六年级数学拓展题之《14长方体和正方体(1)拓展(含答案)》
- 格式:docx
- 大小:268.78 KB
- 文档页数:4
对于小学几何而言,立体图形的表面积和体积计算,既可以很好地考查学生的空间想象能力,又可以具体考查学生在公式应用中处理相关数据的能力,所以,很多重要考试都很重视对立体图形的考查.如右图,长方体共有六个面(每个面都是长方形),八个顶点,十二条棱.cba H GF ED CB A①在六个面中,两个对面是全等的,即三组对面两两全等.(叠放在一起能够完全重合的两个图形称为全等图形.)②长方体的表面积和体积的计算公式是:长方体的表面积:2()S ab bc ca =++长方体;长方体的体积:V abc =长方体.③正方体是各棱相等的长方体,它是长方体的特例,它的六个面都是正方形.如果它的棱长为a ,那么:26S a =正方体,3V a =正方体.板块一 长方体与正方体的表面积【例 1】 右图中共有多少个面?多少条棱?左面【考点】长方体与正方体 【难度】1星 【题型】解答【解析】 如右图所示,可以分前、后、左、右、上、下六个方向看这个立体图形.前、后看各有1个面,左面看有1个面,右面看有2个面,上面看有2个面,下面看有1个面.所以共有1112218+++++=(个)面.前后方向的棱有6条,左右方向的棱有6条,上下方向的棱也有6条,所以共有棱66618++=(条).【答案】8个面,18条棱【巩固】右图中共有多少个面?多少条棱?例题精讲长方体与正方体(一)【考点】长方体与正方体【难度】1星【题型】解答【解析】9个面,21条棱.【答案】9个面,21条棱【例2】如右图,在一个棱长为10的立方体上截取一个长为8,宽为3,高为2的小长方体,那么新的几何体的表面积是多少?【考点】长方体与正方体【难度】2星【题型】解答【解析】我们从三个方向(前后、左右、上下)考虑,新几何体的表面积仍为原立方体的表面积:10⨯10⨯6=600.【答案】600【巩固】在一个棱长为50厘米的正方体木块,在它的八个角上各挖去一个棱长为5厘米的小正方体,问剩下的立体图形的表面积是多少?【考点】长方体与正方体【难度】2星【题型】解答【解析】对于和长方体相关的立体图形表面积,一般从上下、左右、前后3个方向考虑.变化前后的表面积不变:50⨯50⨯6=15000(平方厘米).【答案】15000【例3】如右图,有一个边长是5的立方体,如果它的左上方截去一个边分别是5,3,2的长方体,那么它的表面积减少了多少?【考点】长方体与正方体【难度】2星【题型】解答【解析】原来正方体的表面积为5⨯5⨯6=150.现在立体图形的表面积减少了前后两个面中的部分面,它们的面积为(3⨯2)⨯2=12,所以减少的面积就是12.【答案】12【例4】如图,有一个边长是5的立方体,如果它的左上方截去一个边分别是5,3,2的长方体,那么它的表面积减少了百分之几?【考点】长方体与正方体【难度】2星【题型】解答【关键词】奥林匹克,初赛,10题【解析】原来正方体的表面积为5 ×5×6=150,现在立体图形的表面积截了两个面向我们的侧面,它们的面积为(3×2)×2=12,12÷150=0.08=8%.即表面积减少了百分之八.【答案】百分之八【例5】右图是一个边长为4厘米的正方体,分别在前后、左右、上下各面的中心位置挖去一个边长l厘米的正方体,做成一种玩具.它的表面积是多少平方厘米?(图中只画出了前面、右面、上面挖去的正方体)【考点】长方体与正方体【难度】2星【题型】解答【解析】原正方体的表面积是4⨯4⨯6=96(平方厘米).每一个面被挖去一个边长是1厘米的正方形,同时又增加了5个边长是1厘米的正方体作为玩具的表面积的组成部分.总的来看,每一个面都增加了4个边长是1厘米的正方形.从而,它的表面积是:96+4⨯6=120平方厘米.【答案】120【例6】如图,有一个边长为20厘米的大正方体,分别在它的角上、棱上、面上各挖掉一个大小相同的小立方体后,表面积变为2454平方厘米,那么挖掉的小立方体的边长是多少厘米?【考点】长方体与正方体【难度】2星【题型】解答【解析】大立方体的表面积是20⨯20⨯6=2400平方厘米.在角上挖掉一个小正方体后,外面少了3个面,但里面又多出3个面;在棱上挖掉一个小正方体后,外面少了2个面,但里面多出4个面;在面上挖掉一个小正方体后,外面少了1个面,但里面多出5个面.所以,最后的情况是挖掉了三个小正方体,反而多出了6个面,可以计算出每个面的面积:(2454-2400)÷6=9平方厘米,说明小正方体的棱长是3厘米.【答案】3【例7】下图是一个棱长为2厘米的正方体,在正方体上表面的正中,向下挖一个棱长为1厘米的正方体小洞,接着在小洞的底面正中向下挖一个棱长为12厘米的正方形小洞,第三个正方形小洞的挖法和前两个相同为14厘米,那么最后得到的立体图形的表面积是多少平方厘米?【考点】长方体与正方体【难度】3星【题型】解答【解析】我们仍然从3个方向考虑.平行于上下表面的各面面积之和:2⨯2⨯2=8(平方厘米);左右方向、前后方向:2⨯2⨯4=16(平方厘米),1⨯1⨯4=4(平方厘米),12⨯12⨯4=1(平方厘米),1 4⨯14⨯4=14(平方厘米),这个立体图形的表面积为:816++4+1+14=1294(平方厘米).【答案】1 294【例8】从一个棱长为10厘米的正方形木块中挖去一个长10厘米、宽2厘米、高2厘米的小长方体,剩下部分的表面积是多少?(写出符合要求的全部答案)【考点】长方体与正方体【难度】3星【题型】解答【关键词】小学生数学报【解析】按图1所示沿一条棱挖,为592平方厘米;按图2所示在某一面上挖,为632平方厘米;按图3所示在某面上斜着挖,为648平方厘米;按图4所示挖通两个对面,为672平方厘米.图1 图2 图3 图4【答案】按图1所示沿一条棱挖,为592平方厘米;按图2所示在某一面上挖,为632平方厘米;按图3所示在某面上斜着挖,为648平方厘米;按图4所示挖通两个对面,为672平方厘米.图1 图2 图3 图4【例9】一个正方体木块,棱长是15.从它的八个顶点处各截去棱长分别是1、2、3、4、5、6、7、8的小正方体.这个木块剩下部分的表面积最少是多少?【考点】长方体与正方体 【难度】4星 【题型】解答【关键词】迎春杯【解析】 截去一个小正方体,表面积不变,只有在截去的小正方体的面相重合时,表面积才会减少,所以要使木块剩下部分的表面积尽可能小,应该在同一条棱的两端各截去棱长7与8的小正方体(如图所示),这时剩下部分的表面积比原正方体的表面积减少最多.剩下部分的表面积最小是: 15⨯15⨯6-7⨯7⨯2=1252.想想为什么不是15⨯15⨯6-7⨯7-8⨯8 ?【答案】1252【例 10】 从一个长8厘米、宽7厘米、高6厘米的长方体中截下一个最大的正方体(如下图),剩下部分的表面积之和是 平方厘米.68766【考点】长方体与正方体 【难度】3星 【题型】填空【解析】 可以将这个图形看作一个八棱柱,表面积和为:87662616661787292⨯-⨯⨯+⨯+++++++=()()(平方厘米).