当前位置:文档之家› 高二数学下册学案:导数的运算法则

高二数学下册学案:导数的运算法则

高二数学下册学案:导数的运算法则
高二数学下册学案:导数的运算法则

学案巩固案

最新导数的四则运算法则

导数的四则运算法则

§4 导数的四则运算法则 主讲:陈晓林时间:2012-2-23 一、教学目标: 1.知识与技能 掌握有限个函数的和、差、积、商的求导公式;熟练运用公式求基本初等函数的四则运算的导数,能运用导数的几何意义,求过曲线上一点的切线。 2.过程与方法 通过用定义法求函数f(x)=x+x2的导数,观察结果,发掘两个函数的和、差求导方法,给结合定义给出证明;由定义法求f(x)=x2g(x)的导数,发现函数乘积的导数,归纳出两个函数积、商的求导发则。 3.情感、态度与价值观 培养学生由特别到一般的思维方法去探索结论,培养学生实验——观察——归纳——抽象的数学思维方法。 二、教学重点:函数和、差、积、商导数公式的发掘与应用 教学难点:导数四则运算法则的证明 三、教学方法:探析归纳,讲练结合 四、教学过程 (一)、复习:导函数的概念和导数公式表。 1.导数的定义:设函数?Skip Record If...?在?Skip Record If...?处附近有定义,如果?Skip Record If...?时,?Skip Record If...?与?Skip Record If...?的比?Skip Record If...?(也叫函数的平均变化率)有极限即?Skip Record If...?无限趋近于某个常

数,我们把这个极限值叫做函数?Skip Record If...?在?Skip Record If...?处的导数,记作?Skip Record If...?,即?Skip Record If...? 2. 导数的几何意义:是曲线?Skip Record If...?上点(?Skip Record If...?)处的切线的斜率因此,如果?Skip Record If...?在点?Skip Record If...?可导,则曲线 ?Skip Record If...?在点(?Skip Record If...?)处的切线方程为?Skip Record If...?3. 导函数(导数):如果函数?Skip Record If...?在开区间?Skip Record If...?内的每点处都有导数,此时对于每一个?Skip Record If...?,都对应着一个确定的导数 ?Skip Record If...?,从而构成了一个新的函数?Skip Record If...?, 称这个函数 ?Skip Record If...?为函数?Skip Record If...?在开区间内的导函数,简称导数,4. 求函数?Skip Record If...?的导数的一般方法: (1)求函数的改变量?Skip Record If...?2)求平均变化率?Skip Record If...?(3)取极限,得导数?Skip Record If...?=?Skip Record If...??Skip Record If...?5.常见函数的导数公式:?Skip Record If...?;?Skip Record If...? (二)、探析新课 两个函数和(差)的导数等于这两个函数导数的和(差),即 ?Skip Record If...? 证明:令?Skip Record If...?, ?Skip Record If...??Skip Record If...?, ∴?Skip Record If...?,?Skip Record If...? 即?Skip Record If...?. 例1:求下列函数的导数:

第三章 导数 导学案

§3.1.1 变化率问题 1.感受平均变化率广泛存在于日常生活之中,经历运用数学描述和刻画现实世界的过程. 体会数学的博大精深以及学习数学的意义; 2.理解平均变化率的意义,为后续建立瞬时变化. 7880 复习1:曲线22 1259 x y +=与曲线 22 1(9)259x y k k k +=<--的( ) A .长、短轴长相等 B .焦距相等 C .离心率相等 D .准线相同 复习2:当α从0 到180 变化时,方程22cos 1x y α+=表示的曲线的形状怎样变化? 二、新课导学 ※ 学习探究 探究任务一: 问题1:气球膨胀率,求平均膨胀率 吹气球时,随着气球内空气容量的增加,气球的半径增加得越来越慢.从数学的角度如何描述这种现象? 问题2:高台跳水,求平均速度 新知:平均变化率: 2121()()f x f x f x x x -?=-? 试试:设()y f x =,1x 是数轴上的一个定点,在数轴x 上另取一点2x ,1x 与2x 的差记为x ?,即 x ?= 或者2x = ,x ?就表 示从1x 到2x 的变化量或增量,相应地,函数的变化量或增量记为y ?,即y ?= ;如果它们 的比值y x ??,则上式就表示为 , 此比值就称为平均变化率. 反思:所谓平均变化率也就是 的增量与 的增量的比值. ※ 典型例题 例 1 过曲线3()y f x x ==上两点(1,1P 和(1,1)Q x y +?+?作曲线的割线,求出当0.1x ?=时割线的斜率. 变式:已知函数2()f x x x =-+的图象上一点 (1,2)--及邻近一点(1,2)x y -+?-+?,则y x ??= 例 2 已知函数2 ()f x x =,分别计算()f x 在下列区间上的平均变化率: (1)[1,3]; (2)[1,2]; (3)[1,1.1]; (4)[1,1.001] 小结:

基本初等函数的导数公式及运算法则

课时授课计划

教师活动 教学过程: 一?创设情景 2 1 四种常见函数y=c、y = x、y =x、y —的导数公式及应用 :■?新课讲授 学生活动学生自行预习

(二)导数的运算法则导数运算法则 1. 〔f(X)土g(x)i = f'(x) ±g'(x) 2. [f(x) g(x)]' = f'(x)g(x)±f(x)g'(x) I f (x) I f (x) g (x) - f (x) g (x) / . . 3. = ——(g(x)HO) ]g(x) 一[g(x)f (2)推论:lcf(x) I - Cf'(x) (常数与函数的积的导数,等于常数乘函数的导数) 三.典例分析 例1 .假设某国家在20年期间的年均通货膨胀率为5% ,物价p (单位:元)与时间t (单位:年)有如下函数关系p(t) = p0(1 - 5%亍,其中p0 为t = 0时的物价.假定某种商品的p0 = 1,那么在第10个年头,这种商品的价格上涨的速度大约是多少(精确到0.01)? 解:根据基本初等函数导数公式表,有p'(t) =1.0“ In 1.05 所以p (10) =1.0510|n1.05 : 0.08 (元/年) 因此,在第10个年头,这种商品的价格约为0.08元/年的速度上涨. 例2?根据基本初等函数的导数公式和导数运算法则,求下列函数的导数. (1) y = x3 -2x 3 (2) y 1 1 (3) y = x sin x ln x; (4)y (5)y (6)y 4x 1 -ln x 1 l n x (2 x2—5 x + 1) e x / 、sin x—xcosx (7) y =-------------------------- cosx +xsin x 通过预习自行完成 在老师的指导下独立完成后面几道题

导数的运算法则

课题:导数的运算法则 1、 求下列函数的导数 (1 )y = (2 )y = (3)12x y ??= ??? (4)12 =log y x (5)212sin 2x y =- 2、已知直线1l 为曲线2+-2y x x =在点(1,0)处的切线,2l 为该曲线的另一条切线,且12l l ⊥,(1)求直线2l 的方程;(2)求由直线1l ,2l 和x 轴所围成的三角形面积。 例1 求下列函数的导数 (1) )11)(1(x x y +- = ; (2) x x y 2= (3) x x x y +=s i n ; 例2 已知曲线C:x x x y 2323+-=,直线l:kx y =,且l与C切于点),(00y x )0(0≠x ,求直线l的方程及切点的坐标。 例3设)(x f 、)(x g 分别是定义在),0()0,(+∞?-∞上的奇函数和偶函数,当0'+'x g x f x g x f 且0)3(=-g ,求不等式0)()(

该常数A 为函数f(x)在x =x0处的导数,记作f/(x 0). 4.由定义求导数(三步法) ①求函数的增量:=?y ②算比值(平均变化率): =??x y ③取极限,得导数:0 x x y ='= 【情境引入】 本节课我们将学习常见函数的导数.首先我们来求下面几个函数的导数. (1)y=x; (2)y=x 2 ; (3)y=x 3 . 问题:1-=x y ,2-=x y ,3-=x y 呢? 问题:从对上面几个幂函数求导,我们能发现有什么规律吗? 【数学建构】 1.几种常见函数的导数: 问题引入1: (1)(23)x '-+= (4)x '= (2)(2)x '-= (5)(5)x '+= (3)3'= (6)(4)'-= 通过以上运算我们能得到什么结论? 公式一:

问题引入2: (1)x '= 2(2)()x '= 2(3)(3)x '= 1(4)()x '= 通过以上运算我们能得到什么结论? 公式二: 【知识应用】 例1 求下列函数的导数: (1)()'3x ;(2)'21x ?? ??? ;(3 )' . 解: 拓展 例2 求下列函数的导数: 4(1)y x =; 3(2)y x -=; 1(3)y x =; (4)y = =0(5)sin 45y ; =(6)cos u v . 解:

3.1导数导学案

导数的概念及运算 一、预习案 (一)高考解读 能利用给出的基本初等函数的导数公式求简单函数的导数,通过图像直观地理解导数的几何意义,会求在某点和过某点的切线方程。 (二)知识清单 2、求导法则 ①运算 (1)=±' )]()([x g x f 。 (2)=?')]()([x g x f 。 (3)=?? ????' )()(x g x f 。 ②复合函数的导数:设)(x v u =在x 处可导,)(u f y =在点u 处可导, 则复合函数)]([x v f 在点x 处可导,且=)('x f 。 (三)预期效果及存在困惑

