泵、采样泵、溢流装置、储⽔桶、湿度传感器和流量计等组成。
分析单元:采⽤多组份⽓体分析器颗粒物监测⼦系统:采⽤烟尘监测仪。
烟⽓参数监测⼦系统:采⽤⽪托管测流速,压⼒传感器测压⼒,温度传感器测温度。
数据采集与处理⼦系统:由数据采集器、⼯控机、显⽰器和系统软件等组成。
图⼆、CEMS系统安装⽰意图2、系统组成2.1⽓态污染物监测2.1.1取样和预处理单元样⽓在取样泵的抽⼒下由取样探头取出。
石泉水电站机组在线监测系统技术方案目录1 总则说明 (1)2 测点配置 (1)2.1 振动摆度测点 (1)2.2 压力脉动测点 (1)2.3 发电机空气间隙测点 (2)2.4 能量效率测点 (2)2.5 机组工况参数监测 (2)2.6 其他参数监测 (3)2.7 建议配置参数列表 (3)3 系统构成 (5)4 设备配置 (1)4.1 传感器 (1)4.1.1 传感器选型总表 (1)4.1.2 键相和摆度传感器 (1)4.1.3振动传感器 (1)4.1.4 轴向位移传感器 (3)4.1.5 绝对压力变送器 (3)4.2 数据采集站 (4)4.2.1 数据采集站设备配置 (4)4.2.2 TN8000数据采集箱 (4)4.2.4 TN8016传感器供电电源 (7)4.2.5 工业液晶显示器 (7)4.3 上位机设备及其它外设 (9)4.3.1 状态数据服务器 (9)4.3.2 WEB服务器 (10)4.3.3 打印机 (10)4.3.4 网络设备 (10)4.3.5 时钟接收和时钟同步系统 (10)5 系统功能 (11)5.1 振动摆度监测分析 (11)5.1.1 实时监测 (11)5.1.2 稳态数据分析 (11)5.1.3 过渡过程数据分析 (11)5.2 压力脉动监测分析 (12)5.3 能量特性监测分析 (12)5.4 基于工况的报警和预警功能 (12)5.5 数据管理和事故追忆 (13)5.6 故障诊断专家系统 (15)5.7 性能试验 (16)5.7.1 甩负荷试验 (16)5.7.2 启停机试验 (16)5.7.3 变负荷试验 (16)5.7.4 动平衡试验 (17)5.7.5 盘车试验 (17)5.7.6 效率试验 (17)5.7.7 不稳定负荷区试验 (17)5.8 性能评估 (18)5.9 运行支持系统 (19)5.9.1实时报警信息 (19)5.9.2 事件处理平台 (19)5.9.3 优化运行 (19)5.9.4 运行工况统计与累计运行时间 (19)5.10 检修支持系统 (19)5.10.1 检修评价与量化分析 (20)5.10.2 定期状态评价与故障巡检 (21)5.10.3 故障分析诊断 (21)5.11 状态报告自动制作 (21)5.12 远程分析与诊断 (23)5.13 Web化方式监测 (23)5.14 数据通讯功能 (23)5.15 GPS对时功能 (23)5.16 系统其他功能 (24)6 机组在线监测系统和其他系统的连接方式 (24)6.1 机组在线监测系统与计算机监控系统的连接 (24)6.2 机组在线监测系统与时钟同步系统的连接 (24)6.3 机组在线监测系统与MIS系统的连接 (25)7 设备配置清单 (26)8 费用概算 (29)石泉水电站机组在线监测系统技术方案1 总则说明本技术方案是专为石泉水电站所作,涉及机组在线监测系统的测点选择、传感器选型、设备配置、系统结构、系统功能等等。
西山煤电集团杜儿坪矿新华风机在线监控改造初步方案一.概述:从已有的资料看,西山煤电集团杜儿坪矿新华风机控制和监视系统采用的是传统的继电器和按钮操作控制模式,不仅各种风机状态的显示非常不直观、操作不便而且各种触点故障率高,容易误动作。
不利于风机的安全高效运行,也谈不上设备的现代化管理,因此迫切需要进行微机集中监控的改造。
近年来,随着设备故障诊断技术的迅猛发展,已经有众多厂家开始从中受益。
所谓的设备故障诊断技术是以设备振动测点波形频谱分析为基础,以带通滤波技术为手段,辅助温度、电流等工艺参量进行综合评价的技术,对于风机等大型旋转设备有明显的设备故障预防预知作用。
本在线监控改造方案融合了在线监控和设备故障诊断技术的优点,使得原有的控制系统直接一步到位,大大提升风机的现代化管理水平。
