简述声音的数字化过程
- 格式:doc
- 大小:13.21 KB
- 文档页数:2
数字声音的原理
数字声音是通过数字信号处理的方式来产生的声音。
数字声音的原理可以概括为以下几个步骤:
1. 采样:将连续的模拟声音信号转换为离散的数字信号。
采样是以一定的时间间隔对模拟声音信号进行采集,将每个时间点的信号幅值转换为数字形式。
2. 量化:将采样得到的模拟声音信号转换为离散的数字值。
量化是指将连续的模拟信号幅值映射到一定数量级的离散数值上,这样可以用有限数量的比特表示信号的幅值。
3. 编码:使用数字编码方式将量化后的数字信号表示出来。
常用的方式是采用二进制编码,将每个量化后的样本值转换为对应的二进制数。
4. 数字信号处理:对编码后的数字信号进行各种处理,如滤波、混响、均衡等,以获取所需的声音效果。
数字信号处理可以根据需要对信号进行时域和频域的处理,对声音进行增强或修饰。
5. 数字模拟转换:将经过数字信号处理后的数字信号转换回模拟声音信号。
数字模拟转换器将数字信号转换为连续的模拟声音信号,以便于喇叭或耳机等输出设备进行声音播放。
通过以上步骤,数字声音可以以数字信号的形式进行存储、传输和处理。
因为数字声音采用离散的数字表示,可以通过数学
运算和算法实现多种复杂的声音效果和处理方式,为音频应用提供了更高的灵活性和可靠性。
声音数字化过程及主要参数声音数字化是将声波转换成数字信号的过程,它是数字音频技术的基础。
声音数字化技术的发展,为音频录制、处理、存储和传输提供了重要的手段,极大地推动了音频产业的发展。
本文将围绕声音数字化过程及其主要参数展开阐述。
一、声音数字化的过程声音数字化是通过模拟到数字转换器(ADC)实现的。
其基本过程如下:1. 声音采样声音信号是一种连续的模拟信号,要进行数字化,首先需要将其进行采样。
采样是在规定的时间间隔内,对声音信号进行离散取样,获取一系列的采样点。
采样频率是决定声音数字化质量的关键参数,一般情况下,采样频率越高,数字化的声音质量越好,音频的频率响应也越宽。
2. 量化在采样后,需要对采样点的幅度进行量化。
量化是指将连续的信号幅度转换成离散的数字值。
量化的精度决定了数字化声音的分辨率,也就是声音的动态范围。
一般来说,量化位数越多,声音的动态范围越宽,音质也就越好。
3. 编码经过量化后,需要将量化得到的数字值编码成二进制数,以便存储和传输。
编码方式有许多种,常见的有脉冲编码调制(PCM)和压缩编码,其中PCM是最常用的编码方式。
以上三个步骤完成后,声音信号就被数字化了,可以被存储、处理和传输。
二、声音数字化的主要参数声音数字化的质量取决于多个参数,以下是一些重要的参数:1. 采样频率采样频率是指每秒钟采集的采样点数量,它决定了声音信号的频率范围。
常见的采样频率有8kHz、16kHz、44.1kHz、48kHz等,其中44.1kHz和48kHz是CD音质的标准采样频率。
2. 量化位数量化位数是指用来表示采样点幅度的二进制位数,它决定了声音的动态范围。
通常的量化位数有8位、16位、24位等,其中16位是CD 音质的标准量化位数。
3. 编码方式编码方式决定了声音数字化的压缩算法,不同的编码方式对声音质量和文件大小有不同的影响。
PCM编码是无损压缩的编码方式,压缩编码则可以在减小文件大小的同时保持较高的音质。
声音表达信息的特点及数字化表示惠水民族中学濛江校区信息技术教研组集体备课主备人:李秋霞授课人:一、教材分析本节内容是《多媒体技术应用》选修教材中的第三章第一节“多媒体作品中的声音”,声音同视频、动画一样,都是重要的信息表达方式,由于数字化音频在加工、存储、传递等方面的方便性,它正成为信息化社会人们进行信息交流的重要手段。