二、导学案 (一)完成《新亮剑(红色)》第50页查缺补漏。 (二)高考类型 考点一、导数运算 1、已知函数ax x x x f +=sin )(,且1)2 ('=π f ,则a 的值等于( ) A.0 B.1 C.2 D.4 2、函数)(x f 的定义域是R ,2)0(=f ,对任意1)()(,'>+∈x f x f R x ,则不等式1)(+>?x x e x f e 的解集为 考点二、导数几何意义的应用 3、已知函数454)(23-+-=x x x x f 。 (1)求曲线)(x f 在点))2(,2(f 处的切线方程; (2)求经过点)2,2(-A 的曲线)(x f 的切线方程。 练习: 1(2018课标I )设函数ax x a x x f +-+=23)1()(。若)(x f 为奇函数,则曲线)(x f y =在)0,0(处的切线方程为( ) A. x y 2-= B.x y -= C.x y 2= D.x y =

2.(2017·威海质检)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为( ) A.x +y -1=0 B.x -y -1=0 C.x +y +1=0 D.x -y +1=0 课堂总结: 三、巩固案 1.(2016北京节选)设函数bx xe x f x a +=-)(,曲线)(x f y =在))2(,2(f 处的切线方程为4)1(+-=x e y ,求b a ,的值。 2.(2015全国II )设函数)('x f 是奇函数)(x f 的导函数,0)1(=-f ,当 0>x 时,0)()('<-x f x xf ,解不等式0)(>x f 。

高中数学一轮复习 第1讲 导数的概念及其运算

第1讲 导数的概念及其运算 1.已知函数3 2 ()32f x ax x =++,若f′(-1)=4,则a 的值等于( ) A.193 B.163 C.133 D.103 【答案】 D 【解析】 f′2 ()36x ax x f =+,′(-1)=3a 10643 a -=,=. 2.设y=-2e x sinx,则y′等于( ) A.-2e x cosx B.-2e x sinx C.2e x sinx D.-2e (x sinx+cosx) 【答案】 D 【解析】 ∵y=-2e x sinx, ∴y′=(-2e )x ′sinx+(-2e )(x sinx)′ =-2e x sinx-2e x cosx =-2e (x sinx+cosx). 3.已知3 270()x m f x mx m <,=+,且f′(1)18≥-,则实数m 等于( ) A.-9 B.-3 C.3 D.9 【答案】 B 【解析】 由于f′2 27()3x mx m =+,故f′27(1)183m m ≥-?+≥ -18 , 由m<0得2 27318318270m m m m +≥-?++≤?2 3(3)m +0≤,故m=-3. 4.设曲线11 x y x +=-在点(3,2)处的切线与直线ax+y+1=0垂直,则a 等于( ) A.2 B.12 C.12 - D.-2 【答案】 D 【解析】 因为y′22(1) x -= ,-所以切线斜率k=y′|3 x ==1 2-,而此切线与直线ax+y+1=0垂直, 故有()1k a ?-=-,因此12a k ==-. 5.已知12()f x =sin2x+sinx,则f′(x)是( ) A.仅有最小值的奇函数 B.既有最大值又有最小值的偶函数 C.仅有最大值的偶函数 D.非奇非偶函数 【答案】 B 【解析】 f′12()x =cos 22x ?+cosx=cos2x+cosx =2cos 21x -+cosx=2(cos 29148)x +-. 故f′(x)是既有最大值2,又有最小值98-的偶函数,选B 项.

导数的四则运算法则

§4 导数的四则运算法则 一、教学目标: 1.知识与技能 掌握有限个函数的和、差、积、商的求导公式;熟练运用公式求基本初等函数的四则运算的导数,能运用导数的几何意义,求过曲线上一点的切线。 2.过程与方法 通过用定义法求函数f (x )=x+x 2 的导数,观察结果,发掘两个函数的和、差求导方法,给结合定义给出证明;由定义法求f(x)=x 2g(x)的导数,发现函数乘积的导数,归纳出两个函数积、商的求导发则。 3.情感、态度与价值观 培养学生由特别到一般的思维方法去探索结论,培养学生实验——观察——归纳——抽象的数学思维方法。 二、教学重点:函数和、差、积、商导数公式的发掘与应用 教学难点:导数四则运算法则的证明 三、教学方法:探析归纳,讲练结合 四、教学过程 (一)、复习:导函数的概念和导数公式表。 1.导数的定义:设函数)(x f y =在0x x =处附近有定义,如果0→?x 时,y ?与x ?的比x y ??(也叫函数的平均变化率)有极限即 x y ??无限趋近于某个常数,我们把这个极限值叫做函数)(x f y =在0x x →处的导数,记作0 / x x y =,即x x f x x f x f x ?-?+=→?) ()(lim )(000 0/ 2. 导数的几何意义:是曲线)(x f y =上点()(,00x f x )因此,如果)(x f y =在点0x 可导,则曲线)(x f y =在点()(,00x f x )处的切线方程为 )(()(00/0x x x f x f y -=-