二.系统主要功能及特点1、系统主要功能系统主要功能包括:✓性能参数的监测包括风量、静压、动压、全压、风速、喘振点压力、负压的监测;通风机和电机振动烈度的监测;风流中瓦斯、CO浓度的监测;开关柜电压、电流、功率因数、能耗指标以及风机开停状态的监测;现场实时监测数据动态时域和频域波形以及统计值数字显示;通风机和电机轴承温度以及电机绕组温度的监测。
✓风机喘振的监测为了防止风机进入喘振区运行,避免造成风机设备的损坏和引发不安全事故,风机必须配置喘振报警装置,确保装置报警信号的正常输出。
毕特曼管(失速探针)和喘振报警装置(差压开关等)的连接要求及喘振报警装置压力整定值的确定。
整个喘振报警装置由装于叶轮进口前的毕特曼管和差压开关、连通橡胶软管等主要部件组成。
风机常用差压开关的型号为DPD1T-M3SS或DPD2T-M3SS。
由于风机喘振危害极大,必须对喘振裕度和工况点距离喘振的距离做出指示,当喘振裕度小时提醒运行人员检查风机阻力异常升高的原因。
如下图示:喘振指示✓风机实时性能曲线的监测在风机性能曲线上动态显示通风机运行的工况点以及通风阻力曲线,在风机性能上体现出当前风机运行的安全区间,如下图示。
S8000汽轮发电机组在线状态监测和分析系统简介深圳市创为实技术发展有限公司Shenzhen Strongwish Co.,Ltd目录1 系统方案及概述 (3)1.1 系统结构图 (3)1.2 系统简要说明 (3)1.3 系统应用对象 (3)1.3.1 主机及关键辅机 (3)1.4 现场数据采集监测分站PWR8000 (4)1.4.1 PWR8000简介 (4)1.4.2 特点一:稳定性与可靠性 (4)1.4.3 特点二:数据采集的准确性 (5)1.4.4 特点三:存贮机组的有效信息 (6)1.4.5 特点四:丰富的专业诊断图谱 (7)1.4.6 特点五:网络通讯功能 (7)1.4.7 特点六:PWR8000的本地数据存储功能 (7)1.5 中心服务器WEB8000 (8)1.5.1 中心服务器WEB8000概述 (8)1.5.2 功能一:数据的长期存储与管理 (8)1.5.3 功能二:强大的基于B/S结构的数据传输功能 (8)1.5.4 功能三:强大的专业分析图谱和诊断功能 (9)1.5.5 功能四:系统管理与设置 (9)1.6 浏览站 (10)2 S8000系统的安全性 (11)2.1 对生产的安全性 (11)2.2 对网络的安全性 (11)3 工程实施与售后服务 (12)3.1 PWR8000的现场安装和信号接入 (12)3.2 完善的售后服务体系 (12)4 典型的30万机组电厂的配置 (13)5 附件 (13)5.1 附件一:PWR8000电气参数 (13)5.2 附件二:S8000独特的专利技术-----灵敏监测技术 (14)5.2.1 区分振动的分频矢量 (14)5.2.2 区分机器的振动方向 (14)5.2.3 区分振动矢量的变化类型 (15)5.2.4 统计学习 (16)5.2.5 日记功能 (17)5.3 附件三:分析图谱 (18)5.3.1 常规图谱分析功能 (18)5.3.2 起停机图谱分析功能 (19)5.3.3 列表日记 (20)5.3.4 设置管理功能 (20)1系统方案及概述1.1系统结构图WEB8000服务器现场浏览站生机处浏览站厂长浏览站PWR8000PWR80001.2系统简要说明现场数据采集和监测分站(PWR8000)安装在控制室或操作间,用于汽轮机组主机和关键辅机的监测;从TSI系统取得振动原始缓冲输出信号或直接从振动传感器端取得原始振动信号,进行信号的调理、采集;进行灵敏监测,生成并存储起停机数据等有用数据;生成丰富的专业诊断图谱;并进行网络通讯;中心服务器(WEB8000)安装在电厂局域网上的任一地方;进行数据的存储与管理、数据的网上传输与发布,负责对PWR8000的设置与管理,以及其它的信息管理;诊断维护人员可以通过现场、局域网或电话拨号等方式,随时随地察看机组运行信息。
太原煤气化公司东河煤矿主通风机在线监控系统应用研究报告二〇一一年十月十日1、概述通风机在线监测系统是依据国家标准《工业通风机用标准化风道进行性能试验》GB/T1236-2000和煤炭行业标准《煤矿用主要通风机现场性能参数测定方法》MT421-2004的要求,结合煤矿安全生产的实际情况而研制的新一代矿用主通风机在线监测系统。