也可以这样想:由于截去后原来的长方体的表面少了3个66⨯的正方形,而新图形凹进去的部分恰好是3个66⨯的正方形,所以新图形的表面积与原图形的表面积相等,为()8786762292⨯+⨯+⨯⨯=(平方厘米).【答案】292【巩固】一个长、宽、高分别为21厘米、15厘米、12厘米的长方形,现从它的上面尽可能大的切下一个正方体,然后从剩余的部分再尽可能大的切下一个正方体,最后再从第二次剩余的部分尽可能大的切下一个正方体,剩下的体积是多少平方厘米?【考点】长方体与正方体 【难度】3星 【题型】解答【解析】 本题的关键是确定三次切下的正方体的棱长.由于21:15:127:5:4=,为了方便起见.我们先考虑长、宽、高分别为7厘米、5厘米、4厘米的长方体.因为754>>,容易知道第一次切下的正方体棱长应该是4厘米(如图),第二次切时,切下棱长为3厘米的正方体符合要求.第三次切时,切下棱长为2厘米的正方体符合要求.剩下的体积应是()33321151212961107⨯⨯-++=(平方厘米).【答案】1107【例 11】 一个正方体木块,棱长是1米,沿着水平方向将它锯成2片,每片又锯成3长条,每条又锯成4小块,共得到大大小小的长方体24块,那么这24块长方体的表面积之和是多少?【考点】长方体与正方体【难度】3星【题型】解答【解析】锯一次增加两个面,锯的总次数转化为增加的面数的公式为:锯的总次数⨯2=增加的面数.原正方体表面积:1⨯1⨯6=6(平方米),一共锯了(2-1)+(3-1)+(4-1)=6次,6+1⨯1⨯2⨯6=18(平方米).【答案】18【巩固】如右图,一个正方体形状的木块,棱长l米,沿水平方向将它锯成3片,每片又锯成4长条,每条又锯成5小块,共得到大大小小的长方体60块.那么,这60块长方体表面积的和是多少平方米?【考点】长方体与正方体【难度】3星【题型】解答【解析】我们知道每切一刀,多出的表面积恰好是原正方体的2个面的面积.现在一共切了(3-1)+(4-1)+(5-1)=9刀,而原正方体一个面的面积1⨯l=1(平方米),所以表面积增加了9⨯2⨯1=18(平方米).原来正方体的表面积为6⨯1=6(平方米),所以现在的这些小长方体的表积之和为6+18=24(平方米).【答案】24【巩固】一个表面积为2cm.56cm的长方体如图切成27个小长方体,这27个小长方体表面积的和是2【考点】长方体与正方体【难度】3星【题型】填空【关键词】走美杯,六年级,初赛【解析】每一刀增加两个切面,增加的表面积等于与切面平行的两个表面积,所以每个方向切两刀后,表面积增加到原来的3倍,即表面积的和为2563168(cm)⨯=.【答案】168【例12】右图是一个表面被涂上红色的棱长为10厘米的正方体木块,如果把它沿虚线切成8个正方体,这些小正方体中没有被涂上红色的所有表面的面积和是多少平方厘米?【考点】长方体与正方体【难度】3星【题型】解答【解析】 10⨯10⨯6=600(平方厘米).【答案】600【例 13】 有n 个同样大小的正方体,将它们堆成一个长方体,这个长方体的底面就是原正方体的底面.如果这个长方体的表面积是3096平方厘米,当从这个长方体的顶部拿去一个正方体后,新的长方体的表面积比原长方体的表面积减少144平方厘米,那么n 为多少?【考点】长方体与正方体 【难度】3星 【题型】解答【解析】 由于堆成的长方体的底面就是原来正方体的底面,说明这个长方体是由这些正方体一字排开组成的,从这个长方体的顶部拿去一个正方体,减少的面积相当于侧面的四个正方形的面积,所以正方体每个面的面积是144436÷=(平方厘米).所堆成的长方体的表面积,包含底面的2个正方形和侧面的4n 个正方形,所以(3096362)14421n =-⨯÷=.【答案】21【例 14】 边长分别是3、5、8的三个正方体拼在一起,在各种拼法中,表面积最小多少?【考点】长方体与正方体 【难度】3星 【题型】解答【解析】 三个正方体两两拼接时,最多重合3个正方形面,其中边长为3的正方体与其它两个正方体重合的面积不超过边长为3的正方形,边长为5和边长为8的正方体的重合面面积不超过边长为5的正方形,三个正方形表面积和为6⨯3⨯3+6⨯5⨯5+6⨯8⨯8-2⨯2⨯3⨯3-2⨯5⨯5=502.【答案】502【例 15】 如图,25块边长为1的正方体积木拼成一个几何体,表面积最小是多少?25块积木【考点】长方体与正方体 【难度】3星 【题型】解答【解析】 当小积木互相重合的面最多时表面积最小.设想27块边长为1的正方形积木,当拼成一个333⨯⨯的正方体时,表面积最小,现在要去掉2块小积木,只有在两个角上各去掉一块小积木,或在同一个角去掉两块相邻的积木时,表面积不会增加,该几何体表面积为54.【答案】54【例 16】 由六个棱长为1的小正方体拼成如图所示立体,它的表面积是 .【考点】长方体与正方体 【难度】3星 【题型】填空【关键词】走美杯,4年级,决赛,第3题,8分【解析】 三视图法:表面积为:()454226++⨯=【答案】26【例 17】 将15个棱长为1的正方体堆放在桌子上,喷上红色后再将它们分开。
期末知识大串讲苏教版数学六年级上册期末章节考点复习讲义第一单元《长方体和正方体》知识点01:长方体和正方体的认识1.长方体的特征长方体是由6个长方形(也可能有2个相对的面是正方形)围成的立体图形,有6个面、12条棱和8个顶点,相对的面完全相同、相对的棱长度相等。
2. 长方体的长、宽、高的含义长方体相交于同一顶点的三条棱的长度,分别叫作它的长、宽、高。
知识点02::长方体和正方体的展开图1.沿着正方体(或长方体)的棱将其剪开,可以把正方体(或长方体)展开成一个平面图形,这个平面图形就是正方体(或长方体)的展开图。
2.正方体(或长方体)的展开图的特点:在展开图中,正方体的6个面完全相同(长方体相对的面完全相同),相对的面完全隔开。
3. 一个表面涂色的正方体,把每条棱平均分成相等的若干份,然后切成同样大的小正方体。
(1)3面涂色的小正方体有8个。
(2)如果用n表示把正方体的棱平均分成的份数(n为大于或等于2的自然数),用a、b分别表示2面涂色和1面涂色的小正方体的个数,那么a=(n-2)×12,b=(n-2)2×6。
知识点32:长方体、正方体的表面积计算1.意义长方体(或正方体)6个面的总面积。
2.计算方法(1)长方体的表面积=长×宽×2+长×高×2+宽×高×2=(长×宽+长×高+宽×高)×2。
(2)正方体的表面积=棱长×棱长×6。
知识点42:体积与体积单位1.体积的意义:物体所占空间的大小叫作物体的体积。
2.容积的意义:容器所能容纳物体的体积叫作容器的容积。
常用的体积单位有立方厘米、立方分米和立方米,可以分别写成cm³、dm³和m³。
计量液体的体积,通常用升或毫升作单位。
1立方分米 = 1升,1立方厘米 = 1毫升知识点五:长方体和正方体的体积1.长方体的体积=长×宽×高,字母公式为V=a bh。
