微磨料水射流对工件表面抛光作用的研究
- 格式:doc
- 大小:13.23 KB
- 文档页数:3
邵飞等 磨料水射流抛光技术及其发展磨料水射流抛光技术及其发展邵飞,刘洪军,马颖(兰州理工大学有色金属新材料重点实验室,甘肃兰州730050) [摘 要] 磨料水射流抛光技术是应用于表面抛光加工的新技术。
利用含有细小磨料粒子的抛光液在高压作用下,与工件表面发生冲击、冲蚀而微去除材料,以达到抛光目的。
论述了磨料水射流抛光技术的基本原理和特点,以及影响抛光效果的主要工艺参数,并对其发展趋势进行了展望。
[关键词] 磨料水射流;表面抛光;磨料;工艺参数[中图分类号]TG175;TP69 [文献标识码]A [文章编号]1001-3660(2007)03-0064-03Polish i n g Techn i ques and D evelop m en t of Abra si ve W a ter JetSHAO F ei,L I U H ong 2jun,M A Ying(Key lab .of Advanced Non 2ferr ousMaterials,Lanzhou University of Science and Technol ogy,Lanzhou 730050,China )[Abstract] Polishing technique of abrasive water jet (AWJ )is an advance p r ocess which can be app lied t o sur 2face polishing .It makes use of high p ressure liquid which has tiny abrasive t o for m an effect of i m pact and er osi on on work 2p iece for polishing pur pose .The postulate and s pecialty of AWJ were summarized .The mostly technique para meters were illum inated .The tenydency of AWJ was vie wed .[Key words] Abrasive water jet;Surface polishing;Abrasive;Pr ogress para meter0 引 言[收稿日期]2006-11-31[作者简介]邵飞(1976-),男,江苏宜兴人,在读硕士,主要从事S LA 原型表面处理的相关技术研究。
超精密流体射流抛光加工技术研究与工艺系统开发目前,对于流体射流抛光加工技术的应用研究相对较少,且主要集中于去除机理研究、去除函数的优化及工艺参数实验等方面。
本文通过研究磨粒水射流加工技术进行快速、可靠的确定性去除的控制方法和工艺参数,及其对去除效率和去除函数轮廓造成的影响,探索流体射流加工技术的应用潜力和适用环境。
并采用流体射流技术开展超光滑光学元件的加工和回转对称面形误差的快速去除实验研究,验证射流抛光加工技术及其控制方法的可靠性和稳定性。
论文的主要研究内容如下:针对垂直射流时形成的W形去除函数,提出了采用回转函数的方法来取代通常采用的偏心式回转射流装置,从而得到虚拟的近高斯形去除函数;并提出逐层去除的驻留时间求解方法,实现了驻留时间图的快速有效求解及求解收敛的成功率。
针对传统抛光和小工具抛光加工中存在的中频误差问题,提出了一种随机路径的生成方法,并对比了不同加工路径下的生成表面特点。
根据确定性抛光加工的技术要求,开发了射流加工液压系统来满足确定性抛光加工中对射流束在长时间内保持压力稳定和不发散的功能要求。
针对不同工艺参数,比如射流压力、射流角度、射流距离等,进行定点射流实验,并研究了去除函数的轮廓变化特点。
结合计算流体仿真技术,对不同工艺参数设置下射流区域内的压力和速度分布,进行仿真研究。
通过实验结果与仿真结果的对比,揭示射流抛光加工中的材料去除机理。
针对在流体射流抛光(FJP)加工中,直接检测得到的去除函数并不呈理想的回转对称形,提出了解决方案。
一方面通过滤波和回转增强算法来减弱测量误差的影响;另一方面提出了增强算法来提高回转对称性,并在质量评价算法中添加修正因子来研究去除函数质量随射流时间的变化。
本文还对运动平台的动态反应及运动精度进行了检测,分析了可能造成抛光加工精度误差的影响因素;并根据分析结果,指导确定性抛光加工中的运动参数设置,对未来抛光加工装备及控制系统的开发提供了参考。
根据上述研究,本文开展了超精密光学镜片的射流修形加工实验研究。
磨料水射流抛光技术综述王中昱;张连新;孙鹏飞;李建;尹承真【摘要】磨料水射流抛光技术是一种新兴的确定性加工技术,目前主要用于光学系统中非球面镜,包括自由曲面的加工.其加工机理是通过高速水射流裹挟磨料颗粒冲击工件表面,形成对材料的微切削,从而产生对材料的去除.简要阐述了磨料水射流抛光技术的去除机理与特点,并探讨了其最新的发展方向.【期刊名称】《电加工与模具》【年(卷),期】2019(000)0z1【总页数】5页(P70-74)【关键词】磨料水射流;抛光;去除机理;发展趋势【作者】王中昱;张连新;孙鹏飞;李建;尹承真【作者单位】中国工程物理研究院机械制造工艺研究所,四川绵阳621900;中国工程物理研究院机械制造工艺研究所,四川绵阳621900;中国工程物理研究院机械制造工艺研究所,四川绵阳621900;中国工程物理研究院机械制造工艺研究所,四川绵阳621900;中国工程物理研究院机械制造工艺研究所,四川绵阳621900【正文语种】中文【中图分类】TG456.9随着现代光学系统镜面愈来愈趋向于复杂化,非球面镜面(包括自由曲面)被广泛应用于各个领域,随之而来的是对光学镜面的加工精度和表面质量要求越发严格,在前期加工工艺后必须通过非球面抛光技术对工件表面进行后期修正。
传统的抛光技术不适用于自由曲面的加工,难以保证加工质量及加工效率[1]。
在这种情况下,磨料水射流抛光技术(abrasive jet polishing,AJP)由于其柔性射流为载体、小粒径磨料颗粒为去除主导的独特加工方式,获得了极高的加工质量及自由可调的去除函数,同时具有无热加工、去除函数稳定可控、适用于高陡度内腔加工等优点,成为近年来的研究热点。
1 技术特点磨料水射流抛光技术是由纯水射流发展而来的磨料水射流技术,再经切割、钻井、破碎岩石应用等高压射流发展成为面向高精度光学元件加工的一种新兴的高精度表面加工技术。
磨料水射流抛光技术是通过高速运动的液体裹挟磨料颗粒冲击工件表面并与工件发生碰撞,形成冲蚀及剪切作用以去除材料。
磨料水射流抛光加工工艺参数优化研究磨料水射流抛光加工是在磨料水射流切割基础上演变而来的一种新型特种加工方法,相比于传统的机械抛光技术以及许多当代抛光技术,磨料水射流是唯一的一种冷加工方法,具有无工具磨损、无污染、反作用力小、加工柔性高、工件不会产生热变形等优越性。
而且,传统的抛光加工技术在加工细长管、异型曲面等复杂零部件时,因其抛光头无法触及,导致其加工难度大,甚至无法实现抛光处理。
因此,有必要对磨料水射流抛光加工技术进行深入研究。
本文基于液固两相流模型和流体仿真数学模型,通过仿真和实验等手段分别探讨了磨料水射流冲蚀工件的喷嘴内外流场,磨料水射流抛光工艺参数对工件表面质量的影响规律,并在传统的优化方法基础上引进人工智能算法对抛光加工参数进行了优化。
主要研究内容如下:(1)磨料水射流液固二相流基本特性研究。
基于射流流体理论、小孔口射流及射流边界层基础理论,探究了磨料水射流液固二相流的基本特性、水射流及磨料水射流的主要特征参数,重点探讨了磨料水射流中水射流和磨料射流分别对目标靶件的作用力,分析了磨料水射流冲蚀破坏去除材料的过程及材料去除机理;(2)基于流体仿真数学模型的磨料水射流冲蚀仿真分析。
利用Fluent软件数值模拟分析了水射流喷嘴外部流场,探讨了水射流喷嘴外部流体的流动特性,对比了纯水射流和磨料射流在相同条件下冲蚀工件时的速度、体积、压力及壁面剪切力分布特征,并通过冲蚀钢板、生物陶瓷的对比实验进行了验证,进行了磨料水射流冲蚀喷嘴内外流场的仿真分析,研究了变角度、变靶距及变压力下的磨料水射流冲蚀喷嘴外流场的速度、压力及壁面剪切力分布特征,并在相同条件下进行了实验初步验证;(3)磨料水射流抛光工艺参数对工件表面质量的影响研究。
基于磨料水射流抛光钢板实验,探讨了磨料水射流抛光工艺参数(射流初始压力、喷嘴横移速度、喷射角度、靶距、磨料流量、横向进给量)对工件表面加工质量的影响,通过正交试验,对实验数据的极差及方差分析,找到了抛光参数最优组合和各参数对表面粗糙度的影响率占比,通过响应面回归分析,建立了抛光工件后表面粗糙度的预测模型,并探讨了抛光工艺参数间的交互作用,最后对抛光工艺参数响应面寻优求解;(4)基于整合的ANN-GPS-SA磨料水射流抛光工艺参数优化。
微细磨料水射流切割技术研究发布时间:2022-10-19T07:31:30.800Z 来源:《中国建设信息化》2022年第11期第6月作者:龙伟崔志刚[导读] 微细磨料水射流切割技术时基于常规的高压磨料水射流切割技术而发展起来的新型精密加工技术。
本文探讨了龙伟崔志刚四川新川航空仪器有限责任公司 618300摘要:微细磨料水射流切割技术时基于常规的高压磨料水射流切割技术而发展起来的新型精密加工技术。