它利用高性能PLC构成前端数据采集和处理单元,以稳定、可靠、精确的方式将采集数据传送给主控制计算机,主控制计算机对采集数据进行分析计算并显示存储,从而对通风机的运行状态进行连续的在线监测,为通风机的安全、高效运行提供科学依据。
风机是矿井要害设备之一,风机的实时运行数据需要纳入全矿井自动化系统,传统的设备无法与矿井自动化系统交换数据,只要依赖于计算机网络技术,才可以将风机运行的实时信息数据传送给矿调度室,并将其运行数据并入全矿井数据库以供整体分析决策使用。
所以,在线监测是实现全矿井自动化的必须设备。
通风机微机监测系统是应用于大型通风机流量监测方法的装置;系统以国家标准”通风机空气动力性能试验方法”和煤炭行业标准”煤矿用主要通风机现场性能参数测定方法”为依据,应用工业计算机检测技术和独特的专有研究成果对矿用大型通风机的运行状态进行连续在线测量与处理,以多种方式提供通风机运行状态的各种数据,保障通风机的安全运行和方便通风机的性能测试,并为多种功能扩充提供方便的条件。
在线测量与处理的风机运行参数包括:风量、负压、静压、动压、全压、风速、瓦斯;风机振幅;电机电压、电流、功率因数、轴功率、转速、轴承温度、定子绕组温度、电能损耗、正反转、效率等;电源配电柜母线电压、电流;根据运行情况可实时输出各种特性曲线。
数据传输模式兼容满足国际标准的多种数交换形式, FTP、局域网IE数据服务与广域网IE数据服务功能,可与全矿井自动化系统实现灵活便捷的数据联网,将风机的实时运行参数传输到矿总调度室,满足自动管理的需求。
主通风机在线监测及故障诊断系统方案一、系统概述主通风机在线监测及故障诊断系统主要由YHZ18矿用本安型振动监测分析仪和KGS18矿用本安型振动加速度传感器构成,可以智能地诊断出设备可能存在的不对中、不平衡、配合松动、装配不当以及轴承疲劳损伤等潜在故障。
可以正确有效地揭示潜在故障的发生、发展和转移,智能地诊断出设备故障原因及故障严重程度,为应急控制和维修管理提供准确、可靠的依据,从而节约维修费用,避免重大事故发生。
振动状态监测部分参照GB/T 19873.1-2005/ISO 13373-1:2002 《机器状态监测及诊断振动状态监测》有关电气装置的实施参照GB50255-96 《电气装置安装工程施工及验收规范》有关自动化仪表实施参照GB50093-2002 《自动化仪表工程施工及验收规范》及DLJ 279-90《电力建设施工及验收技术规范》(热工仪表及控制装置篇);风机性能测试满足GB/T1236-2000《工业通风机用标准化风道进行性能试验》和MT421(煤炭行业标准)“煤矿用主通风机现场性能参数测定方法”。
其余部分参照企业标准。
二、系统功能及特点1、系统功能系统主要由在线监测、轴承实时诊断及状态预报、离线数据分析三部分组成。
(1)在线监测功能①在线监测通风机所在地点的环境大气参数,包括大气压力、大气温度、和大气湿度。
②在线监测通风机的流量、风压、轴功率、效率、振动等工况状态参数。
③在线监测电气设备的电气参数,包括电流、电压、功率因数,开关状态及系统保护信息。
④当运行中的通风机设备性能出现异常时,系统按照不同的故障类型,依据用户设定的模式进行提示、报警。
系统能够对于温度、振动等关键参数给出预警。
系统对各种故障点具有记忆功能,以对故障的分析提供帮助。
⑤系统具有运行状态实时数据显示、历史纪录查询、特性曲线或工况参数列表显示、报表打印及网络通讯传输等功能。
⑥系统及矿集中控制系统留有通讯接口,可接入矿局域网,在中央控制室内可实施对通风机设备的远程监测。
.环保在线监测系统解决方案上海领萃环保科技公司一、方案概况污染物在线监测系统是环保监测与环境预警的信息平台。
系统采用先进的无线网络,涵盖水质监测、环境空气质量监测、固定污染源监测(CEMS)、以及视频监测等多种环境在线监测应用。
系统以污染物在线监测为基础,充分贯彻总量管理、总量控制的原则,包含了环境管理信息系统的许多重要功能,充分满足各级环保部门环境信息网络的建设要求,支持各级环保部门环境监理与环境监测工作,适应不同层级用户的管理需求。