3. 导函数(导数):如果函数)(x f y =在开区间),(b a 内的每点处都有导数,此时对于每一个 ),(b a x ∈,都对应着一个确定的导数)(/x f ,从而构成了一个新的函数)(/x f , 称这个函数)(/x f 为函数)(x f y =在开区间内的导函数,简称导数, 4. 求函数)(x f y =的导数的一般方法: (1)求函数的改变量()(x f x x f y -?+=?(2)求平均变化率 x x y ?= ?? (3)取极限,得导数/ y =()f x '=x y x ??→?0lim 5. 常见函数的导数公式:0'=C ;1)'(-=n n nx x (二)、探析新课 两个函数和(差)的导数等于这两个函数导数的和(差),即 证明:令)()()(x v x u x f y ±==, )] ()([)]()([x v x u x x v x x u y ±-?+±?+=?v u x v x x v x u x x u ?±?=-?+±-?+=)]()([)]()([, ∴ x v x u x y ??±??=??,x v x u x v x u x y x x x x ??±??=? ?? ????±??=??→?→?→?→?0000lim lim lim lim 即 )()()]()([' ' ' x v x u x v x u ±=±. 例1:求下列函数的导数: (1)x x y 22 +=; (2)x x y ln -= ; (3))1)(1(2-+=x x y ; (4) 2 2 1x x x y +-= 。 解:(1)2ln 22)2()()2(2 2 x x x x x x y +='+'='+='。 (2)x x x x x x y 121)(ln )()ln (- = '-'='-='。 (3) [] 123)1()()()()1()1)(1(223232+-='-'+'-'='-+-=' -+='x x x x x x x x x x y 。 例2:求曲线x x y 1 3- =上点(1,0)处的切线方程。

基本初等函数的导数公式及导数的运算法则教案导学案有答案

§3.2.2基本初等函数的导数公式及导数的运算法则 课前预习学案 一.预习目标 1.熟练掌握基本初等函数的导数公式; 2.掌握导数的四则运算法则; 3.能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数二.预习内容 1.基本初等函数的导数公式表 2. (2 (常数与函数的积的导数,等于:) 三.提出疑惑 同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中

课内探究学案 一.学习目标 1.熟练掌握基本初等函数的导数公式; 2.掌握导数的四则运算法则; 3.能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数二.学习过程 (一)。【复习回顾】 复习五种常见函数、、、、的导数公式填写下表 (二)。【提出问题,展示目标】 ( 2)根据 基本初 等函数的公式,求函数的 (1)与 (2)与

2.(1)记忆导数的运算法则,比较积法则与商法则的相同点与不同点 推论: (常数与函数的积的导数,等于:) 提示:积法则,商法则, 都是前导后不导, 前不导后导, 但积法则中间是加号, 商法则中间是减号. (2)根据基本初等函数的导数公式和导数运算法则,求下列函数的导数. (1) (2); (3); (4); 【点评】 ①求导数是在定义域内实行的. ②求较复杂的函数积、商的导数,必须细心、耐心. (四).典例精讲 例1:假设某国家在20年期间的年均通货膨胀率为,物价(单位:元)与时间(单位:年)有如下函数关系,其中为时的物价.假定某种商品的,那么在第10个年头,这种商品的价格上涨的速度大约是多少(精确到) 分析:商品的价格上涨的速度就是: 解: 变式训练1:如果上式中某种商品的,那么在第10个年头,这种商品的价格上涨的速度大约是多少(精确到) 例2日常生活中的饮水通常是经过净化的.随着水纯净度的提高,所需净化费用不断增加.已知将1吨水净化到纯净度为时所需费用(单位:元)为 求净化到下列纯净度时,所需净化费用的瞬时变化率:(1)(2) 分析:净化费用的瞬时变化率就是: 解: 比较上述运算结果,你有什么发现 三.反思总结: (1)分四组写出基本初等函数的导数公式表: (2)导数的运算法则: 四.当堂检测

1.2.2导数运算公式与法则 导学案(教师版)