本文探讨了微磨料水射流切割加工的原理、相关技术,阐述其技术应用。
随着微磨料水射流切割技术的研究不断深入,其应用范围也将不断扩展,具有巨大的市场空间。
关键字:微细磨料;水射流;切割1、引言水射流技术最早在煤矿开采中使用,随着技术发展进入加工制造业,在切割加工领域得到广泛应用。
当水流经由微小口径的喷嘴以高压喷射的方式冲击到工件材料上,工件材料会由于水流的动能而产生割裂、剥落等变化。
当高速水射流中含有少量细小磨料颗粒并作用于加工工件表面时,可以借助高速磨粒的动能及其锋利的菱角刮擦工件表面,达到去除工件材料表面的目的。
和常规高压磨料水射流技术相比,微磨料水射流的射流压力更低,射流速直径和磨料粒径均较小,既保持了常规磨料水射流技术的有点,又提高了加工效率,可用于精密切割。
2、微磨料水射流加工基本原理微磨料水射流加工技术是通过供料系统提供微细磨料,将高压水与微细磨料混合加速,经过微细喷嘴形成微细射流,通过微细磨料对被加工材料的冲蚀实现材料的微量去除。
目前国内外的微磨料水射流加工主要有前混合式射流和后混合式射流两种。
前混合式射流预先将水、磨料、添加剂放入磨料罐,增压泵将水加压后进入磨料罐顶部将磨料从底部压出,经喷嘴形成磨料水射流对工件进行加工。
这种方式可以保证水和磨料混合均匀,系统压力较低,射流密集性好,能量利用率高;缺点是系统较为复杂,喷嘴由于极易磨损而寿命不长。
该技术适合精加工。
后混合式射流是先将低压水加压后经过切割头中的水喷嘴形成高速水射流,高速水射流在加速管内与磨料混合加速后经磨料喷嘴形成磨料水射流对工件进行加工。
流体抛光技术研究精密零件制造中的最终精加工是一种劳动强度大而不易控制的过程,它在全部制造成本中所占的比重有时可高达15%。
磨料流加工技术是一种能够保证精度、效率、经济的自动化光整加工方法,是解决精密零件最终精加工的一种有效方法[1]。
它是以一定的压力强迫含磨料的粘弹性物质(半流动状态的蠕变体或粘弹性体,称其为柔性磨料或粘弹性磨料)通过被加工表面,利用其中磨粒的刮削作用去除工件表面微观不平材料而达到对工件表面光整加工的目的。
磨料流加工是20世纪60 年代由美国两公司独立发展起来的,最初应用于航空、航天领域的复杂几何形状合金工件的去毛刺加工。
随着科学技术的飞跃发展,在宇航、导弹、电子、计算机等精密机械零件的工艺性能要求不断提高的情况下,以前用手工、机械、化学等方法对零件表面进行抛光、倒角、去毛刺均有其局限性,特别是对零件内小孔径、相互交叉的孔径及边棱进行抛光、倒角、去毛刺更是无能为力;而磨料流加工技术由于具有对零件隐蔽部位的孔、型腔研磨、抛光、倒圆角的作用,又有对外表面各种复杂型面研磨、抛光的能力,因而具有其它方法无法比拟的优越性。
目前,这项技术已应用在宇航和兵器工业,同时也扩展到了纺织、医疗、缝纫、精密齿轮、轴承、模具制造等其它机械行业。
近年来,Fletcher 等研究了磨料流加工中应用的高分子聚合物的热特性和流变性,认为介质的流变性对磨料流加工的成败具有重要的作用。
Davies 和Fletcher 研究了几种配料的流变性与其相应的加工参数之间的关系,结果表明黏度和磨料的比例都会影响温度和介质通过工件时的压力下降,在磨料流加工过程中温度是影响介质黏度的一个重要因素。
Williams 和Rajurkar 的研究表明,介质的黏度和挤压力主要决定着表面的粗糙度和材料去除率,表面粗糙度精度的改善主要发生在磨料介质的前几个挤压往复行程中,并提出了估算动态有效切削磨粒数目的方法和每个行程中磨粒磨损量的计算方法。
用于SLA原型的磨料水射流抛光工艺研究的开题报告一、研究背景与意义SLA(StereoLithography Apparatus)原型是快速成型技术的一种常见形式。
SLA原型生产的精度高、模型表面光滑,成本低,正广泛应用于汽车、飞机、造船、医疗等领域。
目前,大多数SLA原型是通过激光束将液态树脂材料从液面上方定点治愈成实体。
不过,现在越来越多的SLA原型对表面成品质量要求较高,例如对于高精度零件,表面的光滑度和精度是很关键的。
传统的磨削加工无法满足这种需求,然而换用传统抛光技术则需要更长的加工时间。
因此,寻找一种新的高效的表面加工工艺,成为了目前研究的重点。
近年来,磨料水射流加工(AWJM)技术被广泛使用于加工许多不同的材料表面,随着技术的发展,水射流抛光工艺变得越来越普遍。
比较其它特殊工艺,水射流抛光具有快捷、高效、更加清洁等优点,对于SLA 原型表面的加工也有更大的优势,因此值得深入研究。
二、研究内容和技术路线本研究的目标是开发一种磨料水射流抛光工艺,使其更适用于SLA 原型的表面加工,同时也要考虑到成本、效率、加工精度等因素。
具体的技术路线如下:1.设计实验样本:选择不同材料或孔径的SLA原型,测量样本表面的光洁度、粗糙度和硬度等参数;2.确定加工参数:设计6组实验方案,将AWJM处理的参数(比如激光功率、磨料流量、加工速度等)进行改变,进一步探究其对SLA原型表面的影响;3.测试样本表面质量:对各个实验方案处理后的实验样本进行粗糙度等参数的检测,并对其表面的微观图像和光洁度进行分析比较;4.优化工艺参数:根据测试分析的结果,对原先设计的6组实验方案及其加工参数进行优化,进一步提高抛光效果及加工速度;5.验证及结论:将最终选定的参数应用在所选的后续SLA原型加工样本上,进一步验证研究的可行性,最终总结得出研究结论。
三、预期成果本研究的主要成果有:1.成功开发一种适用于SLA原型表面加工的磨料水射流抛光工艺;2.在该工艺下,成功提高SLA原型表面的光滑度和精度;3.优化工艺参数,提高加工效率和成本控制;4.结论总结,给出研究结论和推荐工艺应用方向。
收稿日期:2018-01-05基金项目:国家自然科学基金项目(51275210)作者简介:赵漫漫(1982 -),女,陕西延安人,讲师,硕士,主要从事机电一体化科研和教学工作。
磨料水射流铣削加工表面质量的研究Research on surface quality of abrasive water jet milling赵漫漫1,3,黄涛涛2,3,何雪明2,3ZHAO Man-man 1,3, HUANG Tao-tao 2,3, HE Xue-ming 2,3(1.无锡机电高等职业技术学校,无锡 214028;2.江苏省食品先进制造装备技术重点实验室,无锡 214122;3.江南大学 机械工程学院,无锡 214122)摘 要:以磨料水射流铣削加工质量为核心,通过对45#材料进行铣削加工实验,采用单因素分析法,分析磨料水射流铣削加工时主要加工参数靶距S、喷嘴移动速度v、射流压力p、横向进给量L、铣削次数n对铣削加工质量的影响,得到了加工参数对表面质量的影响规律,为磨料水射流铣削加工其他材料提供了参考。
关键词:磨料水射流;铣削;加工参数;表面质量 中图分类号:TP69 文献标识码:A 文章编号:1009-0134(2018)08-0075-040 引言在现代工业生产活动中,金属材料和制品一直占据着重要的地位,但是传统的金属材料加工方法,容易产生热变形、刀具磨损以及能量损失过大等问题。
磨料水射流技术[1]作为一种新兴冷态加工技术,与传统加工方法相比,不存在热影响区、热变形、接触应力,具有加工材料广泛、稳定性好、质量高、柔性高、无刀具磨损以及绿色环保等优点,逐渐在各行各业得到广泛应用。
本文通过对45#进行铣削加工实验,探究磨料水射流加工参数对铣削表面质量的影响,为磨料水射流铣削加工其他材料提供参考。
在磨料水射流铣削加工方面,国内外研究较少。
周大鹏等[2]研究了各种材料应用水射流加工的可加工性。
彭家强等[3]对磨料水射流铣削对金属材料的去除力和去除模型进行了研究,为金属的铣削加工和切削去除分析提供了理论借鉴。
水射流微细加工技术的研究的开题报告
一、研究背景
水射流加工(WJM)技术是一种非传统加工方法,具有高速、高精度、高质量、无热影响、环保等优点,逐渐被广泛应用于航空、航天、汽车、电子、医疗等领域。
水射流微细加工技术(WJMM)是在传统水射流加工技术基础上进一步发展而来,其利用高压水射流瞬间撞击加工件表面,瞬间剪切材料形成微观特征,从而实现微细加工的需求。
但是在微细加工领域中,WJMM技术还存在一些挑战和难点,如如何准确控制加工精度、降低表面粗糙度和减少热损伤等。
二、研究目的
针对WJMM技术的一些难点和挑战,本研究旨在开发一种高效、稳定、可靠的WJMM技术,并具体研究以下问题:
1.探究水射流加工微细化的原理和机理;
2.研究不同参数对微细加工质量的影响,如喷口尺寸、加工压力、喷头速度等;
3.研究表面处理对微细加工质量的影响,如表面喷粉、热处理等;
4.研究WJMM技术在某些特定领域的应用情况。
三、研究方法
1.文献研究法:通过查阅文献、网络资源、专家意见等途径,了解WJMM技术的研究历史、现状和趋势。
2.实验研究法:通过制作样品,设计实验方案,选择合适的参数进行微细加工实验,对加工后材料的性能进行分析。
3.数值模拟法:通过计算机模拟和分析,模拟出不同参数下的水射流微细加工过程,为参数优化及加工工艺提供科学依据。
四、研究意义
本研究将有益于推动WJMM技术在汽车、机械、电子、医疗、航空等领域的应用,为产业升级和经济发展做出贡献。
同时,本研究还将探讨WJMM技术的加工原理和机理,对其深入了解和掌握具有重要的理论和实践价值。