二、方案架构污染物在线监测系统设计构成:1、连续、及时、准确地监测排污口(环境空气)各监测参数及其变化状况;2、中心站可随时取得各子站的实时监测数据,统计、处理监测数据,编制报告与图表,并可输入中心数据库或上网查询;3、收集并可长期储存指定的监测数据及各种运行资料、环境资料备案检索;4、系统具有监测项目超标及子站状态信号显示、报警功能;5、具有自动运行、停电保护、来电自动恢复功能;6、运维状态测试,例行维修和应急故障处理;三、污染物在线监测系统解决方案1、环境空气质量在线监测解决方案空气质量监测系统可实现区域空气质量的在线自动监测,能全天候、连续、自动地监测环境空气中的二氧化硫、二氧化氮、臭氧和可吸入颗粒物的实时变化情况,迅速、准确的收集、处理监测数据,能及时、准确地反映区域环境空气质量状况及变化规律,为环保部门的环境决策、环境管理、污染防治提供详实的数据资料和科学依据。
1.1系统构成环境空气质量在线监测系统包括监测子站、中心站、质量保证实验室和系统支持实验室。
子站的主要任务是对环境空气质量和气象状况进行连续自动监测,由采样装置、监测分析仪、校准设备、气象仪器、数据传输设备、子站计算机或数据采集仪以及站房环境条件保证设施等组成,如下图所示:环境空气质量监测的参数主要包括SO2、NOX、O3、CO、PM10(2.5)、气象参数。
1.2系统特点1.2.1系统集成优势核心仪表采用该领域内国际先进水平的厂商产品,具有多项认证,如USEPA,TUV,CE,CPA等;可提供不同类型空气站解决方案,如四类常规空气质量监测站、路边空气质量监测站、移动空气质量监测站等;拥有世界最先进的环境空气质量痕量级分析仪,最低检测限达到50ppt,广泛应用于空气质量背景站和农村监测站;在系统集成上完美发挥各仪表特点,充分显示产品技术先进性,并具有专用的数据采集系统,与API或HORIBA仪器采用数据式通讯,中心数据管系统AQMS-EGRP,能够真正的实现对API或HORIBA分析仪的数据采集、运行控制和远程管理;1.2.2仪表级优势仪表采用模块化设计,便于维修,能耗小,具有极小的温度漂移,并有双开关电源,抗干扰能力强,可靠性高;仪器内置数据采集器,可存储一百万个数据,并具有以太网接口,可直接连接企业局堿网;各仪表具有独特的预诊断功能,极大减少仪器故障对数据捕获率的影响;仪器具有内置的自动校准功能,只要按自动校准功能键就可以实现传统的烦琐的校准工作,用户可以在自动周期校准界面的菜单中设置自动校准的开始时间、间隔时间和量程;可根据被测气体浓度的瞬时值和平均值自动地选择最合适的量程,作为可选项,即使随意设定任何量程(最大量程比在10%以内),量程自动选择功能仍可使用;环境压力自动补偿功能确保了检测结果稳定可靠,避免当时大气压力和所处位置的影响;2、环境空气重金属在线监测系统解决方案大气颗粒物是一种重要的空气污染物,对环境影响很大。
引言在线监测系统是近20年来在大型发电机组上发展起来的一门新兴交叉性技术,是由于近代机械工业向机电一体化方向发展的产物,自动化、智能化、大型化在许多发电生产工况下保证了生产过程的安全性和可靠性,因此对设备工作状态的监视日益重要,随着大型风力发电机容量的迅猛增加,数字化在线监测系统已经成为发电设备的重要组成部分。
风力发电机工作在野外,各风机之间距离较远,且无人值守,现场维护人员较少,机舱、塔筒高,巡视人员很难对风机内部进行现场检查及维护,不能及时发现隐患。
由于风力发电机发电量具有非稳定性,设备频繁启动,极大的影响了发电设备的安全性和稳定性。
针对风力发电的特点,我公司开发了XSJ—2000风电数字化在线监测系统。
该系统实现以下4大功能:1.风机顶部与底部的环境(烟雾及温度)实时监测;2.风机内部电缆与变压器进线电缆温度实时监测;3.塔筒门的开、闭状态实时监测;4.开关柜触头温度与母排温度实时监测;XSJ—2000数字化在线监测系统采用了当今国际先进的光纤通讯技术及485总线通迅实现多点监控的手段,极大程度的减轻了安装及维护的工作量。
该系统具有良好的计算机画面,可显示监测点的实际安放位置,报警值可调整,报警时,动作光字牌及音响,显示画面自动切换到报警画面,并提示报警点处的最佳抢修路径。