因此这一节要让学生了解声音数字化表示的基本方法,激发学生的兴趣,同时教师要引导学生利用数字化声音进行信息交流。
二、教学目标考虑到学生已有的认知结构和心理特征,根据教材结构与内容分析,制定的教学目标如下:知识与技能通过本节课的教学,让学生理解声音表达信息的特点,感受声音在人类表达、交流中的重要作用;了解数字音频与模拟音频的区别、体验声音的数字化过程以及了解midi音乐的特点。
过程与方法通过小组合作探究学习,使掌握本节课的教学内容,同时培养学生自主学习与合作探究学习的素养。
情感态度与价值观培养学生自主学习能力与团队合作能力,增强学生自主学习的意识、提高学生发现问题、解决问题的能力。
同时通过学生自主学习,让他们明白“要知此事须躬行”的人声哲理。
三、教学重难点教学重点:深入了解声音表达信息的特点,理解声音数字化表示基本方法。
教学难点:掌握模拟音频转换数字音频过程,掌握声音数据容量的计算。
四、学情分析:在前面已经学习了图形、图像的数字化,由于学生的水平参差不齐,大部分学生已经习惯由老师来灌输知识,学生自主学习和小组合作能力缺乏,自我学习意识教差,所以需要教师引导学生作为主体在课堂发挥。
五、教学方法兴趣引导、任务驱动、小组合作探究考虑到学生认知方式,从实际生活入手,用学生感兴趣的内容,借助多媒体手段展示,并用语言激发学生学习的兴趣和主动性,并引导学生进一步的探究,让学生以自主探究和小组合作的方式来获取知识,组长组织本组同学讨论交流,由基础较好的学生带动其他组员共同深入实践学习,教师巡视并给以帮助提示。
第一讲:数字化声音一、教学目标1、了解声音数字化过程2、影响数字化声音的两个要素3、理解声音数字化的表示方法二、重点、难点模拟声音与数字声音的转化三、教学过程1、导入:自然界的声音:自然中的声音都是连续变化的,称之为模拟量。
2、数字计算机只能处理数字量,因此,必须将自然界中存在的模拟量转化称数字量。
3、模拟量声音转化为数字量的第一步:建立坐标系,横坐标表示时间,纵坐标表示压力,我们也可以用电压来表示。
4、第一个步骤:采样,就是提取合适的采样点5、第二个步骤:离散。
将原有的模拟声波取消,信息点离散6、量化过程,将不在整数上的点整数化7、讨论:假如需要更多的原有声音信息保存下来,可以采取哪些手段和方法?讲过讨论:采样频率的提高,可以保留更多的原有信息,文件体积会增大量化位数的增加,可以保留更多的信息。
8、二进制数位的增加,实现了更多数据信息的保留。
例如SOS信号的数字化表示9、、声音试听分别听不同采样频率、不同量化深度的同一段音乐,找出还原效果最好的一个。
10、师生共同探讨原因:1)、自然界中存在的是模拟化的声音,是一个连续变化的量,具有连续的波形。
2)、数字计算机只能处理二进制数值。
3)、如何将模拟量转化成二进制数值。
数字化声音的二个过程:采样,量化。
4)、影响声音数字化的因素,采样频率,量化深度5)、采样频率、量化深度都是越大越好吗?11、计算机处理声音转化的设备――声卡12、数字声音的获取方法二:MIDI设备输入13、识别计算机中的声音格式文件:1)具有相同的图标2)使用相同的播放器播放3)具有相同的后缀名14 压缩文件的构成15数字音频的常用编码有三种:波形编码、参数编码和混合编码四、课堂总结数字化的一般过程数字化过程种的技术参数:采样频率和量化位数。
五、布置作业:预备一段mp3音乐,结合自己的录音,制作一段配乐录音。
六、教学反思:这节课内容相对比较独立,概念比较多,但是大多数学生似乎都还能接受。