小学数学六年级长方体与正方体知识点及难题练习解答(一)长方体和正方体的特征形体面顶点棱关系长方体6个相对面完全相同,至少4个面是长方形8个12条相对的4条棱长度相等正方体是特殊的长方体正方体6个6个面完全相同,都是正方形8个12条12条棱长度都相等(二)长方体和正方体的棱长总和(三)长方体和正方体的表面积1.概念:长方体或正方体6个面的总面积,叫做它们的表面积。
2.计算公式:重点提示:不足6个面的实际问题根据具体情况计算,例如鱼缸、无盖纸盒等。
(四)长方体和正方体的体积、容积2.体积(容积)单位进率换算:1立方米=1000立方分米1立方分米=1000立方厘米1升=1000毫升1立方分米=1升1立方厘米=1毫升奥数练习题【难题1】:一个长方体,如果从它的高度方向锯掉3厘米的一段,正好得到一个正方体,但表面积减少了72平方厘米,原来长方体的体积是多少?【分析】:从长方体高度方向锯掉3厘米的一段,表面积减少部分就是高3厘米的长方体的四个侧面和一个上面,同时表面积又增加了一个切面,切面面积正好与原长方体上面的面积相等,互相抵消。
因此,剩下正方体表面积比原长方体表面积减少的72平方厘米,就是高3厘米的长方体的侧面积。
所以长方体的底面周长为:72÷3﹦24(厘米)。
剩下部分是个正方体,即长方体底面是正方形,所以长方体的底面边长即所得正方体的棱长为:24÷4﹦6(厘米)。
所以原长方体的体积为:6×6×(6+3)﹦324(立方厘米)。
【难题2】:一块长方形铁片(厚度不计),四个角剪去边长为2.8分米的正方形,焊成一个长方体铁皮盒,可以盛水546升。
已知这块长方形铁皮的长是21.2分米,求长方形铁皮的面积。
【分析】:546升﹦546立方分米,即焊成的铁皮盒的容积为546立方分米。
厚度不计,铁皮盒的容积也就相当于它的体积。
铁皮盒的体积为546立方分米,铁片盒的高为2.8分米,铁皮盒底面的长为:21.2-2.8×2﹦15.6(分米)。
第一单元正方体和长方体1. 如图,有一个长6分米、宽和高都是2分米的长方体硬纸箱,如果用绳子将箱子竖着捆两道,横着捆一道,打结处共用2分米.一共要用的绳有多长?2.把一个棱长是5厘米的正方体木块分割成两个长方体木块,这两个长方体木块的表面积总和是多少?3. 一根3米长的方钢,把它横截成3段时,表面积增加80平方厘米,原来方钢的体积是多少立方厘米?4. 一个房间的长6米,宽3.5米,高3米,门窗面积是8平方米,现在要把这个房间的四壁和顶面粉刷水泥,粉刷水泥的面积是多少平方米?如果每平方米需要水泥7千克,一共要水泥多少千克?15.有一个完全封闭的容器,里面的长是20厘米,宽是16厘米,高是10厘米,平放时里面装了7厘米深的水.如果把这个容器竖起来放,水的高度是多少?6.一个长方体玻璃鱼缸,长50厘米,宽40厘米,高30厘米.(1)做这个鱼缸至少需要玻璃多少平方厘米?(2)在鱼缸里注入40升水,水深大约多少厘米?(3)再往水里放入鹅卵石、水草和鱼,水面上升了2.5厘米.这些鹅卵石、水草和鱼的体积一共是多少立方厘米?2参考答案及解析1.【答案】34分米【解析】捆绑用的绳长为6×2+2×4+2×6=32(分米);总绳长为32+2=34(分米).2.【答案】200平方厘米【解析】切一刀,会增加两个面,表面积总和=原来正方体的六个面+新增加的两个面,即5×5×6+5×5×2=200(平方厘米).3.【答案】6000【解析】分成了3段,那就切了两刀,切一刀加两面,所以增加了4个面,那么每个面:80÷4=20(平方厘米);体积=底面积×高,即20×3×100=6000(立方厘米)4.【答案】70平方米;490千克【解析】房间表面积:(6×3.5+6×3+3.5×3)×2=99(平方米)地面面积:6×3.5=21(平方米)需要粉刷的面积:99-8-21=70(平方米)需要水泥:70×7=490(千克).5.【答案】14厘米【解析】水的体积:20×16×7=2240(立方厘米),因为水的体积不变,所以竖起来后水的高度:2240÷16÷10=14(厘米).6.【答案】(1)7400平方厘米(2)20厘米(3)5000立方厘米【解析】(1)当没有盖子的时候用的玻璃最少,所以只需要求底面积和四个侧面积:50×40+(50×30+40×30)×2=7400(平方厘米)(2)先进行单位换算:40升=40000立方厘米,已知水的体积求高度:40000÷50÷40=20(厘米)(3)水上升的体积等于放入物的体积和:50×40×2.5=5000(立方厘米).3。
六年级数学长方体和正方体试题答案及解析1.一个长方体的体积是360立方厘米,长方体的底面积是36平方厘米,这个长方体的高是。
【答案】10厘米【解析】根据长方体的体积公式:v=sh,那么h=v÷s,360÷36=10(厘米),这个长方体的高是10厘米。
【考点】长方体的体积。
总结:已知长方体的体积和底面积求长方体高,需要灵活运用公式变形,再计算。
2.底面积是15平方厘米,高0.3分米的长方体的体积是。
【答案】45立方厘米【解析】解:0.3分米=3厘米15×3=45(立方厘米)答:这个长方体的体积是45立方厘米。
3.一个棱长为8分米的正方体铁坯锻成一个底面积是正方形,高为32分米的长方体模具,这个长方体的底面积是多少平方分米?【答案】16平方分米【解析】因为把正方体铁坯锻成一个长方体模具,体积不变,所以求出正方体的体积,再除以长方体的高,就是长方体的底面积.S=a3÷h.解:8×8×8÷32,=512÷32,=16(平方分米);答:这个长方体的底面积是16平方分米。
4.下列图形都是用1立方厘米的小木块搭成的,分别算出它们的体积。
(1)(2)(3)()()()【答案】(1)5立方厘米;(2)8立方厘米;(3)24立方厘米【解析】小木块的体积是 1立方厘米,数一下每个图形的个数,几个就是几立方厘米.【考点】体积的认识。
总结:数个数要不重不漏。
5.计算下面长方体和正方体的体积。
【答案】120dm3;125m3【解析】根据长方体和正方体的体积公式代入计算。
长方体的体积:8×5×3=40×3=120(dm3);正方体的体积:5×5×5=25×5=125(m3).总结:长方体的体积公式:V=abh;正方体的体积公式:V=a3。
6.填空:填合适的单位名称。
一块橡皮的体积约是8一台洗衣机的体积约是300一瓶可乐的体积是2.5一瓶墨水的体积约50【答案】立方厘米,立方分米,升,毫升【解析】根据生活经验、对体积、容积单位的认识,选择合适的单位,一块橡皮的体积约是8 立方厘米;一台洗衣机的体积约是300立方分米;一瓶可乐的体积2.5升;一瓶墨水的体积约50毫升。
《长方体和正方体》》拓展题
1.一决长方形体木料,长30厘米,宽20厘米,高15厘米,把它锯成同样大小的正方体木块,木块的体积要最大,木料又不能剩余。
问:可以锯成多少块?
2.把一个棱长8厘米的正方体切成两个完全一样的长方体,这两个长方体的棱长总和比原来正方体的棱长和增加了多少厘米?