计算机提供全部传感器一年的历史数据,有效指导检修工作,为动态检修提供了理论根据。
电话:(010)82896798/6799 E-mail:wabdl@电话:(010)82896798/6799 E-mail :wabdl@一、系统结构(如图)开关柜红外测温装置系统图二、系统功能特点:1、系统操作、维护简单,友好的人机管理界面,采用先进的光纤通迅及485工业通讯技术,建立独立的数据通讯网络。
2、及时有效的监测风机塔筒顶部与底部的环境温度及烟雾浓度情况,避免人员登高巡检的作业。
3、能够实时监测风机机舱部位电缆、底部电缆和变压器进线电缆温度,并生成曲线分析,对设备的运行情况了如指掌。
矿用主通风机在线监控系统执行Q/DGSH042-2010标准)使用说明书目录1 系统概述 (3)1.1 正常工作时条件 (3)1.2 设备交流电源 (3)1.3 系统组成 (3)2 系统型号及主要技术参数 (3)2.1 型号及意义: (3)2.2 通讯方式:以太网、RS485。
(3)3 系统总体结构示意图 (4)4 监控主机功能 (4)4.1 操作管理 (4)4.2 菜单显示 (4)4.3 显示功能 (6)4.4 实现远程控制 (8)4.5 故障查询 (8)4.6 双机切换时间 (8)4.7 打印 (9)4.8 备用电源 (9)4.9 人机对话 (9)5 现场控制 (9)5.1 PLC控制柜的功能: (9)5.2 一体化工控机实现的功能: (10)5.3 终端箱的功能: (10)5.4 电源指示和故障指示功能; (10)6 系统特点 (10)6.1 高可靠性 (10)6.2 实用、易操作性 (11)6.3 监测信息全面 (11)6.4 传输方式灵活 (11)6.5 可扩充性 (11)6.6 可维护性 (11)7 安装调试及注意事项 (11)7.1 安装 (11)7.2 接线 (11)7.3 调试 (12)7.4 注意事项 (12)8 包装、贮运 (12)9 验收及技术服务 (12)10 系统服务 (13)1、系统设备提供和到货 (13)2、工程进度安排 (13)3、设备安装、调试 (13)4、工程文档 (13)5、培训 (13)6、系统验收 (13)7、技术支持和服务 (13)8、保修 (13)1、求支持方式 (13)1.售后服务热线 (13)2.售后服务E-MAIL (13)3.直接与技术人员联系 (13)2、服务工作流程 (13)3、支持升级方式 (14)1 系统概述KJ-XXX矿用主通风机在线监控系统(以下简称系统)应用于煤矿地面,实现对瓦斯浓度、风速、风压、温度、震动、电压、电流、功率等参数进行监测,由S7-300PLC 进行分析处理,并对设备、局部生产环节或过程进行控制,满足全矿或局部范围的风机安全监测监控需要的系统。
基于可靠性的状态监控预知系统------风机在线监测及诊断系统技术方案一、概况:监控设备:对于炼钢厂转炉风机,实施在线状态监测,精确了解设备运行状态,实施有计划的预知维修,同时根据运行状态与根源分析,进一步提高设备运行的可靠性,为合理安排设备维修和优化备件提供有力保障;实施目标:该系统通过建立关键设备在线监测体系,实时监控设备振动参量状态,及时报警,防止重大设备事故的发生;同时采用最先进的监控技术,最大程度延长设备的预警时间,从而实现预知维修,并通过智能的专家诊断,精确诊断故障源,实现精密维修,缩短维修用时,为检测维修制度合理化提供准确的数据基础;二、项目意义利用传感器捕捉振动、冲击脉冲、转速、电流信号;进行信号处理、模式识别、预报决策,及计算机技术,监测机组在运行过程中的振动参数及有关性能参数及其动态变化,在机组运行过程中,作出是否有故障、故障种类、故障部位、故障严重程度、故障发展变化趋势等诊断结果,判断机组性能劣化趋势;使运行、维护、管理人员能在维修之前做好有关准备,做到预知维修,并可根据监测诊断结果,进行技术改造,避免类似事故再次发生;实施本项目的意义在于:1、通过本项目实现对机组的连续在线监测和劣化趋势预测达到预知维修的目的,以保证无故障运行;2、利用监测诊断系统可以及时判别设备是否有故障,并且能够迅速查明故障原因、部位、预测故障影响;从而实现有针对性的按状态维修,那里坏了修那里,而不是大拆大卸,延长检修周期,缩短检修时间,提高检修质量,减少