1.2.2 基本初等函数的导数公式及导数的运算法则(二) 内容要求 1.理解函数的和、差、积、商的求导法则.2.理解求导法则的证明过程,能够综合运用导数公式和导数运算法则求函数的导数 . 知识点1 导数运算法则 法则 语言叙述 [f (x )±g (x )]′ =f ′(x )±g ′(x ) 两个函数的和(或差)的导数,等于这两个函数的导数的和(或差) [f (x )·g (x )]′= f ′(x )·g (x )+f (x )·g ′(x ) 两个函数的积的导数,等于第一个函数的导数乘上第二个函数,加上第一个函数乘上第二个函数的导数 ???? ?? f (x ) g (x )′= f ′(x )g (x )-f (x )·g ′(x ) [g (x )]2 (g (x )≠0) 两个函数的商的导数,等于分子的导数乘上分母减去分子乘上分母的导数,再除以分母的平方 思考 若f (x )=x 2·sin x ,则f ′(x )=(x 2)′·(sin x )′=2x ·cos x 是否正确? 提示 不正确.f ′(x )=(x 2)′·sin x +x 2·(sin x )′=2x ·sin x +x 2·cos x . 知识点2 复合函数的求导法则 复合函数的概念 一般地,对于两个函数y =f (u )和u =g (x ),如果通过变量u ,y 可以表示 成x 的函数,那么称这个函数为y =f (u )和u =g (x )的复合函数,记作y =f (g (x )) 复合函数的求导法则 复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y ′x =y ′u ·u ′x ,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积 【预习评价】 思考 复合函数y =f (g (x )),用中间变量y =f (u ),u =g (x )代换后求导的顺序是什么? 提示 根据复合函数的求导法则y ′x =y ′u ·u ′x ,求导的顺序是从外向内逐层求导.

导数公式及其运算法则

§1.2.2基本初等函数的导数公式及导数的运算法则(两课时) 学习目标 1.理解两个函数的和(或差)的导数法则,学会用法则求一些函数的导数; 2.理解两个函数的积的导数法则,学会用法则求乘积形式的函数的导数. 3.复合函数的分解,求复合函数的导数. 一、预习与反馈(预习教材P 14~ P 19,找出疑惑之处) 复习1:常见函数的导数公式: (1) '____C =(C 为常数);(2)()'________n x =, n ∈N +;(3)(sin )'_______x =; (4)(cos )'_______x =; (5)()'________x e =; (6)()'_________x a =; (7)(ln )'______x =; (8) e x x a a log 1)'(log = 复习2:根据常见函数的导数公式计算下列导数 (1)6y x = (2 )y = (3)21y x = (4 )y = 新知 1.可导函数的四则运算法则 法则1 '[()()]____________.u x v x ±=(口诀:和与差的导数等于导数的和与差). 法则2 [()()]____________u x v x '=. (口诀:前导后不导,后导前不导,中间是正号) 法则3 ()[]_______________(()0)() u x v x v x '=≠(口诀:分母平方要记牢,上导下不导,下导上不导,中间是负号)

例1. 根据基本初等函数的导数公式和导数运算法则,求函数3123y x x x =-++导数. 变式:( 1)2log y x =; (2)2x y e =; (3)522354y x x x =-+-; (4)3cos 4sin y x x =- 例2求下列函数的导数: (1)32log y x x =+; (2)n x y x e = (3)y=2e -x 2. 复合函数: 1.定义:一般地,对于两个函数y =f (u )和()u g x =,如果通过变量u,y 可以表示成x 的函数,那么这个函数为函数 和 的复合函数,记住 2.复合函数的求导法则 复合函数(())y f g x =的导数和函数y =f (u ),()u g x =的导数间的关系式为 ,即y 对x 的导数等于 的乘积。 例。3 求下列函数的导数: (1)2(23)y x =+; (2)1x y e -+=; (3)sin()y x π?=+

导数的四则运算法则导学案(1)

导数的四则运算法则导学案 复习回顾1. 常见函数的导数公式:(默写) ='+)(b kx _________ ____='C )('α x =_____________ _______ )(='x a ______ )(log ='x a ___________ )(='x e =')(ln x _________ )(sin 'α=____________ =')(cos α________ 2 求下列函数函数的导数 (1)5 )(-=x x f (2)x x x f = )( (3)sin 2y x π?? =+ ??? (4)3 sin π =y (5))2cos(x y -=π (6)x y 4= (7)x y 3 log = 【自主探究】 导数的加减法运算法则: 1.[]=' ± )()(x g x f 2.[]='+c x f )( 导数的乘除法运算法则 1.[]=')()(x g x f ; 2. = ' ?? ????)()(x g x f ; 3.[]=')(x kf ; 说明: 1.导数的加法与减法法则 两个函数的和(差)的导数,等于这两个函数的导数的和(差),即v u v u '±'='±)(,和(差)函数求导法则由两个可以推广到n 个。 2.导数的乘法、除法法则:

①两个函数积的导数,等于第一个函数的导数乘以第二个函数,加上第一个函数乘以第二个函数的导数的和,即v u v u uv '+'=')(。若c 为常数,则c u c u cu '+'=')(u c '+=0u c '=。由以上两个法则可知:)()()()(x v b x u a x bv x au '±'=±,b a ,为常数。 ②两个函数商的导数,等于分子的导数与分母的积减去分母的导数与分子的积,再除以分母的平方。即 2 v v u v u v u y '-'=' ?? ? ??=' 【合作探究】 例1求下列函数的导数 (1)()5 4 3 2 23459f x x x x x x =+-+-+ (2)()sin f x x x = (3)sin 2y x = (4) tan y x = (5) y =x 1·cos x (6)x e y x sin 2=23x + (7)x e y x ln = (8)x a y x ln -= 例2 求下列函数的导数 (1) 2 sin y x x =+ (2) 3 2 3622 y x x x =- -+ (3) 2 )12(-=x y (4)2 (23)(32)y x x =+-

1.2.2 导数的运算法则(一)

1.2.2 导数的运算法则(一) 知识要点 1,两个函数的和(或差)的导数,等于这两个函数的导数的 , 即()()'u x v x ±=???? 2,两个函数的积的导数,等于 ,加上 , 即()()'u x v x ?=???? 。特别地,()'cu x =???? (其中c 为常数)。 3,两个函数的商的导数,等于 减去 ,再除以 。即

知识点一,直接求导 例1,求下列函数的导数 (1)2 3cos y x x x =+ (2)1x y x = + (3)tan y x = (4)lg x y x e =- 变式训练1,求下列函数的导数 (1)23y x = (2)5314353 y x x x =-++(2)2sin cos y x x x =+ (4)ln 1 x y x =+ 知识点二,先变形再求导 例2,求下列函数的导数 (1) y =(2)cos 2sin cos x y x x = + (3))22sin cos 22x x y =- 变式训练2,求下列函数的导数 (1)2311y x x x x ??=+ + ??? (2)44sin cos 44 x x y =+ 知识点三,导数的综合应用 例3,已知函数21n x y x ??= ?+??过点11,9P ?? ??? ,求函数在点P 处的切线方程。 变式训练3,某质点的运动规律是322s t t t =-+,求其最小速度m v

水平基础题 1.已知物体的运动方程是s =14 t 4-4t 3+16t 2(t 表示时间,s 表示位移),则瞬时速度为0的时刻是( ) A .0秒、2秒或4秒 B .0秒、2秒或16秒 C .2秒、8秒或16秒 D .0秒、4秒或8秒 2.(2010·新课标全国卷文,4)曲线y =x 3-2x +1在点(1,0)处的切线方程为( ) A .y =x -1 B .y =-x -1 C .y =2x -2 D .y =-2x -2 3.若函数f (x )=e x sin x ,则此函数图象在点(4,f (4))处的切线的倾斜角为( ) A.π2 B .0 C .钝角 D .锐角 4.设f (x )=x 3-3x 2-9x +1,则不等式f ′(x )<0的解集为________. 5.求下列函数的导数: (1)y =x (x 2+1x +1x 3);(2)y =(x +1)(1x -1); (3)y =sin 4x 4+cos 4x 4;(4)y =1+x 1-x +1-x 1+x . 水平提升题 6.曲线y =x sin x 在点??? ?-π2,π2处的切线与x 轴、直线x =π所围成的三角形的面积为 ( ) A.π2 2 B .π2 C .2π2 D.12 (2+π)2 7.设f 0(x )=sin x ,f 1(x )=f 0′(x ),f 2(x )=f 1′(x ),…,f n +1(x )=f n ′(x ),n ∈N ,则f 2011(x )等于( ) A .sin x B .-sin x C .cos x D .-cos x 8.f (x )与g (x )是定义在R 上的两个可导函数,若f (x )、g (x )满足f ′(x )=g ′(x ),则f (x )与g (x )满足( ) A .f (x )=g (x ) B .f (x )-g (x )为常数 C .f (x )=g (x )=0 D .f (x )+g (x )为常数 9.曲线y =cos x 在点P ????π3,12处的切线的斜率为______. 10.已知函数f (x )=ax +b e x 图象上在点P (-1,2)处的切线与直线y =-3x 平行,则函数f (x )的解析式是____________. 11.已知两条曲线y =sin x 、y =cos x ,是否存有这两条曲线的一个公共点,使在这个点处,两条曲线的切线互相垂直?并说明理由. 12.已知曲线C 1:y =x 2与C 2:y =-(x -2)2.直线l 与C 1、C 2都相切,求直线l 的方程. 提升拓展题 13.求满足下列条件的函数f (x ): (1)f (x )是三次函数,且f (0)=3,f ′(0)=0,f ′(1)=-3,f ′(2)=0; (2)f ′(x )是一次函数,x 2f ′(x )-(2x -1)f (x )=1. 14,求下列函数()f x 的导数(其中是可导函数) 1(1)(2)y f y f x ??== ???