3. 把个K6!里米,宽5!里米,高4厘米的长方体木块锌成两个小长方体,我面积最4
增加多少平方厘米?最多增加多少平方陲米?
4.一个长40厘米,截面是正方体,如果长增加5厘米,表面积就增加80平方厘米,求原长方体的表面积。
5.
用4个梭长2分米的正方体拼成一个长方体,这个长方体的表面积最小是多少?我而枳最大是多少?
6.如下图,把一个长为6厘米、宽为4厘米、高为5厘米的长方体木块表面涂成红色,然后切成棱长是1厘米的小正方体木块。
问:
三面涂色的小正方体有多少块?
(2)两面涂色的小正方体有多少块?
(3)一面涂色的小正方体有多少块?
(4)六面都没有涂色的小正方体有多少块?
7.下面的物体全是由棱长为1厘米的小正方体摆拼而成的,求这个物体的表面积是多少?8
9.如下图,在一个棱长2分米的正方体木块的六个面各挖去一个棱长2厘米的正方体孔洞。
问:大正方体木块剩下的表面积和体积各是多少?
10
11.用棱长分别是3分米、4分米、5分米的正方体堆成下图所示形状,求这个体图形的表面积。
六年级数学长方体和正方体试题答案及解析1.右图中的⑴⑵⑶⑷是同样的小等边三角形,⑸⑹也是等边三角形且边长为⑴的2倍,⑺⑻⑼⑽是同样的等腰直角三角形,⑾是正方形.那么,以⑸⑹⑺⑻⑼⑽⑾为平面展开图的立体图形的体积是以⑴⑵⑶⑷为平面展开图的立体图形体积的多少倍.【答案】16【解析】本题中的两个图都是立体图形的平面展开图,将它们还原成立体图形,可得到如下两图:其中左图是以⑴⑵⑶⑷为平面展开图的立体图形,是一个四个面都是正三角形的正四面体,右图以⑸⑹⑺⑻⑼⑽⑾为平面展开图的立体图形,是一个不规则图形,底面是⑾,四个侧面是⑺⑻⑼⑽,两个斜面是⑸⑹.对于这两个立体图形的体积,可以采用套模法来求,也就是对于这种我们不熟悉的立体图形,用一些我们熟悉的基本立体图形来套,看看它们与基本立体图形相比,缺少了哪些部分.由于左图四个面都是正三角形,右图底面是正方形,侧面是等腰直角三角形,想到都用正方体来套.对于左图来说,相当于由一个正方体切去4个角后得到(如下左图,切去、、、);而对于右图来说,相当于由一个正方体切去2个角后得到(如下右图,切去、).假设左图中的立方体的棱长为,右图中的立方体的棱长为,则以⑴⑵⑶⑷为平面展开图的立体图形的体积为:,以⑸⑹⑺⑻⑼⑽⑾为平面展开图的立体图形的体积为.由于右图中的立方体的棱长即是题中正方形⑾的边长,而左图中的立方体的每一个面的对角线恰好是正三角形⑴的边长,通过将等腰直角三角形⑺分成4个相同的小等腰直角三角形可以得到右图中的立方体的棱长是左图中的立方体的棱长的2倍,即.那么以⑴⑵⑶⑷为平面展开图的立体图形的体积与以⑸⑹⑺⑻⑼⑽⑾为平面展开图的立体图形的体积的比为:,也就是说以⑸⑹⑺⑻⑼⑽⑾为平面展开图的立体图形的体积是以⑴⑵⑶⑷为平面展开图的立体图形体积的16倍.2.(西城区)一个长方体水槽,从里面量长2.5分米,宽1.8分米,高1.5分米,这个水槽的容积是多少立方分米?【答案】这个水槽的容积是6.75立方分米【解析】分析:已知长方体的长、宽、高,根据长方体的体积=长×宽×高,即可求得体积.解答:解:2.5×1.8×1.5,=4.5×1.5,=6.75(立方分米);答:这个水槽的容积是6.75立方分米.点评:此题考查了长方体的体积计算,可根据已知直接运用公式计算.3.(2012•桐庐县)如图的立体图形是用边长为1厘米的小正方体积木叠成的.这个立体图形的表面积是平方厘米,体积是立方厘米.【答案】72,30【解析】(1)这个几何体的表面积就是露出小正方体的面的面积之和,从上面看有16个面;从下面看有16个面;从前面看有10个面;从后面看有10个面;从左面看有10个面;从右面看有10个面.由此即可解决问题;(2)根据题干,这个几何体的体积就是这些小正方体的体积之和,棱长1厘米的正方体的体积是1立方厘米,由此只要数出有几个小正方体就能求得这个几何体的体积.解答:解:(1)图中几何体露出的面有:10×4+16×2=72(个),所以这个几何体的表面积是:1×1×72=72(平方厘米);(2)这个几何体共有4层组成,所以共有小正方体的个数为:1+4+9+16=30(个),所以这个几何体的体积为:1×1×1×30=30(立方厘米);答:这个图形的表面积是72平方厘米,体积是30立方厘米.故答案为:72,30.点评:此题考查了观察几何体的方法的灵活应用;抓住这个几何体的体积等于这些小正方体的体积之和;几何体的表面积是露出的小正方体的面的面积之和是解决此类问题的关键.4.一块长方形铁皮,长20厘米,宽16厘米,在它的四个角分别减去边长4厘米的正方形,然后焊成一个无盖的铁盒子,它的容积是多少?焊这个盒子至少用多少铁皮?【答案】铁盒的容积是384立方厘米,做这样一个盒子至少需要256平方厘米铁皮.【解析】计算铁盒的容积,需要求出盒子的长、宽,长方形铁皮的长、宽都要减去两个4厘米即是盒子的长、宽,高是4厘米.根据长方体的容积公式解答即可;求做这样一个盒子至少需要多少铁皮,用长方形铁皮的面积减去四个边长4厘米的正方形的面积.解答:解;(20﹣4﹣4)×(16﹣4﹣4)×4=12×8×4=384(立方厘米);20×16﹣4×4×4=320﹣64=256(平方厘米);答:铁盒的容积是384立方厘米,做这样一个盒子至少需要256平方厘米铁皮.点评:此题这样考查长方体的表面积和体积的计算,在计算长方体的表面积的时候,一定要分清求几个面的面积,根据公式解答即可.5.用铁丝做棱长8厘米的正方体模型一个,至少用铁丝厘米.【答案】96【解析】根据正方体的特征,12条棱的长度都相等,正方体的棱长总和=棱长×12.把数据代入棱长总和公式解答即可.解答:解:8×12=96(厘米)答:至少需要铁丝96厘米.故答案为:96.点评:此题主要考查正方体的特征及棱长总和的计算方法.6.一个长方体铁皮桶,底面是一个周长为1209厘米的正方形,高30厘米,这个桶最多可装水多少升?(保留整升数)【答案】这个桶最多可装水2741升【解析】先计算出油桶的底面积,再依据长方体的体积公式即可求出油的体积即可.解答:解:(1)1209÷4=302.25(厘米)302.25×302.25×30=2740651.875(立方厘米)≈2741(升)答:这个桶最多可装水2741升.点评:此题主要考查的是长方体表面积和长方体体积公式的灵活应用.7.1时25分=时;3千克80克=克;2立方米10立方分米=立方米;2平方千米=平方米.【答案】1,3080,2.01,2000000.【解析】分析:把1时25分化成时数,用25除以进率60,然后再加上1;把3千克80克化成克数,用3乘进率1000,然后再加上80;把2立方米10立方分米化成立方米数,用10除以进率1000,然后再加上2;把2平方千米化成平方米数,用2乘进率1000000;即可得解.解答:解:1时25分=1时;3千克80克=3080克;2立方米10立方分米=2.01立方米;2平方千米=2000000平方米;故答案为:1,3080,2.01,2000000.