备件储备,提高设备的维修管理水平;3、向运行人员提供及时的信息,有效地支援运行,提高设备使用的合理性、运行的安全性和经济性,充分挖掘设备潜力,延长服役期限,以便尽量合理地使用设备;从而降低设备故障停机时间,减少计划检修时间和非计划检修时间;4、向维修管理人员及时提供设备运行情况,及时准备备品备件,及时处理有关故障,真正实现预知维修,以最少的代价发挥设备最佳的效益,做到最佳运行,使设备维修费用、设备性能劣化与停机损失费用最低;根据监测诊断结果确定维修时间、维修部位和维修方法,并根据诊断结果进行技术改造,可以降低设备故障停机时间,减少计划检修时间和非计划检修时间;提高开工率,增加产品产量,减少同类事故发生的次数;三、CMS在线监测系统功能说明:系统功能:1)本系统为瑞典SPM公司着名的CMS网络监控系统,在世界范围内拥有40年的历史,更为ABB、西门子、英格索兰、西马克、阿尔斯通等着名设备制造商应用,进行产品出厂配套或进行出厂质量校核;2) 全中文操作界面,提供WINDOWS 窗口形式和树状结构形式两种操作方式,真正做到会使用计算机就能操作软件;3) 在线监控设备振动指标,长期趋势监控,智能型“绿、黄、红”报警指示;4) 通过专利的“EVAM ”专利技术,实现:① 智能诊断故障原因,对位移、加速度、速度、歪度、峭度、4个等级摩擦量以及不平衡、不对中、松动、轴承故障、转子断条等30多项参数与征兆独立评估,分别给出“绿、黄、红”状态指示,实现智能专家诊断;② 针对设备工况的复杂性,对于变速设备、载荷变化较大的设备,可根据转速和载荷的变化量预先设定设备不同工况下的不同标准;③ 根据设备的多样性,有时设备总体振动不大,但是短时工作后便造成事故停机现象,“EVAM ”根据30多项参数的趋势变化可以捕捉设备的故障原因,并报警提示;④ 根据设备的基本参数和正常状态下的参量,形成适合该设备的企业标准,从而为设备后期更准确判断设备运行状态;⑤ 内置的“专家系统”和庞大的轴承库,方便具有一定专业知识、习惯用频谱来分析设备故障的管理人员来判断如不平衡、不对中、松动、轴承故障、转子断条等等故障;5) 轴承监测 —— 冲击脉冲技术① 振动监测解决不了早期预警问题已是世界公认的事实,原因是轴承早期的问题如润滑不良,点蚀等所产生的是较弱的瞬态信号,常规振动传感器及振动分析方法根本无法捕捉得到;如下图实例中,振动未报警,但轴承冲击脉冲峰值LR 已远远超出报警值,损伤程度值COND 逐渐加大,说明轴承已经失效,继续运行将导致严重隐患;② “冲击脉冲技术”是完全不同于振动监测的技术,该技术已服务世界各国30多年,被公认为是解决滚动轴承、齿轮问题的最佳途径,因此应用极为广泛,仅在中国就已成功应用于上千家企业;绝大多数世界知名设备制造商,如ABB 、英格索兰、苏尔寿、GE,都已在其设备出厂前安装冲击脉冲传感器,或使用该技术进行出厂检验;为数众多的进口石化挤出机、造纸机、船用发动机的齿轮箱上,已经安装了冲击脉冲监测保护系统;③该技术简单易用,只须在轴承座上安装冲击脉冲传感器,系统会直接给出轴承运转状态值及国际标准的“绿、黄、红”状态指示,同时给出:专利的LR/HR 技术,给出强冲击与平均冲击指标;状态代码CodeA 为最佳,B 为干磨擦,C 为轻度损伤,D 为严重损伤;润滑状态代码LUB 油膜厚度:0,1,2,3,4…;损伤程度值Cond<30为轻度,30-40为中度,>40为重度;它包括一个庞大而丰富的轴承库,以及专利的 LUBMASTER 轴承润滑寿命分析模块;见下图④ 冲击脉冲技术的优势是其独特设计的冲击脉冲传感器,仅对轴承运转、齿轮啮合时产生的瞬态冲击做出反应,而对其它低频振动的干扰不作反应,因此可以得到纯净的早期信号;对冲击脉冲信号进行频谱分析,即专利的SPM Spectrum TM,具有其它常规带通滤波、包络技术无法比拟的优势,可得到极为清晰的频谱图;6) 通过企业内部网络实现网络共享,同时支持5个用户同时上网查看设备目前的工作状况; 轴承状态冲击脉冲LR/HR损伤程度COND 润滑指标LUB 