导数的计算(二)导学案

导数的计算(二) 班级 小组 姓名 【学习目标】 1、 记住导数的和、差、积、商的求导法则. 2、会运用导数的四则运算解决一些函数的求导问题. 重点:运用四则运算求导数; 难点:复杂函数的求导. 【预习导学】 导数的运算法则 ①[]' ()()f x g x ±= ; ②[]' ()c f x ?= (c 为常数) ③[]'()()f x g x ?= ; ④' ()()f x g x ?? =? ? ?? (()0)g x ≠ 预习交流 (1)你能用文字语言叙述上述运算法则吗? (2)应用导数公式和四则运算法则求导有哪些注意点? 【预习检测】 1、已知函数()1sin x f x x e =-+,则'()f x = . 2、已知函数51()5f x x -= ,则'1 ()2 f = . 3、函数cos x y x =的导数( ) A.2sin x x - B.sin x - C.2sin cos x x x x +- D.2 cos cos x x x x +- 4、曲线()ln f x x x =在1x =处的切线方程为( ) A.22y x =+ B. 22y x =- C.1y x =- D.1y x =+ 【课堂探究】 1、 求下列函数的导数 (1)sin cos 22x x y x =-; (2)3 22x y e x =-?; (3)233x y x +=+; (4)2sin x y x = 2、求下列函数的导数 (1 )y =+ (2)(1)(2)(3)y x x x =+++ (3)cos sin 2x y e x x =++ (4)ln 21 x x y x =-+ 3、求过点(1,1)-与曲线3 2y x x =-相切的直线方程. 【课堂练习】 1、求下列函数的导数 (1)232ln 1y x x =-+; (2)2 cos y x x =; (3)tan y x =; (4)2 2(1)x y x e x =--; (5)2 1x e y x =+ 2、曲线2 x y x =+在点(1,1)--处的切线方程为( ) A.21y x =+ B.21y x =- C.23y x =-- D.22y x =-+ 3、设2 ()sin ,f x ax b x =-且''1(0)1,()32 f f π==,则a = ,b = . 4、已知抛物线2 y ax bx c =++过点(1,1)P ,且在(2,1)Q -处于直线3y x =-相切,求,,a b c 的值.

高二数学选修2-2导数的计算

导数的计算 教学目标:1、能根据导数的定义推导部分基本初等函数的导数公式; 2、能利用导数公式求简单函数的导数。 教学重难点: 能利用导数公式求简单函数的导数,基本初等函数的导数公式的应用 一、 用定义计算导数 问题1:如何求函数()y f x c ==的导数? 2.求函数()y f x x ==的导数 3.函数2()y f x x ==的导数 4.函数1()y f x x == 的导数 5 .函数y = 二 1.基本初等函数的导数公式表 分几类 1、幂函数 2.三角函数 3指数函数 4.对数函数 补充 1 ()f x x = '21 ()f x x =- ( )f x = '()f x =

2公式的应用 典型题一、求导数 A x y x y x y x y y x y cos )6(log )5(ln )4(1)3(5 )2()1(125==== ==、求下列函数的导数 例 思考 求()f x '的方法有哪些? 3.导数的四则运算法则: 问题 ln x x ?如何求? 推论:[]''()()cf x cf x = 提示:积法则,商法则, 都是 前导后不导, 前不导后导, 但积法则中间是加 号, 商法则中间是减号.。 常见错误:[]'''()()()()f x g x f x g x ?= ' ''()()(()0)()()f x f x g x g x g x ??=≠???? 典型题二、导数的四则运算法则 例题3根据基本初等函数的导数公式和导数运算法则,求下列函数的导数. (1)323y x x =-+

(2)sin y x x =?; (3)2(251)x y x x e =-+?; (4)cos x y x lnx =- A 变式练习1 1y x x =+ sin (cos )x y x x e =- cos x y x = +lnx 2sin y x x = sin cos x y x = A 变式2.求下列函数的导数 (1)y=23x +3cosx, (2)y=(1+2x)(2x-3) (3)y=sin x x (4)y=2 ln 1x x + A 变式3.已知f (x )=xcosx ﹣sinx ,则f′(x )=( ) 解:∵f (x )=xcosx ﹣sinx , ∴f ′(x )=cosx ﹣xsinx ﹣cosx=﹣xsinx , 已知函数f (x )=2 x lnx ,则f′(x )等于( ) 函数y=e x sinx 的导数等于( ) A . e x cosx B . e x sinx C . ﹣e x cosx D . e x (sinx+cosx ) 分析: 利用导数乘法法则进行计算,其中(e x )′=e x ,sin ′x=cosx . 解答: 解:∵y=e x sinx , ∴y ′=(e x )′sinx+(e x )?(sinx )′ =e x sinx+e x cosx