点评:此题考查名数的换算,把高级单位的名数换算成低级单位的名数,就乘单位间的进率,把低级单位的名数换算成高级单位的名数,就除以单位间的进率.8.一个长9厘米、宽6厘米、高3厘米的长方体,切割成3个体积相等的长方体,表面积最大可增加()A.36平方厘米B.72平方厘米C.108平方厘米D.216平方厘米【答案】D【解析】根据长方体切割小长方体的特点可得:要使切割后表面积增加的最大,可以平行于原长方体的最大面,即9×6面,进行切割,这样表面积就会增加4个原长方体的最大面;据此解答.解答:解:9×6×4=216(平方厘米),答:表面积最大可增加216平方厘米.故选:D9.两个棱长5厘米的正方体拼成一个长方体,这个长方体的棱长总和是120厘米..(判断对错)【答案】错误.【解析】根据题意,这个长方体的长变为10厘米,但是宽和高没变还是5厘米,由此即可判断.解:(10+5+5)×4=80厘米,所以原题说法错误.10.把你的拳头伸进装满水的容器中,溢出来的水约()A.1.3立方米B.13立方分米C.130立方厘米D.1300毫升【答案】C【解析】一只拳头伸进装满水的脸盆中,溢出来的水的体积就是拳头的体积,根据生活经验可以知道,人的拳头的体积可能是130立方厘米;由此解答即可.解答:解:把你的拳头伸进装满水的容器中,溢出来的水约130立方厘米;故选:C.点评:此题考查数的估算,根据生活经验和所学知识求解.11.把32厘米的钢筋折成一个最大的正方形,它的面积是平方厘米,如果折成一个最大正方体,它的体积是立方厘米.【答案】64,.【解析】把32厘米的钢筋折成一个最大的正方形,它的边长是32÷4=8厘米,根据正方形的面积=边长×边长可求出它的面积,如果折成一个最大的正方体,它的棱长是32÷12=厘米,根据正方体的体积=棱长×棱长×棱长可求出它的体积,据此解答.解答:解:32÷4=8(厘米)8×8=64(平方厘米)32÷12=(厘米)××=(立方厘米)答:它的面积是64平方厘米,如果折成一个最大正方体,它的体积是立方厘米.故答案为:64,.点评:本题的重点是求出围成的正方形的边长和正方体的棱长,再根据正方形的面积公式和正方体的体积公式进行解答.12.一个长方体长是5厘米,宽是4厘米,高是3厘米.它的棱长总和是厘米,表面积是平方厘米,体积是立方厘米.【答案】48;94;60.【解析】长方体的12条棱分为互相平行的3组,每组4条棱的长度相等,相对的面的面积相等,长方体的棱长总和=(a+b+h)×4;表面积公式是s=(ab+ah+bh)×2;体积公式是v=abh;分别代入数据计算即可.解答:解:棱长之和:(5+4+3)×4=12×4,=48(厘米);表面积:(5×4+5×3+4×3)×2=(20+15+12)×2,=47×2,=94(平方厘米);体积:5×4×3=60(立方厘米);答:它的棱长总和是48厘米,表面积是94平方厘米,体积是60立方厘米.故答案为:48;94;60.点评:此题考查长了方体的特征以及棱长总和、表面积、体积的计算,直接根据它们的公式计算即可.13.一个长方体正好可以切成3个一样的正方体,切开后每个正方体的表面积是12平方厘米,那么原来这个长方体的表面积是()平方厘米.A.36B.30C.28D.24【答案】C【解析】解:12×3﹣(12÷6)×4,=36﹣8,=28(平方厘米);答:原来这个长方体的表面积是28平方厘米;故选:C.14.一个棱长是4分米的正方体,棱长总和是()分米.A.16B.24C.32D.48【答案】D【解析】一个正方体有12条棱,棱长总和为12条棱的长度和.解:4×12=48(分米).故选:D.【点评】此题考查计算正方体的棱长总和的方法,即用棱长乘12即可.15.一块正方体的石头,棱长是5分米,每立方分米的石头大约重2.7千克,这块石头重有多少千克?【答案】337.5千克【解析】根据正方体的体积计算公式求出它的体积,再求它的质量即可.解:5×5×5=125(立方分米);2.7×125=337.5(千克);答:这块石头重有337.5千克.【点评】此题主要考查正方体的体积计算方法,能够利用正方体的体积计算方法解决有关的实际问题.16.有一块棱长是8厘米的正方体的铁皮,现在要把它熔铸成一个横截面积是20平方厘米的长方体,这个长方体的长是多少厘米?【答案】25.6厘米【解析】先利用正方体的体积V=a3,求出这块铁块的体积,因为这块铁块的体积是不变的,于是可以利用长方体的体积V=Sh求出溶铸成的长方体的长.解:8×8×8÷20=512÷20=25.6(厘米)答:这个长方体的长是25.6厘米.【点评】此题主要考查正方体和长方体的体积的计算方法在实际中的应用,关键是明白:这块铁块的体积是不变的.17.从一个体积是30立方厘米的长方体木块中,挖掉一小块后(如图),它的表面积()A.和原来同样大B.比原来小C.比原来大D.无法判断【答案】A【解析】从这一个体积是30立方厘米的长方体木块中,挖掉一小块后,对于这个图形是在长方体的顶点上挖掉的,减少的面与增加的面个数是相等的都是3个面.所以长方体的表面积没发生变化.解:因为挖掉一小块后,对于这个图形是在长方体的顶点上挖掉的,减少的面与增加的面个数是相等的都是3个,所以长方体的表面积没发生变化.故选:A.【点评】本题考查了关于长方体的表面积的问题,考查了学生观察,分析,解决问题的能力.18.如图是长方体展开图,测量需要的数据,并计算出长方体体积.长方体的长是厘米,宽是厘米,高是厘米.【答案】2.5、1.8、0.9.【解析】首先测量出这个长方体的长、宽、高,再根据长方体的体积公式:v=abh,把数据代入公式解答.解:如图:2.5×1.8×0.9=4.05(立方厘米),答:这个长方体的体积是4.05立方厘米.故答案为:2.5、1.8、0.9.【点评】此题考查的目的是理解掌握长方体展开图的特征,以及长方体的体积公式的灵活运用.19.把一个大正方体切割成27个同样大小的小正方体后,3面涂色的有个.1面涂色的有________ 个.【答案】8,6.【解析】根据只有一面涂色的小正方体在每个正方体的面上,只有2面涂色的小正方体在长方体的棱长上(不包括8个顶点处的小正方体)3面三面涂色的小正方体都在顶点处,即可解答问题.解:3×3×3=27,一个大正方体切割成27个同样大小的小正方体,则每条棱上有3个小正方体,大正方体8个顶点上各有1个3面涂色的小正方体,因此三面涂色的小正方体一共有8个;每个面的正中间的一个只有一面涂色,故只有一面涂色的正方体有6个;故答案为:8,6.【点评】抓住表面涂色的正方体切割小正方体的特点:1面涂色的在面上,2面涂色的在棱长上,3面涂色的在顶点处,没有涂色的在内部,由此即可解决此类问题.20.至少8个小正方体才能拼成一个大一些的正方体..【答案】√【解析】要使所用的小正方体最少,那么大正方体的棱长最少可以由2个小正方体的棱长组成,由此即可求得小正方体的个数.解:要使所用的小正方体最少,那么大正方体的棱长最少可以由2个小正方体的棱长组成,所以使用的小正方体个数最少是:2×2×2=8(个).