此外,本研究还可以为其他非传统加工技术的研究提供一定的借鉴和参考价值。
磨料液体射流抛光技术研究进展陈逢军 苗想亮 唐 宇 尹韶辉湖南大学国家高效磨削工程技术研究中心,长沙,410082摘要:论述了磨料液体射流抛光过程中的材料去除机理,介绍了磨料液体射流加工系统平台的国内外研究成果㊂从速度变化㊁材料去除㊁表面演化㊁表面粗糙度㊁数值模拟五个方面阐述了磨料液体射流数学模型的构建状况㊂系统分析了主要工艺参数如磨粒动能㊁射流压力㊁磨料㊁喷射角度㊁喷射距离㊁添加剂对加工结果的影响规律,并总结了磨料液体射流抛光技术发展历程㊂最后针对其将来的研究方向与内容给出了进一步的建议与展望㊂关键词:磨料射流;磨粒磨料;流体抛光;超光滑加工;材料去除中图分类号:T H 16 D O I :10.3969/j.i s s n .1004‐132X.2015.22.021R e s e a r c hP r o g r e s s e s o nA b r a s i v eF l u i d J e t P o l i s h i n g T e c h n o l o g yC h e nF e n g j u n M i a oX i a n g l i a n g T a n g Yu Y i nS h a o h u i N a t i o n a l E n g i n e e r i n g R e s e a r c hC e n t e r f o rH i g hE f f i c i e n c y G r i n d i n g ,C h a n gs h a ,410082A b s t r a c t :T h em e c h a n i s mo fm a t e r i a l r e m o v a l i nt h e p r o c e s so f p o l i s h i n g w a sd i s c u s s e d .T h e r e -s e a r c h r e s u l t s a b o u t j e tm a c h i n i n g s y s t e ma n d p l a t f o r m w e r e i n t r o d u c e d .T h ed e v e l o p m e n t o fm a t h e -m a t i c a lm o d e lo fa b r a s i v ef l u i d j e tw e r ed e s c r i b e d ,i n c l u d i n g s p e e dc h a n ge m o d e l ,m a t e r i a l r e m o v a l m o d e l ,s u rf a c e e v o l u t i o nm o d e l ,s u r f a c e r o u gh n e s sm o d e l ,n u m e r i c a l s i m u l a t i o nm o d e l .T h e e f f e c t l a w s o f s o m em a j o r p r o c e s s p a r a m e t e r ss u c ha s p a r t i c l ee n e r g y ,j e t p r e s s u r e ,a b r a s i v e ,j e ta n gl e ,s t a n d ‐o f f d i s t a n c e ,a d d i t i v e o nm a c h i n i n g r e s u l t sw e r e a n a l y z e d ,a n d t h e r e s e a r c h p r o g r e s s e s o f a b r a s i v e j e t p o l i s -h i n g t e c h n o l o g y we r e s u mm a r i z e d ,a n d t h e p r o b a b l ef u r t h e r r e s e a r c hw a s f o r e c a s t e d .K e y w o r d s :a b r a s i v e j e t ;a b r a s i v e p a r t i c l e ;f l u i d p o l i s h i ng ;s u p e r ‐s m o o th m a c hi n i n g ;m a t e r i a l r e -m o v a l收稿日期:20150522基金项目:国家自然科学基金资助项目(51205120);高等学校博士学科点专项科研基金资助项目(20120161120001);中央高校基本科研业务费专项资金资助项目(531107040147)0 引言随着科技快速发展,机械电子㊁精密仪器㊁光学元件㊁医疗器械等领域的产品制造要求也在不断地提高㊂而在精密或超精密加工一些异形面㊁细长件或者微小区域时,由于这类构件加工难度大,故需要选择特殊的加工方法以提高产品质量㊂磨料液体射流抛光技术是近年来迅速发展起来的一种新型精密与超精密光学加工工艺,它也是一种计算机控制的小磨头柔性抛光技术㊂20世纪60年代,美国的B o b o 获得了将磨料液体射流技术用于钻油井的相关专利[1]㊂经过几十年的发展,磨料液体射流在清洗㊁切割㊁抛光㊁车削㊁铣削以及钻井㊁破碎岩石等领域得到了广泛的应用㊂与传统抛光技术相比,磨料液体射流抛光技术具有能加工任意面形光学元件㊁柔性强㊁抛光精度高㊁易控制和成本低等优点,在加工领域已得到了一定的应用㊂本文分别对磨料液体射流抛光技术的机理与方法㊁数学模型以及工艺参数等方面的研究现状进行了总结分析,并对磨料液体射流加工技术的发展趋势进行了展望㊂1 射流抛光原理与方法1.1 磨料液体射流抛光原理磨料液体射流抛光的基本原理如图1所示㊂混有微细磨粒的抛光液以一定速度由喷液磨头喷出与工件表面发生碰撞,并沿工件表面切向流动,产生强大的冲击力及剪切力,从而实现工件表面的材料微去除[2]㊂图1 液体射流抛光原理图[2]磨料液体射流抛光可以获得具有纳米级精度且无亚表面损伤的超光滑表面㊂文献[3]对B K 7进行了3h 磨料液体射流定点抛光试验后,抛光㊃6113㊃中国机械工程第26卷第22期2015年11月下半月Copyright ©博看网. All Rights Reserved.点处最大深度为44n m,抛光点中心处的粗糙度为1.2n m㊂表明可以通过极少量材料的塑性移除来获得极低的表面粗糙度值㊂K9玻璃的磨料液体射流抛光试验表明,垂直喷射时材料的去除区域呈W形的环状分布,对材料去除的主导作用是磨粒剪切力,而直接冲击占次要地位[4]㊂通过对纳米级颗粒与光学元件表面碰撞过程分析可知,纳米级颗粒具有足够高的入射动能才能克服阻碍势垒,与工件表面原子发生界面化学吸附反应[5]㊂通过水射流冲蚀石材试验发现,单纯的水射流的中心射流对材料具有去除作用,在成穴力㊁剪切应力和水楔的共同作用下,材料以脆性和塑性断裂方式实现去除㊂如图2所示,磨料水射流冲蚀区分为中心射流区(圆形区域ϕA)㊁成穴区(ϕA㊁ϕB之间的环形区)和散射区(ϕB㊁ϕC之间的环形区),材料的主要去除量在成穴区[6]㊂磨料液体射流重复抛光时,由于受压力波动㊁磨粒沉降和流体紊动等因素的影响,材料去除量呈现波动不稳性,从而增大了材料去除量的误差范围[7]㊂图2 射流冲蚀区截面轮廓[6]1.2 磨料液体射流加工系统喷射系统是射流加工的关键,它将压力能转变为动能从而产生高能流束并完成水射流加工㊂而喷嘴结构对射流的动力学特性㊁去除函数及抛光元件的表面粗糙度都会产生很大的影响㊂研究发现,利用收缩角为13°㊁长径比为4的锥柱型喷嘴进行射流抛光能获得较好的射流特性,其射流出口断面的紊动强度低㊁流速和磨料浓度分布均匀[8]㊂保持磨料浓度均匀可以使磨料液体射流抛光的效果更好㊂由于流化混合方式结构简单,易于安装,故可使用流化方式搅拌磨料混合液使其更加均匀㊂使用流化床辅助磨料液体射流加工系统对铝合金管道内表面进行抛光,表面粗糙度可从3μm减小到0.6μm,加工效率也可得到较大的提高[9]㊂供料系统需要保证精确㊁均匀㊁连续地供料,从而提高磨料液体射流加工的效率和射流性能㊂对于磨料液体射流,一般有如图3所示的前混合和后混合两种供料方式㊂前混合磨料液体射流是磨料先和水均匀混合成磨料料浆,然后经喷嘴喷射形成射流㊂如图4所示,结合流态化原理,依靠高压水的快速流动将高压磨料罐中的磨料负压吸入并流态化成均匀的磨料悬浮液,再经过三通与高压水混合,形成高速稳定的磨料料浆[10]㊂后混合磨料液体射流则是高速水射流与低速磨粒分别进入混合腔进行充分混合,同时高速水射流的部分能量传递给磨料,通过喷嘴进入喷射状态㊂前混合方式所需压力低,混合效果好,能量利用率高,加工精度高,但设备复杂,喷嘴磨损严重,而后混合方式正好与之相反㊂因此,在设计磨料液体射流加工系统时必须考虑实际加工精度及成本,从而选择合适的混合方式㊂1.高压水泵2.混合腔3.喷嘴4.截止阀5.储料箱6.浓度调节阀(a)前混合式1.高压水泵2.水喷嘴3.混合腔4.喷嘴5.