水平振动VIB7)系统内置的TLT自检功能,自动监测网络系统的连接质量和硬件品质,保证采集数据的真实可靠;8)本系统自成体系,不受网络系统的故障干扰;9)本系统可以同时接收在线或离线便携式数采器的数据,进入系统进行统一管理;10)可以按企业内部的设备统一编号或自己编排的编号任意编辑测点名,方便查找;11)可以根据管理人员的职责范围来设定管理权限,真正做到职责分明;12)对于问题设备或检修过设备处理的过程、方法和结论可在当时的测定数据中加以注解,便于将来查阅、参考和制定恰当的处理方案;13)本系统采用WINDOWS自带的SQL SERVER 数据库,可以利用SQL SERVER 数据库自身的软件进行备份,也可以在客户端自行备份数据;14)数据可与企业EAM或ERP体系实现数据共享;15)本系统采用模块化的方式,可以根据用户的需求扩展功能,如:脉冲技术、油膜分析功能等更深层次的分析功能;16)可以通过网络系统,输入软件序列号,在互联网上免费升级软件;实施方法:1)安装振动传感器,监控设备的振动变化;2)安装冲击脉冲传感器,监控轴承的冲击变化和润滑的状况;3)安装转速传感器,实现转速监控,并实现变速设备智能诊断;4)通过现场监测单元多通道信号处理,将数据通过企业互联网传输;5)服务器运行监控软件与数据库,客户端实现有权限地数据共享与诊断分析;五、在线系统结VCM+BMU1、结构图2、风机测点分布测点说明如下:风机本体安装3个振动传感器:风机本体轴承位水平安装1个振动传感器、垂直方向安装1个振动传感器、轴向安装1个振动传感器,;电机本体安装2个冲击脉冲传感器:两个轴承位各安装1个冲击脉冲传感器;电机和风机之间安装1个转速传感器;电机控制柜上:控制柜上电机电流信号接入VCM;一、风机在线监测系统功能要求;1、按照设备状态在线监测和故障诊断的需求,风机上实施在线监测,并具有故障诊断和故障报警功能;2、利用传感器捕捉振动、冲击脉冲、转速、电流信号;进行信号处理、模式识别、预报决策,及计算机技术,监测机组在运行过程中的振动参数及有关性能参数及其动态变化,在机组运行过程中,做出是否有故障、故障种类、故障部位、故障严重程度、故障发展变化趋势等诊断结果,判断机组性能劣化趋势;3、通过振动准确监测风机系统的不平衡、不对中、松动等问题;4、通过冲击脉冲准确监测风机系统的轴承问题,做到准确预知与诊断;5、通过电机电流信号的监测,反映风机载荷的变化,提高系统诊断的准确性;6、有关诊断分析软件中能实现不同岗位人员的权限设定,并能在局域网内实现数据共享,以便提高各级专业人员利用系统及时了解所监测设备的能力和水平,以便提高此类重要设备管理的效率;二、主要系统硬件的技术条件1、振动监测模块VCM-20VCM-20 是连续测量单元,供采用 EVAM 专家方法进行振动分析;单元内部配有 CPU、硬盘和多路复用测量逻辑模块;VCM-20-8 配有 8个振动测量通道,8 个 RPM 测量通道;可插接4-20mA模拟量输入板,可扩充8-16通道模拟量,监控温度、压力等,也可通过负载电流监控,实现变载分析;VCM-20 可通过以太网与安装 Condmaster Nova 软件的计算机连接;测量设定值在软件中设置;通信程序 DBL 向 VCM-20 单元传送测量设定值,并读取这个单元的结果文件;处理器: 1GHz存储器: 256 Mb RAM硬盘容量: > 20 Gb通道:振动20,转速 8频率范围: 0 –20KHz包络频率: 100, 200, 500, 1000, 2000, 5000, 10 000 Hz检测窗口:矩形、汉宁、海明等分辩线数: 200, 400, 800, 1600, 3200, 64002、轴承监测模块BMU-07BMU-07配有7个测量滚动轴承冲击脉冲通道,与测量单元 VCM20连接,根据 VCM20的请求进行测量、传输数据;BMU 提供冲击振幅值和包络冲击脉冲信号,用于频谱分析;VCM20单元测量轴承转速,计算 SPM 频谱,评估轴承工作状态;测量条件在 Condmaster Nova 中设置,包括冲击脉冲方法、频谱类型、用于识别轴承故障的征兆及告警极限等;测量方法:冲击脉冲 LR/HR, 和 SPM 频谱测量范围: -19 到99 dBsv LR/HR测量通道: 7电源: 5 V DC ±10%温度范围: -10°到60° C尺寸: 139 x 145 x 46 mm3、冲击脉冲传感器42000测量范围:最大值100 dBsv机架基础:不锈钢SS 2382设计:密封温度范围:-30到+150° C外部压力:最大1 MPa 10 bar 扭矩:15 Nm, 最大20 Nm4、振动传感器SLD144B灵敏度:100 mV/m/s2,精度:1%工作环境温度:-50~125℃频率范围:~10KHz适用公制M8内螺纹孔,传感器垂直输出传输距离:400米以内。