故答案为:√.【点评】此题考查了小正方体拼组大正方体的特点的灵活应用.21.有一个长方体,长是a米,宽是b米,高是h米,若把它的高增加5米,则这个长方体的体积增加()A.abh+5B.ab(h+5)C.5ab D.以上都不是【答案】C【解析】此题可直接考虑,长方体的高增加5米,而长和宽不变增加的部分仍是一个长方体,由长方体的体积计算公式直接得到结果.解:高增加5米,而长和宽不变,增加的部分是一个长是a米,宽是b米,高是5米的长方体,所以它的体积V=5ab;故选C.【点评】此题主要考查长方体的体积计算公式:长方体的体积=长×宽×高.22. 85000毫升= 升= 立方米.【答案】85,0.085.【解析】低级单位毫升化高级单位升除以进率1000;化高级单位立方米除以进率1000000.解:85000毫升=85升=0.085立方米.故答案为:85,0.085.【点评】立方米、立方分米(升)、立方厘米(毫升)相邻之间的进率是1000,由高级单位化低级单位乘进率,反之除以进率.23.一个油桶可装200L汽油,它的()是200L.A.体积B.容积C.表面积D.重量【答案】B【解析】根据容积的意义,某容器所能容纳别的物体的体积叫做这个容器的容积.据此解答.解:一个油桶可装200L汽油,它的容积是200L.故选:B.【点评】此题考查的目的是理解掌握容积的意义及应用.24.用一根铁丝焊接成一个长6厘米,宽5厘米,高4厘米的长方体框架,至少需要铁丝厘米,如果将这根铁丝改围成一个正方体框架,这个正方体的体积是立方厘米.【答案】60,125.【解析】根据长方体的棱长总和=(长+宽+高)×4,把数据代入公式即可求出这根铁丝的长度,再根据正方体的特征,正方体的12条棱的长度都相等,因此,用这根铁丝的长度除以12求出正方体的棱长,再根据正方体的体积公式:v=a3,把数据代入公式解答.解:(6+5+4)×4=15×4=60(厘米),60÷12=5(厘米),5×5×5=125(立方厘米),答:至少需要铁丝60厘米,这根正方体的体积是125立方厘米.故答案为:60,125.【点评】此题主要考查长方体、正方体的棱长总和公式、以及正方体的体积公式的灵活运用,关键是熟记公式.25.如图,正方体木块的表面积是96平方厘米。
六年级数学长方体和正方体试题答案及解析1.从由8个棱长是1厘米的小正方体拼成的大正方体中,拿走一个小正方体,如图,这时它的表面积是()平方厘米。
A.18 B.21 C.24【答案】C【解析】由题意可知,拿走一个小正方体减少了3个面,又增加了3个面,现在图形的表面积就等于原来大正方体的表面积,大正方体的棱长可求,从而可以求出其表面积。
解:(1+1)×(1+1)×6=24(平方厘米)答:图形的表面积是24平方厘米。
故选:C【考点】简单的立方体切拼问题;长方体和正方体的表面积。
2.(2009•武昌区)有两盒长方形的糖果,长、宽、高分别是15cm、10cm、3cm,用包装纸将它们全封闭包装在一起,怎样包装最节约包装纸?请计算出包装纸的面积(接缝处忽略不计).【答案】将糖果盒的最大面相粘合最节省包装纸,包装纸的面积是600平方厘米【解析】把这两个长方体糖果盒的15×10面相粘合,得到的大长方体的表面积最小,比原来两个糖果盒的表面积减少了2个最大的面,最节约包装纸,由此即可解答.解答:解:(15×10+15×3+10×3)×2×2﹣15×10×2,=(150+45+30)×4﹣300,=225×4﹣300,=900﹣300,=600(平方厘米);答:将糖果盒的最大面相粘合最节省包装纸,包装纸的面积是600平方厘米.点评:抓住两个长方体拼组一个大长方体的方法:最大面相粘合,得到的大长方体的表面积最小;最小面相粘合,得到的大长方体的表面积最大.3.(西城区)一个长方体水槽,从里面量长2.5分米,宽1.8分米,高1.5分米,这个水槽的容积是多少立方分米?【答案】这个水槽的容积是6.75立方分米【解析】分析:已知长方体的长、宽、高,根据长方体的体积=长×宽×高,即可求得体积.解答:解:2.5×1.8×1.5,=4.5×1.5,=6.75(立方分米);答:这个水槽的容积是6.75立方分米.点评:此题考查了长方体的体积计算,可根据已知直接运用公式计算.4.(2012•慈溪市)一个底面长25厘米,宽20厘米的长方体容器,里面盛有一些水,当把一个正方体木块放入水中时,木块的二分之一没入水中,此时水面升高了1厘米,问正方体木块的棱长是多少?【答案】正方体木块的棱长是10厘米【解析】升高了1厘米部分水的体积就是木块体积的二分之一,这部分水的体积就等于长25厘米,宽20厘米,高1厘米的长方体的体积,根据长方体的体积=长×宽×高,求出这个体积,然后再乘2,就是正方体木块的体积,再分解因数,即可得出答案.解答:解:25×20×1×2,=500×2,=1000(立方厘米),1000=10×10×10,所以,正方体木块的棱长是10厘米;答:正方体木块的棱长是10厘米.点评:本题关键是根据等积变形,明确升高了1厘米部分水的体积就是木块体积的二分之一.5.右图是一个棱长为2厘米的正方体,将它挖掉一个棱长为1厘米的小正方体后,它的表面积()A.比原来大B.比原来小C.不变【答案】C【解析】根据正方体的特征和表面积的计算方法,在顶点处挖掉一个棱长为1厘米的小正方体,又露出了和原来一样的三个正方形的面,因此它的表面积不变,据此解答.解:一个棱长为2厘米的正方体,将它挖掉一个棱长为1厘米的小正方体后,它的表面积不变.故选:C.点评:解答此题要明确减少了哪几个面,又增加了哪几个面.6.正方体的棱长扩大2倍,体积扩大4倍..(判断对错)【答案】×【解析】根据正方体体积=棱长3,可得正方体体积扩大的倍数是棱长扩大倍数的立方求解即可.解答:解:正方体的棱长扩大2倍,则体积扩大23=8倍,所以原题说法错误.故答案为:×.点评:考查了正方体的体积与正方体棱长的关系,是基础题型,比较简单.7.1时25分=时;3千克80克=克;2立方米10立方分米=立方米;2平方千米=平方米.【答案】1,3080,2.01,2000000.【解析】分析:把1时25分化成时数,用25除以进率60,然后再加上1;把3千克80克化成克数,用3乘进率1000,然后再加上80;把2立方米10立方分米化成立方米数,用10除以进率1000,然后再加上2;把2平方千米化成平方米数,用2乘进率1000000;即可得解.解答:解:1时25分=1时;3千克80克=3080克;2立方米10立方分米=2.01立方米;2平方千米=2000000平方米;故答案为:1,3080,2.01,2000000.点评:此题考查名数的换算,把高级单位的名数换算成低级单位的名数,就乘单位间的进率,把低级单位的名数换算成高级单位的名数,就除以单位间的进率.8.下面各图是由棱长为1厘米的正方体拼成的,根据前三个图形表面积的排列规律,第五个图形的表面积是平方厘米.【答案】22.