储料箱(b)后混合式图3 两种磨料液体射流原理示意图图4 前混合磨料混合系统[11]1.3 磨料液体射流平台B e a u c a m p等[11]在一个7自由度的运动平台上对非球面光学元件进行磨料液体射流抛光试验,面型精度值达到50n m㊂李天生等[12]设计了一种磨液射流磨削抛光装置,该装置通过压缩装置在箱体内产生负压将磨料液从吸管吸上来,在压缩气流的作用下形成水射流,喷射在工件表面上,同时工件在旋转筒的带动下不断旋转,从而完成整个抛光过程㊂监测磨料液体射流加工过程对工艺参数的优化是非常重要的,国内外学者对此也作了相关的研究㊂可以利用测力传感器和探针精确确定射流束的直径[13]㊂使用声发射传感原㊃7113㊃磨料液体射流抛光技术研究进展 陈逢军 苗想亮 唐 宇等Copyright©博看网. All Rights Reserved.理对磨料液体射流工件侵蚀部分进行监测,可以控制加工工艺参数以提高加工质量[14]㊂F a n等[15]使用粒子图像测速(p a r t i c l e i m a g ev e l o c i m -e t r y,P I V )技术对微磨料液体射流的粒子速度分布进行了试验研究㊂试验发现粒子射流几乎是线性膨胀的,平均膨胀角度大约为7.2°㊂2 磨料液体射流数学模型为了对磨料液体射流的加工效率及精度进行定量分析,国内外学者根据材料去除机理㊁射流特性以及试验结果,建立了相关的数学模型进行预测与控制㊂图5展示了目前磨料射流数学模型的主要研究内容㊂施春燕等[7]对射流抛光的紊动冲击射流特性进行了研究,并构建了射流抛光的垂直和斜冲击射流模型,而且将R N G k ‐ε理论用于模型的计算㊂图5 磨料射流数学模型2.1 速度变化模型射流加工中射流截面上磨粒的平均速度可以利用磨粒的能量模型进行精确预测,其模型预测结果和试验结果的皮尔逊相关系数达到95%[16]㊂W a n g[17]基于射流动态特性的C F D 仿真研究,提出了可以评估射流方向上流体内部任意位置速度变化的数学模型㊂该模型与C F D 模型预测结果的平均误差在1%以内,基本可以满足对射流流体速度的预测㊂2.2 材料去除模型材料去除模型的应用可以有效地提高材料去除效率㊂在对磨料水射流车外圆的试验中,使用一种考虑了加工过程中冲击角度变化的模型,可以很好地提高加工过程中对工件直径的预测精度[18]㊂K u m a r 等[19]建立了基于有限元仿真的三维侵蚀模型,并对多磨粒冲击侵蚀过程进行了仿真计算㊂T y a gi [20]建立了基于磨粒动能的材料去除率数学模型,研究了磁场和电场对材料去除率的影响,材料的去除率随着磁场强度的增大而减小,随着电场强度的增大而变大㊂2.3 表面粗糙度模型表面粗糙度模型能对工艺参数进行优化,以获得最佳工艺参数,从而提高表面质量㊂A z m i r等[21]采用磨料水射流加工了玻璃环氧树脂复合材料,应用分段线性回归方法建立了加工表面粗糙度模型㊂C h e n 等[22]同样基于大量试验数据,建立了磨粒水射流抛光表面粗糙度模型,其预测结果的平均偏差为3.8%㊂C h e 等[23]建立了应用磨粒水射流抛光超硬材料的表面粗糙度理论模型,从理论上反映了各个工艺参数的变化会对表面粗糙度的影响㊂2.4 表面演化模型磨料水射流抛光时,冲击点处的面形变化会对工件的表面粗糙度㊁面形精度及去除效果产生影响,方慧等[4]㊁刘增文等[6]㊁施春燕等[7]对此作了相关研究,但他们较少考虑工艺参数对冲击点面形变化的影响㊂一种基于窄带水平集法的表面演化模型解释了微磨料液体射流加工中掩膜的磨损和磨粒的二次冲击问题,从而极大地缩短了加工时间[28]㊂M a 等[25]建立了可以预测磨料液体射流加工宽度与射流速度的经验关系模型㊂G e -t u 等[24]根据试验数据对微磨料液体射流加工脆性材料时的表面轮廓演化模型进行了改进㊂2.5 数值模拟通过对磨料液体射流过程进行数值模拟分析,可以促进实验与理论研究的发展㊂刘国勇等[27]基于C F D 多相流混合物模型对前混合磨料水射流混合腔的内部流场进行了数值模拟,当收缩锥角为30°时可获得较好的流场性能㊂V O F ㊁M i x t u r e 和E u l e r 模型在磨料液体射流的C F D 数值模拟过程中有着非常重要的应用㊂使用M i x -t u r e 模型可以对磨料在混合腔中的混合过程进行仿真,并且能够获得混合腔内磨粒的运动状态[29]㊂该模型也被应用于喷嘴结构的数值分析中,可以得出锥直型喷嘴的长径比在2~3时可获得最佳的射流速度[30]㊂陈林等[26]基于多相流E u l e r 模型对几种典型的后混合磨料水射流喷嘴的内流场进行了数值模拟,当圆柱段长度为出口直径的23~37倍时,磨粒可获得最大速度㊂陆金刚等[31]采用V O F 模型对自由水射流流场进行了数值模拟,发现喷嘴出口处空气向喷嘴内部卷吸,一定程度上提高了其集束性,而射流上游的湍流动能大小及漩涡强度对射流的集束性影响显著㊂3 磨料液体射流工艺参数优化磨料液体射流加工的材料去除效率及表面粗糙度受许多工艺参数的影响,如图6和图7所示㊂分析和研究磨料液体射流加工工艺参数并进行优㊃8113㊃中国机械工程第26卷第22期2015年11月下半月Copyright ©博看网. All Rights Reserved.化对充分发挥其抛光性能非常关键㊂李兆泽等[32]研究了射流抛光主要工艺参数对抛光效率和侵蚀形貌的影响:选取喷射角度90°,喷射距离15mm ,抛光液浓度4%,射流速度25m /s,工作时间5m i n ,对平面K 9玻璃进行抛光试验,其表面粗糙度约为2.25n m ,抛光速率可达到30n m /m i n㊂图6 影响材料去除的主要参数T s a i 等[33]对S K D 61进行了磨料液体射流抛光优化试验,获得使工件表面粗糙度达到最佳的加工条件为:粒径为1.6μm 左右的S i C 磨料和水的混合比例为1∶2㊁冲击角度为30°㊁射流压力为0.4M P a ㊁喷射距离为10mm ,其表面粗糙度从1.03μm 减小到0.13μm ㊂M i m u r a 等[43]将单晶4H ‐S i C 的表面抛光到表面粗糙度R M S 值为0.323n m ,表面晶体结构完整㊂Z h a n g 等[44]对K 9玻璃进行了磨料液体射流抛光,表面粗糙度R M S 值达到了0.935n m ㊂而W a n g 等[45]对石英玻璃进行加工,R M S 值达到0.123n m ㊂宋岳干等[46]对0C r 18N i 9S i 不锈钢进行抛光,使得表面粗糙度值从2.203μm 减小到1.195μm ㊂(1)磨粒动能㊂在磨料液体射流过程中磨粒速度越大,其动能也越大,对表面影响也越明显㊂图8所示为对硼酸玻璃进行磨料水射流抛光的试验结果,加工后的表面粗糙度随磨粒动能增大而增大[35]㊂(2)射流压力㊂一定范围内,压力越大,射流速度越高,磨粒能够获得的能量也越大,材料去除量就越大㊂玻璃和环氧树脂复合材料压层板磨料水射流加工试验证明了增大工作压力和磨料流量可以很好地改善加工性能,减小喷射距离和移动速率也能提高加工性能,而喷射角度对加工质量影响不大[34]㊂因此,增大射流过程的动能能够获得更好的表面质量㊂图7 表面粗糙度的研究状况㊃9113㊃磨料液体射流抛光技术研究进展陈逢军 苗想亮 唐 宇等Copyright ©博看网. All Rights Reserved.图8 表面粗糙度与磨粒动能的关系[35](3)磨料㊂对于硬度较高的工件表面,宜采用具有较大磨粒直径和较高浓度添加剂的磨料液;对于硬度较低的工件表面,宜采用磨粒直径较小和添加剂浓度较低的磨料液[37]㊂而增大磨粒硬度则能提高材料去除率和表面粗糙度[38]㊂(4)喷射角度㊂不同喷射角度对材料去除面形会产生影响㊂通过射流抛光喷射角度的仿真模拟分析得出,当射流与工作壁面垂直时,抛光区域整个面形呈W形状分布;随着冲击角度的减小,去除面形呈越来越明显的弯月形状分布[39]㊂喷射角度的大小对侵蚀速率也会产生一定的影响,使用射流速率为106m/s㊁粒径为50μm的A l2O3磨料对铝㊁铝合金㊁不锈钢进行加工,当喷射角度在20°~35°时侵蚀速率达到最高[40]㊂使用粒径为25μm的A l2O3磨粒在有机玻璃上进行微细磨料喷射加工,当喷射倾斜角度为55°时,喷嘴扫描方向工件表面的侵蚀速率影响较大[24]㊂(5)喷射距离㊂喷射距离对材料去除率具有显著影响㊂射流在初始阶段还未稳定,部分磨粒未参与剪切作用,去除量很小㊂当喷射距离达到一定尺寸时,磨料液体射流达到稳定状态,材料去除量增大至最大㊂随着工作距离进一步增大,磨料的动能降低,冲蚀能力下降,从而降低了材料的去除率㊂当喷射距离在8~10mm范围内时,去除效率最高,之后随着喷射距离的增大而减小[36]㊂(6)添加剂㊂添加剂可以较好地改变材料的去除效率㊂例如使用粒径为80μm左右的S i C对玻璃进行磨粒流体射流加工时,当研磨液中加入丙酮酸和磷酸可以使材料去除率大大提高,而加入高分子聚合物聚丙烯酰胺对材料的去除率影响更大[41]㊂Y a n等[42]使用粒径为5μm左右的S i C 磨料对S K D61进行水射流抛光,当使用不涂蜡磨料时表面粗糙度从0.36μm减小到0.054μm;而当使用涂蜡磨料时表面粗糙度减小到0.049μm㊂故使用添加剂可以提高抛光后的表面粗糙度㊂4 