多媒体技术及应用复习题1一、单项选择题1、下列选项不属于感觉媒体的是:()A、音乐B、香味C、鸟鸣D、乐谱2、色彩的三要素不包括:()A、亮度B、色相C、色性D、纯度3、下列颜色模型中,具有最窄色域的是:()A、RGBB、CMYKC、LabD、HSB4、在使用CCD作图像传感器的扫描仪中,采用的CCD应是:()A、线性CCDB、二维平面传感器C、3CCDD、CMOSA、图像分辨率B、图像深度C、显示深度D、图像数据的容量5、在静态图像中有一块表面颜色均匀的区域,此时存地的是:()A、空间冗余B、结构冗余C、知识冗余D、视觉冗余6、下列图像格式中,可逆编码是:()A、霍夫曼编码B、行程编码C、有损预测D、算术编码7、下列选项表示波的高低幅度即声音的强弱的是:()A、频率B、音色C、周期D、振幅8、从听觉角度看,声音不具有要素。
()A、音调 D、响度 C、音长 D、音色9、语音的压缩技术通常采用技术。
()A、霍夫曼编码B、波形编码C、行程编码D、算术编码10、下列视频压缩系列标准主要用于视频存储播放应用中。
()A、MPEG B 、H.26X C、JPEG D、AVS11、MPEG-1标准中,不参照任何过去的或者将来的其他图像帧,压缩编码采用类似JPEG的帧内压缩算法的图像是:()A、帧内图像B、预测图像C、双向预测图像D、帧间图像12、下列动画文件格式不能添加声音的是:()A、GIF文件格式B、MPG文件格式C、SWF文件格式D、AVI文件格式13、以下关于矢量图和位图的说法中,不正确的是()。
A位图是由若干像素点构成的,矢量图则是通过计算方法生成的B位图放大时会变得模糊不清,矢量图放大时则不会产生失真C位图和矢量图都可以用软件绘制出来D位图和矢量图之间不能相互转换14、在Photoshop中,可以存储图层信息的图像格式是()。
A、BMPB、TIFFC、JPEGD、PSD15、下面哪个是Premiere Pro的File采单的命令。
简述声音的数字化过程
在20世纪初期,电话机的发明开启了声音数字化的时代,即通过声音信号传输和交换。
后来随着录音机的出现,人们还能通过听觉感受录音带里发出的各种声音。
电话、广播、电视等一系列设备进一步促进了人类对声音的认识与理解,提高了声音记录、处理与再现的技术水平。
到了上个世纪60年代中后期,一些大学开始利用“录音棚”将演讲者的演讲变成数字声音,并制作成电影,这就是最早的“声音电影”。
但是这样制作成的电影只能是录音加数码显示,观众只能看见一片漆黑的画面,而且画面的清晰度非常差,更别说配音了,因此这种电影叫“黑白电影”。
第二次世界大战之后,随着半导体器件和集成电路技术的迅猛发展,人们制作出了专门用于声音存储的大规模集成电路,从此人们又能制作出高质量的声音电影了。
1948年,美国人“约翰·杜比”创造性地将电影和声音制作技术结合起来,拍摄出了具有声音和画面同步显示的故事片《大白鲨》,它首次向观众展现了声音和影像在银幕上的协调融合,被誉为“真正的声音影片”。
这段时间,科学家和工程师们制作出了许多先进的电影声音存储设备,可以将电影、动画片、卡通片中的声音精准地记录下来,方便电影爱好者们收藏,而且大部分还可以重放,但是使用的时候需要依靠电脑和专门的电子器材,效率较低。
2006年,美国的“杜比实验室”在继续研究影音结合的基础上,研制出了第一台光盘驱动器和光盘格式化器,可以直接读取数字化的
录音文件,不仅极大地节省了光盘的空间,还可以直接通过电脑和专门的电子设备重放录音,如同看电影一般。
2010年8月,美国“哈雷”太空望远镜捕捉到了4个有趣的来自宇宙深处的声音,这4个神秘的声音先是在地球上方飘忽不定,然后渐渐朝着太阳飞去。
他们来自于宇宙深处的超新星爆炸,从声音中可以明显地听到剧烈的爆炸声,但是由于太远,其中一个声音的具体细节无法听清楚。
科学家们对这4个声音进行分析,推断出其中两个应该是金属或者铁,另外两个则是非常轻微的振动。
你所要做的,就是要在电脑上或电视机上看到这些声音,让我们一起加油吧!我相信,很快,这些声音都会被我们欣赏到的。
声音的数字化过程,就是声音影像化的过程。