导数的四则运算导学案

主备人: 审核: 包科领导: 年级组长: 使用时间: §4导数的四则运算法则 【学习目标】 1、掌握导数的四则运算法则; 2、利用基本初等函数的导数公式和导数的四则运算法则求一些函数的导数。 【重点、难点】 重点:四则运算法则; 难点:四则运算法则的运用。 【使用说明与学法指导】 1.根据学习目标,自学课本内容,限时独立完成导学案; 2.用红笔勾画出疑难点,提交小组讨论; 【自主探究】 1.和(差)求导法则:若函数)(x f 、)(x g 有导数,则 []_______________)()(='±x g x f 2.积的求导法则:若函数)(x f 、)(x g 有导数,则[]_____ __________)()(='x g x f 3、商的求导法则:若函数)(x f 、)(x g 有导数,0)(≠x g 则_______________)()(='?? ????x g x f 【合作探究】 1、求下列函数的导数 (1)3334++-=x x x y (2)x x y tan = (3))cos (sin x x e y x += (4)x x y ln = (5)112+-=x x y (6)1ln 2+=x x y 2、已知函数()( )cos sin 4f x f x x π'=+,求)4(πf .

1、 设函数()b f x ax x =-,曲线()y f x =在点(2,(2)f 处的切线方程为 74120x y --=,求()y f x =的解析式。 【巩固提高】 1、设()2sin f x x x =-,若0()0f x '=且0(0,)x π∈,求0x . 2、点P 是曲线2ln y x x =-上的任意一点,求点P 到直线2y x =-的距离的最小值 . 3、已知函数32()2,()f x x ax g x bx c =+=+的图象都经过点P (20),,且在点P 处有公共切线,求)(x g 4、已知函数32 1 ()2()3f x x x ax a R =-+∈,在曲线()y f x =的所有切线中,仅有一条切线l 与直线y x =垂直。 (1)求a 的值和切线l 的方程; (2)设曲线()y f x =上任意点的切线的倾斜角为θ,求θ的取值范围。 【课堂小结】

数学基本初等函数的导数公式及导数的运算法则教案

§则 教学目标: 1.熟练掌握基本初等函数的导数公式; 2.掌握导数的四则运算法则; 3.能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数。 教学重点:基本初等函数的导数公式、导数的四则运算法则 教学难点: 基本初等函数的导数公式和导数的四则运算法则的应用 教学过程: 一.创设情景 四种常见函数y c =、y x =、2y x =、1y x = 的导数公式及应用 二.新课讲授 (一)基本初等函数的导数公式表 (二)导数的运算法则 导数运算法则 1.[]'''()()()()f x g x f x g x ±=± 2.[]' ''()()()()()()f x g x f x g x f x g x ?=± 3.[] ' ''2()()()()()(()0)()()f x f x g x f x g x g x g x g x ??-=≠???? (2)推论:[]''()()cf x cf x = (常数与函数的积的导数,等于常数乘函数的导数) 三.典例分析 函数 导数 函数 导数

例1.假设某国家在20年期间的年均通货膨胀率为5%,物价p (单位:元)与时间t (单位:年)有如下函数关系0()(15%)t p t p =+,其中0p 为0t =时的物价.假定某种商品的 01p =,那么在第10个年头,这种商品的价格上涨的速度大约是多少(精确到0.01) 解:根据基本初等函数导数公式表,有'() 1.05ln1.05t p t = 所以'10(10) 1.05ln1.050.08p =≈(元/年) 因此,在第10个年头,这种商品的价格约为0.08元/年的速度上涨. 例2.根据基本初等函数的导数公式和导数运算法则,求下列函数的导数. (1)323y x x =-+ (2)y =x x --+1111; (3)y =x · sin x · ln x ; (4)y = x x 4 ; (5)y =x x ln 1ln 1+-. (6)y =(2 x 2-5 x +1)e x (7) y =x x x x x x sin cos cos sin +- 【点评】 ① 求导数是在定义域内实行的.② 求较复杂的函数积、商的导数,必须细心、耐心. 例3日常生活中的饮水通常是经过净化的.随着水纯净度的提高,所需净化费用不断增加.已知将1吨水净化到纯净度为%x 时所需费用(单位:元)为 求净化到下列纯净度时,所需净化费用的瞬时变化率:(1)90% (2)98% 解:净化费用的瞬时变化率就是净化费用函数的导数. (1) 因为'2 5284(90)52.84(10090)c ==-,所以,纯净度为90%时,费用的瞬时变化率是52.84元/吨. (2) 因为'2 5284(98)1321(10090)c ==-,所以,纯净度为98%时,费用的瞬时变化率是1321元/吨. 函数()f x 在某点处导数的大小表示函数在此点附近变化的快慢.由上述计算可知,''(98)25(90)c c =.它表示纯净度为98%左右时净化费用的瞬时变化率,大约是纯净度为90%左右时净化费用的瞬时变化率的25倍.这说明,水的纯净度越高,需要的净化费用就越

相关主题
文本预览
相关文档 最新文档