磨料液体射流抛光技术的发展趋势图9展示了磨料液体射流抛光技术在各个领域比较重要的研究进程㊂虽然在国内外该技术已获得了较多的研究成果,但还存在许多问题亟待解决㊂(1)材料去除机理的系统性理论研究㊂材料去除机理总体上可以分为微观去除机理和宏观去除机理㊂单个磨粒对材料去除作用的研究是目前微观加工机理的主要研究内容,而射流则表现为磨粒与流体共同对材料的复合作用,而目前并没有成熟的系统化理论㊂对宏观加工机理的研究,目前主要通过试验和仿真来完成,缺少系统的理论公式,很难用于指导磨料液体射流抛光技术的应用㊂因此,将磨料液体射流在宏观方面和微观方面去除机理通过统一化的理论表达出来将成为今后磨料液体射流抛光技术的一个重要研究方向㊂(2)材料去除模型㊂目前国内外已经有部分学者建立了各类磨料液体射流抛光的数学模型㊂但对于射流加工过程中存在的部分用数学模型难以准确描述的复杂现象研究较少,如射流流体中介质耦合㊁磨粒与流体相互作用㊁磨粒相互运动干涉㊁磨粒破碎及磨料对材料多次冲击等微观作用的模型建立与模拟㊂另外,关于射流的类别与结构形式㊁射流的速度及能量分布模型的研究也不多,需要进一步深入研究㊂而且目前建立的多数经验模型也包含了许多未知的参数,很难用于生产实践,对这些模型的进一步改进非常必要㊂(3)磨料液体射流控制方法㊂工艺过程控制策略与控制方法也是磨料液体射流加工的重要研究内容㊂例如将低压或者负压替代高压射流㊁多种磨粒共同作用,低温或高温环境下射流抛光㊁特殊光照射下的特殊材料射流抛光,等等㊂智能化的加工设备和控制系统可以降低对人工操作的依赖性㊁提高加工效率和系统稳定性㊂所以,需要根据不同工艺过程研究出加工设备和系统的不同控制方法㊂另外,应建立磨料液体射流加工的工艺数据库,以在不同条件下实现磨料液体射流加工的控制㊂(4)工艺参数优化的研究㊂对磨料液体射流加工工艺的优化是目前国内外学者研究得最广泛㊁最直接的内容之一㊂由于磨料液体射流抛光的基础与应用的研究还处于初步发展阶段,故对其工艺参数进行深入准确的研究非常必要㊂同时,磨料液体射流周围环境如温度㊁气压等对加工㊃0213㊃中国机械工程第26卷第22期2015年11月下半月Copyright©博看网. All Rights Reserved.图9 磨料流体射流抛光发展历程的影响研究很小,而该技术应用于精密超精密加工时,必须考虑这些影响因素㊂另外,复合加工工艺也是现在的研究热点,目前对于磨料液体射流抛光与其他加工工艺的复合工艺研究较少,可以尝试与精密磨削㊁车削㊁铣削㊁其他研抛等工艺的复合,以获得更优的抛光效果与效率㊂(5)磨料液体射流抛光技术应用领域的扩展㊂由于磨料液体射流抛光技术尚待完善,且加工成本较高,故目前只是应用在部分科技领域,在高科技军事方面应用较少㊂随着新材料㊁新结构㊁新要求的产品制造技术不断涌现,部分传统制造技术无法满足要求时,磨料液体射流抛光技术能够凭借其独特的优势发挥其作用㊂此外,磨料液体射流技术在微型零件的应用领域可以进一步扩展,尤其是微型光学非球面元件的制造领域㊂参考文献:[1] 邵飞,刘洪军,马颖,等.磨料水射流抛光技术及其发展[J ].表面技术,2007,36(3):64‐66.S h a o F e i ,L i u H o n g j u n ,M a Y i n g ,e ta l .P o l i s h i n g T e c h n i q u e s a n dD e v e l o pm e n t o fA b r a s i v e W a t e r J e t [J ].S u r f a c eT e c h n o l o g y ,2007,36(3):64‐66.[2] 马占龙,刘健,王君林.射流抛光材料去除机理及影响因素分析[J ].应用光学,2011,32(6):1206‐1211.M aZ h a n l o n g ,L i uJ i a n ,W a n g J u n l i n .M a t e r i a lR e -m o v a lM e c h a n i s ma n dI n f l u e n c eF a c t o ro fF l u i dJ e tP o l i s h i n g [J ].J o u r n a lo f A p p l i e d O p t i c s ,2011,32(6):1206‐1211.[3] 张玲花.射流抛光用于纳米深度修形[J ].光机电信息,2011,28(3):1‐5.Z h a n g L i n g h u a .J e tP o l i s h i n g fo rN a n o ‐m o d i f i c a t i o n [J ].OM EI n f o r m a t i o n ,2011,28(3):1‐5.[4] 方慧,郭培基,余景池.液体喷射抛光材料去除机理的研究[J ].光学技术,2004,30(2):248‐250.F a n g H u i ,G u oP e i j i ,Y uJ i n g c h i .R e s e a r c ho n M a t e -r i a lR e m o v a lM e c h a n i s mo fF l u i dJ e tP o l i s h i n g [J ].O p t i c a lT e c h n i q u e ,2004,30(2):248‐250.[5] S o n g X i a o z o n g ,Z h a n g Y o n g ,Z h a n g F e i h u .S t u d y on R e m o v a l M e c h a n i s m o f N a n o pa r t i c l e C o l l o i d J e t M a c h i n i n g[J ].A d v a n c e d M a t e r i a l sR e s e a r c h ,2008,53/54:363‐368.[6] 刘增文,黄传真,朱洪涛.高压磨料水射流加工中材料去除机理研究[J ].金刚石与磨料磨具工程,2010,30(4):21‐29.L i u Z e n g w e n ,H u a n g C h u a n z h e n ,Z h u H o n g t a o .M e c h a n i s m o f M a t e r i a lR e m o v a lb y H i ghP r e s s u r e A b r a s i v eW a t e r j e t [J ].D i a m o n d &A b r a s i v e sE n g i -n e e r i n g,2010,30(4):21‐29.[7] 施春燕,袁家虎,伍凡,等.射流抛光误差分析与材料去除稳定性研究[J ].光学学报,2011,31(1):170‐174.S h i C h u n y a n ,Y u a n J i a h u ,W uF a n ,e t a l .R e s e a r c ho f E r r o r sA n a l y s i sa n d M a t e r i a lR e m o v a lS t a b i l i t y in F l u i d J e tP o l i s h i n g [J ].A c t aO p t i c aS i n i c a ,2011,31(1):170‐174.[8] 施春燕,袁家虎,伍凡,等.射流抛光喷嘴的设计[J ].光电工程,2008,35(12):131‐135.S h i C h u n y a n ,Y u a nJ i a h u ,W uF a n ,e t a l .N o z z l eD e -s i g no f F l u i d J e t P o l i s h i n g [J ].O p t o ‐e l e c t r o n i cE n g i -n e e r i n g ,2008,35(12):131‐135.[9] B a r l e t t a M ,G u a r i n oS ,R u b i n oG ,e t a l .P r o gr e s s i n F l u i d i z e dB e dA s s i s t e dA b r a s i v e J e tM a c h i n i n g (F B ‐A J M ):I n t e r n a lP o l i s h i n g ofA l u m i n i u m T u b e s [J ].I n t e r n a t i o n a l J o u r n a l o fM a c h i n eT o o l s&M a n u f a c -t u r e ,2007,47(3/4):483‐495.[10] 徐州浩通水射流科技有限公司.一种前混合磨料㊃1213㊃磨料液体射流抛光技术研究进展陈逢军 苗想亮 唐 宇等Copyright ©博看网. All Rights Reserved.水射流磨料混合系统:中国,201410132350.3[P].2014‐07‐30.[11] B e a u c a m p A,N a m b aY.S u p e r‐s m o o t hF i n i s h i n g o fD i a m o n d T u r n e d H a r d X‐r a y M o l d i n g D i e s b yC o m b i n e dF l u i d J e t a n dB o n n e t P o l i s h i n g[J].C I R PA n n a l s‐M a n u f a c t u r i n g T e c h n o l o g y,2013,62(1):315‐318.