【解析】棱长为1厘米的小正方体,1个面的面积是1平方厘米,观察图形可得:每增加1个正方体,表面积就增加4个面;由此即可推理出一般规律.解答:解:1个小正方体,表面积是:6平方厘米可以写成2+1×4;2个小正方体,表面积是10平方厘米,可以写成2+2×4;3个小正方体,表面积是14平方厘米,可以写成2+3×4;…;所以n个小正方体,表面积就是2+4n平方厘米;当n=5时,表面积是:2+4×5=22(平方厘米),答:第五个图形的表面积是22平方厘米.故答案为:22.点评:主要考查了学生通过特例分析从而归纳总结出一般结论的能力.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.9.如图,是用积木摆放的一组图案,观察图案并探索:第五个图案中共有()块积木.A.25 B.16 C.36【答案】A.【解析】观察积木摆放的一组图案特征,可知第一个图案有12=1块积木,第二个图案有22=4块积木,第三个图案有32=9块积木,依此类推,第五个图案有52=25块积木,第n个图案有n2块积木.解答:解:根据以上分析第五个图案中共有52=25块积木.故选:A.点评:此题是根据图形摆放的特点寻找规律的题目,注意多观察,从多角度考虑问题.10.正方体的棱长扩大2倍,体积扩大了()倍.A.2 B.4 C.8【答案】C【解析】根据正方体的体积=棱长×棱长×棱长,所以棱长扩大2倍,体积就会扩大2×2×2=8倍.解答:解:2×2×2=8;故选:C.点评:此题主要考查正方体的体积随着棱长扩大或缩小的规律.11. 2立方米=立方厘米.【答案】2000000.【解析】把2立方米换算为立方厘米数,用2乘进率1000000.解答:解:2立方米=2000000立方厘米;故答案为:2000000.点评:此题考查名数的换算,把高级单位的名数换算成低级单位的名数,就乘单位间的进率,把低级单位的名数换算成高级单位的名数,就除以单位间的进率.12.一个长方体长是5厘米,宽是4厘米,高是3厘米.它的棱长总和是厘米,表面积是平方厘米,体积是立方厘米.【答案】48;94;60.【解析】长方体的12条棱分为互相平行的3组,每组4条棱的长度相等,相对的面的面积相等,长方体的棱长总和=(a+b+h)×4;表面积公式是s=(ab+ah+bh)×2;体积公式是v=abh;分别代入数据计算即可.解答:解:棱长之和:(5+4+3)×4=12×4,=48(厘米);表面积:(5×4+5×3+4×3)×2=(20+15+12)×2,=47×2,=94(平方厘米);体积:5×4×3=60(立方厘米);答:它的棱长总和是48厘米,表面积是94平方厘米,体积是60立方厘米.故答案为:48;94;60.点评:此题考查长了方体的特征以及棱长总和、表面积、体积的计算,直接根据它们的公式计算即可.13.用3个棱长4分米的正方体粘合成一个长方体,长方体的表面积比3个正方体的表面积少平方分米.【答案】64.【解析】用3个棱长4分米的正方体粘合成一个长方体,有4个正方形的面粘合在一起,即表面积少了4个正方形面的面积.由此解答.解:4×4×4=64(平方分米);故答案为:64.【点评】此题左右考查长方体和正方体的表面积计算方法,解答这类题首先要弄清有几个面粘合在一起.14.把30L水装入容积是250ml的水瓶里,能装瓶.【答案】120.【解析】先把30L换算成30000ml,进而求30000ml里面有几个250ml,用除法计算.解:30L=30000ml30000÷250=120(瓶)答:能装120瓶.故答案为:120.【点评】关键是把单位化统一,进而根据求一个数里面有几个另一个数,用除法计算得解.15.加工一个长方体油箱要用多少铁皮,是求这个油箱的()A.表面积 B.体积 C.容积【答案】A【解析】根据油箱的特点,加工一个长方体油箱要用多少铁皮,是求这个长方体的表面积.解:根据题干可得,要求油箱要用多少铁皮,是求这个长方体的表面积.故选:A.【点评】此题考查了长方体表面积的实际应用.16.把正方体的棱长扩大3倍,它的表面积扩大()A.3倍B.6倍C.9倍D.27倍【答案】C【解析】因为正方体的表面积=棱长×棱长×6,棱长扩大3倍,根据积的变换规律可以得知,表面积扩大了3×3=9倍,由此可以解决问题.解:正方体的表面积=棱长×棱长×6,棱长扩大3倍,表面积扩大了3×3=9倍,故选:C.【点评】此题考查了正方体的表面积公式以及积的变化规律的应用.17.一盒饼干长20厘米,宽15厘米,高30厘米,现在要在它的四周贴上商标纸,这张商标纸的面积是多少平方厘米?【答案】2100平方厘米【解析】这张商标纸的面积是指长方体的侧面积,根据长方形的面积公式:s=ab,把数据代入公式解答即可.解:(20×30+15×30)×2=(600+450)×2=1050×2=2100(平方厘米),答:这张商标纸的面积是2100平方厘米.【点评】此题主要考查长方体的表面积公式的灵活运用.18.填上合适的单位名称.①橡皮的体积大约是6②集装箱的体积大约是40③一个墨水瓶的容积是60④一本数学书的体积大约是320⑤一个正方体,棱长1分米,表面积是600 ,体积是1 .【答案】立方厘米,立方米,毫升,立方厘米,平方厘米,立方分米.【解析】根据情景根据生活经验,对面积单位、容积单位、体积单位和数据大小的认识,可知计量橡皮的体积用“立方厘米”做单位;可知计量集装箱的体积用“立方米”做单位;计量一个墨水瓶的容积用“毫升”做单位,计量一本数学书的体积用“立方厘米”做单位;1分米=10厘米,根据正方体表面积公式10×10×6=600平方厘米,根据条件公式1分米×1分米×1分米=1立方分米,所以计量一个正方体,棱长1分米,表面积用“平方厘米”作单位,计量体积用“立方分米”做单位;据此得解.解:①橡皮的体积大约是6 立方厘米②集装箱的体积大约是40 立方米③一个墨水瓶的容积是60 毫升④一本数学书的体积大约是320 立方厘米⑤一个正方体,棱长1分米,表面积是600 平方厘米,体积是1 立方分米;故答案为:立方厘米,立方米,毫升,立方厘米,平方厘米,立方分米.【点评】此题考查根据情景选择合适的计量单位,要注意联系生活实际、计量单位和数据的大小,灵活的选择.19.一个正方体石块占地20平方分米,这个石块的表面积是平方分米.【答案】120.【解析】首先根据正方体石块占地20平方分米,可得正方体的每个面的面积都是20平方分米;然后根据正方体的表面积=每个面的面积×6,求出这个石块的表面积是多少平方分米即可.解:20×6=120(平方分米)答:这个石块的表面积是120平方分米.故答案为:120.【点评】此题主要考查了正方体的表面积的求法,要熟练掌握,解答此题的判断出正方体的每个面的面积都是20平方分米.20.下面5个长方形中,哪3个是同一个长方体中相邻的3个面?请你在括号里打“√”【答案】见解析【解析】根据长方体的特征,长方体对面是相同的长方形,长方体有12条棱,相对的四条棱长度相等.按长度可分为三组,每一组有4条棱,长方体有8个顶点.