工况是什么?工况用电监测的意义
工况,是指设备在和其动作有直接关系的条件下的工作状态,是指生产装置和设施生产运行的状态,工况条件即动力设备在一定条件下的工作状况。
根据文件政策要求,我国各污染源排放企业在产污治污过程中,均需进行工况用电监测,污染源排放过程工况监控系统,是通过对企业生产数据、治理设施运行状态数据、污染排放数据的采集,利用智能数据分析等技术实现对污染排放的全过程监管。
污染源监控是污染减排工作中管理减排的重要手段之一。
通过在线监测和视频监控等自动化、信息化技术手段,实现对企业排污情况的远程连续监控,使环境执法人员更加科学、准确、实时地掌握重点污染源主要污染物排放数据、污染防治设施运行情况,切实提高工作效能,严厉打击环境违法行为。
企业对连续工况过程数据进行实时监控,是实现对环保治理设施的运行过程的在线监控、实时预警、统计分析、企业信息管理等功能,为环保监管部门的工况核定、治污情况、电价补偿、排污收费等提供有效的数据基础和分析手段。
鉴于企业工况监测环境及要求的特殊性,工况在线监测系统需要将工况前端传感探头部署在各电厂的服务器上,多点部署,每个端子只管理一个电路的工况电量的实时在线监测数据,并供平台端调取,还可从后台将数据系统迁移至企业公司的服务器上,中心部署,将通过数据传输程序所有企业的数据实时传输至该服务器数据库中,便于公司运营管理。
智易时代的工况用电监测系统是按照《关于实施工业污染源全面达标排放计划的通知》、《秋冬季大气污染防治攻坚精准管控方案》等相关要求,根据涉气工业污染源相关规定,推出了一款污染治理设施用电监管体系,是有效提高企业监管水平,监控企业设施工况用电情况的专用设备。
什么是PEMS工况用电监测系统?安科瑞杨澜1工况用电监测系统PEMS工况用电监测系统(简称PEMS),是根据工艺设计对反映固定污染源生产设施、污染物治理设施运行状态的电气参数(如:电流、电压、功率、电量等)进行监测的全部设备和信息系统。
PEMS用于掌握生产设施和治理设施的运行情况、污染治理及排放情况、污染源停限产及错峰生产情况等信息,是污染源自动监测系统的组成部分。
PEMS的建设应满足国家标准规范和计量认证要求。
2PEMS系统的组成PEMS系统由现场端监测系统和中心端监测平台两部分组成。
图1工况用电监测系统组成结构示意图1)现场端监测系统由用电参数监测、数据采集传输和应用配置软件三个子系统组成。
2)用电参数监测子系统根据工艺设计,对反映生产设施、污染物治理设施总体运行状态的电气参数(电流、电压、功率、功率因数、电量、电能质量等)进行监测的子系统。
3)数据采集传输子系统采集、存储用电参数监测子系统的数据,并按照HJ212《污染物在线监测(监测)系统数据传输标准》和本技术指南规定,将数据传输至中心端监测平台。
4)应用软件子系统与用电参数监测子系统进行通讯,实现信息采集、安装调试、设备维护、数据存储、数据分析判断、信息备案、资料下载、事件报警等功能。
可综合采用云计算、移动互联网等技术实现。
3PEMS工况用电监测系统PEMS工况用电监测系统用于接收现场端监测系统传输的信息,实现现场数据的汇总、报警管理、统计分析等,远程实时掌握生产设施和治污设施运行状况。
PEMS工况用电监测系统能够对生产设施、污染物治理设施的运行状态进行关联分析,及时发现污染治理设施未开启、异常关闭及减速、空转、降频等异常情况,并通知相关人员。
PEMS工况用电监测系统对执行停产、限产、错峰生产等调控指令的生产设施进行监测,将调控期间违规生产情况通知相关人员,对调控指令执行的总体情况进行统计分析。
PEMS工况用电监测系统省市分级建设,原始数据通过数采仪“一址多发”直传省市两级工况用电监测系统,省市平台间点位编码、报警督办、运行维护等工作数据通过省市数据交换保持同步,保证一数一源。