[12] 李天生,徐慧.一种磨削抛光装置的设计及其试验[J].机床与液压,2009,37(9):34‐36.L iT i a n s h e n g,X uH u i.T h eD e s i g no fG r i n d i n g a n dP o l i s h i n g D e v i c e a n dI t sE x p e r i m e n t a t i o n[J].M a-c h i n eT o o l&H yd r a u l i c s,2009,37(9):34‐36.[13] O r b a n i cH,J u n k a rM,B a j s i c I,e t a l.A n I n s t r u m e n tf o rM e a s u r i ng A b r a s i v eW a t e r J e t D i a m e t e r[J].I n-t e r n a t i o n a l J o u r n a l o fM a c h i n eT o o l s&M a n u f a c-t u r e,2009,49(11):843‐849.[14] R a b a n iA,M a r i n e s c uI,A x i n t eD.A c o u s t i cE m i s-s i o nE n e r g y T r a n s f e rR a t e:A M e t h o d f o rM o n i t o-r i n g A b r a s i v e W a t e r j e t M i l l i n g[J].I n t e r n a t i o n a lJ o u r n a l o f M a c h i n e T o o l s&M a n u f a c t u r e,2012,61:80‐89.[15] F a nJ,L iH,W a n g J,e ta l.A S t u d y o f t h eF l o wC h a r a c t e r i s t i c s i n M i c r o‐a b r a s i v eJ e t s[J].E x p e r i-m e n t a lT h e r m a la n d F l u i dS c i e n c e,2011,35(6):1097‐1106.[16] N a r a y a n a nC,B a l zR,W e i s sD A,e t a l.M o d e l l i n go fA b r a s i v eP a r t i c l eE n e r g y i n W a t e rJ e t M a c h i-n i n g[J].J o u r n a l o fM a t e r i a l sP r o c e s s i n g T e c h n o l o-g y,2013,213(12):2201‐2210.[17] W a n g J.P a r t i c l e V e l o c i t y M o d e l sf o r U l t r a‐h i g hP r e s s u r eA b r a s i v eW a t e r j e t s[J].J o u r n a l o fM a t e r i-a l sP r o c e s s i n g T e c h n o l o g y,2009,209(9):4573‐4577.[18] M a n uR,B a b uN.A nE r o s i o n‐b a s e d M o d e l f o rA b-r a s i v eW a t e r j e tT u r n i n g o fD u c t i l e M a t e r i a l s[J].W e a r,2009,266(11/12):1091‐1097. [19] K u m a rN,S h u k l a M.F i n i t eE l e m e n tA n a l y s i so fM u l t i‐p a r t i c l e I m p a c t o nE r o s i o n i nA b r a s i v e W a-t e r J e tM a c h i n i n g o fT i t a n i u m A l l o y[J].J o u r n a l o fC o m p u t a t i o n a la n d A p p l i e d M a t h e m a t i c s,2012,236(18):4600‐4610.[20] T y a g iR.A b r a s i v e J e tM a c h i n i n g b y M e a n so fV e-l o c i t y S h e a rI n s t a b i l i t y i n P l a s m a[J].J o u r n a lo fM a n u f a c t u r i n g P r o c e s s e s,2012,14(3):323‐327.[21] A z m i r M A,A h s a n A K.I n v e s t i g a t i o no n G l a s s/E p o x y C o m p o s i t eS u r f a c e s M a c h i n e db y A b r a s i v eW a t e r J e tM a c h i n i n g[J].J o u r n a l o fM a t e r i a l sP r o-c e s s i n g T e c h n o l o g y,2008,198(1/3):122‐128.[22] C h e n T i a n x i a n g,W a n g C h e n g y o n g.I n v e s t i g a t i o ni n t o R o u g h n e s so fS u r f a c e P o l i s h e d b y A b r a s i v eW a t e r j e t w i t h T a g u c h i M e t h o d a n d D i m e n s i o n a lA n a l y s i s[J].M a t e r i a l sS c i e n c eF o r u m,2013,723:188‐195.[23] C h eC u i l i a n,H u a n g C h u a n z h e n,W a n g J,e t a l.T h e-o r e t i c a lM o d e l o fS u r f a c eR o u g h n e s s f o rP o l i s h i n gS u p e rH a r d M a t e r i a l sw i t hA b r a s i v e W a t e r j e t[J].K e y E n g i n e e r i n g M a t e r i a l s,2008,375/376:465‐469.[24] G e t u H,G h o b e i t y A,S p e l tJ,e ta l.A b r a s i v eJ e tM i c r o‐m a c h i n i n g o fP o l y m e t h y l m e t h a c r y l a t e[J].W e a r,2007,263(7/12):1008‐1015. [25] M aC,D e a m R.A C o r r e l a t i o nf o rP r e d i c t i n g t h eK e r f P r o f i l e f r o m A b r a s i v e W a t e r J e tC u t t i n g[J].E x p e r i m e n t a lT h e r m a la n dF l u i d S c i e n c e,2006,30(4):337‐343.[26] 陈林,雷玉勇,郭宗环,等.基于F L U E N T的后混合磨料水射流喷嘴内流场的数值模拟[J].润滑与密封,2012,37(4):66‐69.C h e nL i n,L e iY u y o n g,G u oZ o n g h u a n,e ta l.N u-m e r i c a l S i m u l a t i o no fP o s t.M i x e dA b r a s i v e W a t e rJ e tN o z z l eB a s e do nF l u e n t[J].L u b r i c a t i o nE n g i-n e e r i n g,2012,37(4):66‐69.[27] 刘国勇,陈欣欣,朱冬梅,等.前混合磨料水射流除鳞喷嘴混合腔内部流场[J].北京科技大学学报,2014,36(6):830‐837.L i uG u o y o n g,C h e nX i n x i n,Z h uD o n g m e i,e t a l.I n-t e r n a lM i x i n g C h a m b e rF l o w F i e l do faP r e m i x e dA b r a s i v eW a t e r J e tD e s c a l i n g N o z z l e[J].J o u r n a l o fU n i v e r s i t y o f S c i e n c e a n d T e c h n o l o g y B e i j i n g,2014,36(6):830‐837.[28] B u r z y n s k iT,P a p i n iM.M o d e l l i n g o fS u r f a c eE v o-l u t i o ni n A b r a s i v eJ e t M i c r o‐m a c h i n i n g I n c l u d i n gP a r t i c l eS e c o n dS t r i k e s:A L e v e lS e t M e t h o d o l o g y[J].J o u r n a lo f M a t e r i a l sP r o c e s s i n g T e c h n o l o g y,2012,212(5):1177‐1190.[29] 潘峥正,万庆丰,雷玉勇,等.基于后混合式磨料水射流磨料颗粒运动研究[J].机床与液压,2014,42(9):109‐112.P a nZ h e n g z h e n g,W a nQ i n g f e n g,L e i Y u y o n g,e t a l.R e s e a r c ho nM o t i o n o fA b r a s i v e i nP o s t‐m i x e dA b-r a s i v eW a t e r J e t[J].M a c h i n eT o o l&H y d r a u l i c s,2014,42(9):109‐112.[30] 杨国来,周文会,刘肥.基于F L U E N T的高压水射流喷嘴的流场仿真[J].兰州理工大学学报,2008,34(2):49‐52.Y a n g G u o l a i,Z h o u W e n h u i,L i uF e i.S i m u l a t i o no fF l o wF i e l do fH i g hP r e s s u r e W a t e r J e t f r o m N o z-z l ew i t hF l u e n t[J].J o u r n a l o fL a n z h o u U n i v e r s i t yo fT e c h n o l o g y,2008,34(2):49‐52. [31] 陆金刚,龚辰,闫龙龙,等.高速水射流集束性的数值模拟及试验研究[J].工程热物理学报,2014,35(8):1526‐1529.㊃2213㊃中国机械工程第26卷第22期2015年11月下半月Copyright©博看网. All Rights Reserved.L uJ i n g a n g,G o n g C h e n,Y a nL o n g l o n g,e ta l.N u-m e r i c a l S i m u l a t i o na n dE x p e r i m e n t a lS t u d y o f t h eC o h e r e n c e o fH i g h‐s p e e d W a t e r J e t[J].J o u r n a l o fE n d i n e e r i n g T h e r m o p h y s i c s,2014,35(8):1526‐1529.[32] 李兆泽,李圣怡,戴一帆,等.磨料射流抛光中各工艺参数对材料去除率及抛光区形貌的影响[J].中国机械工程,2008,19(21):2532‐2535.L iZ h a o z e,L iS h e n g y i,D a iY i f a n,e ta l.E f f e c t so fV a r i o u sP a r a m e t e r s o n M a t e r i a lR e m o v a lR a t e a n dt h e F o o t p r i n ti n A b r a s i v eJ e t P o l i s h i n g P r o c e s s[J].C h i n a M e c h a n i c a lE n g i n e e r i n g,2008,19(21):2532‐2535.[33] T s a iF,Y a nB,K u a nC,e t a l.A T a g u c h i a n dE x-p e r i m e n t a l I n v e s t i g a t i o n i n t o t h eO p t i m a lP r o c e s s-i n g C o n d i t i o n sf o rt h e A b r a s i v eJ e tP o l i s h i n g o fS K D61M o l dS t e e l[J].I n t e r n a t i o n a l J o u r n a l o fM a-c h i n eT o o l s&M a n u f a c t u r e,2008,48(7/8):932‐945.[34] A z m i rM,A h s a nA.AS t u d y o fA b r a s i v eW a t e r J e tM a c h i n i n g P r o c e s s o n G l a s s/E p o x y C o m p o s i t eL a m i n a t e[J].J o u r n a l o f M a t e r i a l s P r o c e s s i n gT e c h n o l o g y,2009,209:6168‐6173.[35] J a f a rR H M,S p e l t J,P a p i n iM.S u r f a c eR o u g h n e s sa n dE r o s i o nR a t eo fAb r a s i v eJ e tM ic r o‐m a c h i n e dC h a n n e l s:E x p e r i m e n t sa n d A n a l y t i c a lM o d e l[J].W e a r,2013,303(1/2):138‐145.[36] 施春燕,袁家虎,伍凡,等.喷射距离对射流抛光去除函数的影响[J].红外与激光工程,2011,40(4):685‐689.S h i C h u n y a n,Y u a nJ i a h u,W uF a n,e t a l.I n f l u e n c eo fS t a n d D i s t a n c eo n M a t e r i a lR e m o v a lF u n c t i o nF l u i dJ e tP o l i s h i n g[J].I n f r a r e da n d L a s e rE n g i-n e e r i n g,2011,40(4):685‐689.[37] 袁卓林,雷玉勇,孙书蕾,等.微磨料水射流对工件表面抛光作用的研究[J].机床与液压,2010,38(21):4‐6.Y u a nZ h u o l i n,L e iY u y o n g,S u nS h u l e i,e t a l.S t u d yo nS u r f a c eP o l i s h i n g U s i n g M i c r oA b r a s i v e W a t e rJ e t[J].M a c h i n eT o o l&H y d r a u l i c s,2010,38(21):4‐6.[38] F o w l e rG,P a s h b y I,S h i p w a y P.T h eE f f e c t o fP a r-t i c l eH a r d n e s s a n dS h a p eW h e nA b r a s i v eW a t e r J e tM i l l i n g T i t a n i u m A l l o y T i6A l4V[J].W e a r,2009,266(7/8):613‐620.[39] 施春燕,袁家虎,伍凡,等.冲击角度对射流抛光中材料去除面形的影响分析[J].光学学报,2010,30(2):513‐517.S h i C h u n y a n,Y u a nJ i a h u,W uF a n,e t a l.I n f l u e n c eA n a l y s i so fI m p a c t A n g l e o n M a t e r i a l R e m o v a lP r o f i l e i nF l u i d J e tP o l i s h i n g[J].A c t aO p t i c aS i n i-c a,2010,30(2):513‐517.[40] A l l y S,S p e l tJ,P a p i n iM.P r e d i c t i o no f M a c h i n e dS u r f a c eE v o l u t i o n i n t h eA b r a s i v e J e tM i c r o‐m a c h i-n i n g o fM e t a l s[J].W e a r,2012,292/293:89‐99.[41] P a l l e d a M.AS t u d y o fT a p e rA n g l e sa n d M a t e r i a lR e m o v a lR a t e so fD r i l l e d H o l e si nt h e A b r a s i v eW a t e r J e tM a c h i n i n g P r o c e s s[J].J o u r n a l o fM a t e-r i a l sP r o c e s s i n g T e c h n o l o g y,2007,189(1/3):292‐295.[42] Y a nB H,T s a iF,S u nL,e ta l.A b r a s i v e J e tP o l i s-h i n g o nS K D61M o l dS t e e l u s i n g S i C C o a t e d w i t hW a x[J].J o u r n a l o fM a t e r i a l sP r o c e s s i n g T e c h n o l o-g y,2008,208(1/3):318‐329.[43] M i m u r aH,Y u m o t oH,M a t s u y a m a S,e t a l.S u r f a c eF i g u r i n g a n d M e a s u r e m e n t M e t h o d s w i t h S p a t i a lR e s o l u t i o nC l o s e t o0.1mmf o rX‐r a y M i r r o rF a b-r i c a t i o n[C]//A d v a n c e s i n M e t r o l o g y f o rX‐r a y a n dE U V O p t i c s,P r o c e e d i n g so fS P I E V o l.5921.S a nD i e g o,C A:S P I E,2005:1‐8.[44] Z h a n g F e i h u,S o n g X i a o z o n g,Z h a n g Y o n g,e ta l.F i g u r i n g o f a nU l t r a‐s m o o t hS u r f a c e i nN a n o p a r t i-c l eC o l l o i dJ e tM a c h i n i n g[J].J o u r n a l o fM i c r o m e-c h a n i c s a nd M i c r oe n g i n e e r i n g,2009,19(5):1‐6.[45] W a n g J u n l i n,U l t r a‐p r e c i s i o n O p t i c a lF a b r i c a t i o no nF u s e dS i l i c a[C]//6t hI n t e r n a t i o n a lS y m p o s i u mo n A d v a n c e d O p t i c a l M a n u f a c t u r i n g a n d T e s t i n gT e c h n o l o g i e s:A d v a n c e d O p t i c a l M a n u f a c t u r i n gT e c h n o l o g i e s.P r o c e e d i n g s o f S P I EV o l.8416.X i a-m e n,2012:1‐6.[46] 宋岳干,宋丹路,王堃.后混合磨料水射流对金属的抛光机制及实验研究[J].机床与液压,2013,41(3):17‐20.S o n g Y u e g a n,S o n g D a n l u,W a n g K u n.E x p e r i m e n-t a l S t u d y o f t h eM e t a l P o l i s h i n g M e c h a n i s mo f t h eP o s tM i x e dA b r a s i v e W a t e rJ e t[J].M a c h i n eT o o l&H y d r a u l i c s,2013,41(3):17‐20. [47] B o u dF,L o oLF,K i n n e l l PK.T h e I m p a c t o f P l a i nW a t e r j e t M a c h i n i n g o n t h e S u r f a c eI n t e g r i t y o fA l u m i n i u m7475[J].P r o c e d i aC I R P,2014,13:382‐386.(编辑 王艳丽)作者简介:陈逢军,男,1979年生㊂湖南大学国家高效磨削工程技术研究中心讲师㊂主要研究方向为超精密加工与控制㊂发表论文20余篇㊂苗想亮,男,1988年生㊂湖南大学国家高效磨削工程技术研究中心硕士研究生㊂唐 宇,男,1991年生㊂湖南大学国家高效磨削工程技术研究中心硕士研究生㊂尹韶辉,男, 1967年生㊂湖南大学国家高效磨削工程技术研究中心教授㊁博士研究生导师㊂㊃3213㊃磨料液体射流抛光技术研究进展 陈逢军 苗想亮 唐 宇等Copyright©博看网. All Rights Reserved.。
微磨料水射流对工件表面抛光作用的研究近年来,许多行业都在使用水射流抛光技术来提高工件表面质量。
由于水射流抛光过程所涉及的颗粒粒径较小,因此具有一定的抛光效果。
此外,水射流抛光可以节省劳动力,节约能源,提高工件表面质量,保证表面精度和表面光洁度,从而为行业生产带来若干好处。
因此,本研究将从微磨料水射流抛光技术的基本原理、装备及表面处理研究出发,探讨其在工件表面抛光中的应用。
一、微磨料水射流抛光技术的基本原理
微磨料水射流抛光技术是利用现代技术所开发出的一种新型技术,它将砂轮、砂纸和其他磨料用水射流进行加工,通过把磨料的磨擦力转换成水力,在工件表面形成微细的拉裂、剥落、波浪状划痕,在磨料和工件之间形成微小的摩擦力,以达到良好的表面效果。
微磨料水射流抛光技术的基本原理是:首先,将适当浓度的磨料溶液和足够的水压力混合在一起,经过压力调节后放入水射流抛光装置,控制水流量,使水射流中携带的磨料能够得到充分表现,最后将磨料溶液通过喷嘴喷出,磨料溶液中的磨料粒子以溅射的形式作用于工件的表面,从而形成一种抛光效果。
二、微磨料水射流抛光装备及表面处理
1、微磨料水射流抛光装备:
微磨料水射流抛光装备的关键部件有水泵、控制阀、涡轮增压器、罐内搅拌器和扩散器。
主要完成工作包括:将磨料溶液混合于水中,控制混合流量,把水力压力转换成抛光粒子出口速度,控制喷枪坐标
移动,控制磨料和水的比例,以及控制磨料的粒径和浓度。
2、微磨料水射流表面处理:
完成微磨料水射流抛光需要综合运用几种技术来实现。
具体表面处理技术可以分为打磨、抛光、橡皮擦和上蜡等。
打磨,即利用磨料溶液与工件表面摩擦,去掉前期表面处理遗留的粗糙表面;
抛光,即采用水射流抛光装置将微粒粒磨料溶液射向工件表面,使工件表面形成微细的拉裂、剥落、波浪状划痕,从而获得细腻光滑的表面;
橡皮擦,即利用一定硬度的软橡胶材料,用轻轻的摩擦力对工件表面表面细节进行清洁;
上蜡,即利用蜡材料与工件表面摩擦,让蜡材料溶质与工件表面形成紧密结合,从而达到护理表面、减少锈蚀及清洁等目的。
三、结论
微磨料水射流抛光技术是一种新型的技术,它将砂轮、砂纸等磨料用水射流加工,在工件表面形成微细的拉裂、剥落、波浪状划痕,达到精准抛光的效果,节约劳动力、节省能源;它的装备包括水泵、控制阀、涡轮增压器、罐内搅拌器和扩散器等;它的表面处理可以分为打磨、抛光、橡皮擦和上蜡等,这些处理步骤都能有效地提高工件表面的质量。
综上所述,微磨料水射流抛光技术是一种技术性、经济性和效率高的抛光技术,具有良好的前景。
此外,本研究提出,在利用微磨料
水射流抛光装备抛光工件表面时,需要综合考虑装备调节、磨料粒径调节及工件表面处理等因素,使装备运行平稳,达到更好的表面处理效果。