每个顶点连接三条棱,三条棱分别叫做长方体的长,宽,高,再结合长方体的长、宽、高,组成的长方体长为5,宽为3,高为2,即③(长5、宽3)可作底面,②(长3,宽2)可作左面,①(长5、宽2)可作上面;同理可推:组成的长方体的长为5、宽为4、高为2,所以①④⑤是同一个长方体中相邻的3个面,解答即可.解:由分析可知:组成的长方体的长为5、宽为3、高为2,所以①②③是同一个长方体中相邻的3个面;组成的长方体的长为5、宽为4、高为2,所以①④⑤是同一个长方体中相邻的3个面.故答案为:或:【点评】本题主要是考查长方体的特征,根据长方体的长、宽、高,结合长方体的特征,即可确定长方体的上、下底,左、右面,前、后面的长和宽.21.体积是1立方分米的正方体,可截成个棱长是1厘米小正方体,将这些小正方体排成一排成为长方体,这个长方体长是米.【答案】1000;10.【解析】棱长是1厘米的小正方体体积是1立方厘米,再把1立方分米化成1000立方厘米,所以1立方分米的正方体木块里面有1000个1立方厘米的小正方体,所以将这些小正方体排成一排成为长方体,这个长方体宽是1厘米,高是1厘米的长方体,这个长方体长是:1000÷1÷1=1000厘米.解:1立方分米=1000立方厘米,1000÷(1×1×1)=1000(个),1000÷1÷1=1000(厘米)=10(米),答:体积是1立方分米的正方体,可截成1000个棱长是1厘米小正方体,将这些小正方体排成一排成为长方体,这个长方体长是10米.故答案为:1000;10.【点评】解答此题应根据体积单位间的进率进行分析,或先把棱长为1分米的正方体化为棱长为10厘米的正方体,进而根据正方体的体积计算公式进行解答.22.把两个完全相同的正方体拼成一个长方体,拼成的长方体的表面积是120平方厘米,原来每个正方体的表面积是平方厘米.【答案】72.【解析】两个正方体拼成一个长方体后,相当于减少了两个正方体的面,即10个正方体的面的面积是120平方厘米,由此求出正方体一个面的面积,进而求出每个正方体的表面积.解:120÷10=12(平方厘米)12×6=72(平方厘米)答:原来每个正方体的表面积72平方厘米.故答案为:72.【点评】关键是根据题意得出两个正方体拼成一个长方体后,相当于减少了两个正方体的面,即10个正方体的面的面积是120平方厘米,进而求出正方体一个面的面积.23.在横线里填上合适的单位.星期天,小玲到离家1.2 的超市购物,他买了800 的猪肉,买了1.5 的苹果,又买了一瓶1.25 的可口可乐,一共花了32.5 钱.【答案】千米,克,千克,升,元.【解析】根据情景根据生活经验,对质量单位、长度单位、货币单位、体积单位和数据大小的认识,可知计量小玲家离超市的距离用“千米”做单位;可知计量猪肉的质量用“克”做单位;计量苹果的质量用“千克”做单位,计量可口可乐用“升”做单位,计量一共花钱数用“元”作单位.解:星期天,小玲到离家1.2 千米的超市购物,他买了800 克的猪肉,买了1.5 千克的苹果,又买了一瓶1.25 升的可口可乐,一共花了32.5 元钱;故答案为:千米,克,千克,升,元.【点评】此题考查根据情景选择合适的计量单位,要注意联系生活实际、计量单位和数据的大小,灵活的选择.24.集装箱的体积大约是40()A.立方米B.立方分米C.升D.毫升【答案】A【解析】根据生活经验以及对体积单位和数据大小的认识,可知计量集装箱的体积,应用体积单位,结合数据可知:应用“立方米”做单位;据此解答.解:集装箱的体积大约是40立方米;故选:A.【点评】此题考查根据情景选择合适的计量单位,要注意联系生活实际、计量单位和数据的大小,灵活的选择.25.如图,长方体礼盒的长、宽、高分别是20厘米、18厘米、6厘米.如果用彩带把这个礼盒捆扎起来(打结处的彩带长12厘米),一共需要彩带多少厘米?【答案】112厘米.【解析】根据长方体的特征:12条棱分为互相平行的3组,每组4条棱的长度相等,由图形可知:所需彩带的长度等于4条高、2条长、2条宽棱的长度和再加上接头处用的12厘米即可.解:(20+18)×2+6×4+12=38×2+24+12=76+24+12=112(厘米);答:一共需要彩带112厘米.【点评】此题考查的目的是掌握长方体的棱的特征,根据棱长总和的计算方法解答.26.把一个棱长是6分米的正方体截成两个同样的长方体,每个长方体的表面积是( )平方分米,体积是()立方分米。
长方体和正方体趣题1、用棱长是1厘米的小正方体木块拼成如下图所示的立体图形,这些图形的表面积是多少平方厘米?2、一个长方体,不同的三个面的面积分别是35平方厘米,77平方厘米,55平方厘米,且长、宽、高都是质数。
这个长方体的表面积和体积分别是多少?3、用一个长32厘米、宽和高都是25厘米的长方体纸箱,装棱长5厘米的正方体木块,最多能装多少个?(纸箱的厚度忽略不计)4、在一个棱长为8分米的正方体上放一个棱长为5分米的小正方体(如图),求这个立体图形的表面积。
5、有一个长5分米、宽和高都是3分米的长方体硬纸箱,如果用绳子将箱子横着捆两道,长着捆一道(如图),打结处共用2分米。
求一共要用多少分米的绳子?6、如图是一个长方体斜切一刀后余下的,求这个余下部分的体积。
(单位:分米)7、用5个完全一样的正方体拼成一个长方体,这个长方体的棱长总和是112厘米,原来每个正方体的表面积是多少平方厘米?8、一个无盖的正方体木箱,从外面量棱长是5分米,木箱的木板厚度是5厘米,这个木箱的容积是多少升?9、有一个长方体木块,长50厘米,宽30厘米,高10厘米,把它锯成同样大小的3块小长方体,这3块小长方体的表面积之和比原来长方体的表面积增加了多少平方厘米?(考虑多种情况)10、一个无盖正方体容器的棱长为10厘米,装满水后,如图倾斜,倾出水后AB的长为8厘米。
将容器再放平,求此时水的高度。
11、如图,一根旧铁皮做成的水槽。
(1)做这样的10根水槽需要铁皮多少平方米?(2)在正常情况下水槽中的水每秒流0.2米,这根水槽每分钟流水量是多少升?12、把一个正方体六个面都涂上红色,然后把它锯成4个同样大的小长方体,没有涂色的面积是60平方厘米。
求涂上红色的面积一共是多少平方厘米?13、甲、乙两个长方体水箱的底面积分别是200平方分米和100平方分米,甲水箱中有4800升的水,乙水箱是空的。
现在将甲水箱中的一部分水倒入乙水箱,使两个水箱的水面高度相等。
长方体和正方体基础+拓展+提高练习题1、长方体有6个面,每个面是矩形,特殊情况有两个相对的面是正方形,相邻的面完全相同。
长方体有12条棱,相对的棱长度相等。
长方体有8个顶点。
2、正方体有6个面,每个面都是正方形,正方体有12条棱,棱的长度相等,正方体有8个顶点。
3、相交于一个顶点的三条棱分别叫做长方体的三条棱、正方体可以看成是边长都相等的长方体。
正方体是特殊的长方体。
4、长方体或正方体的外侧面积,叫做它的表面积。
5、三维物体所占的空间大小,叫做物体的体积。
6、计量体积要用立方单位,常用的体积单位有立方米、立方分米、立方厘米。
相邻两个长度单位间的进率是10,相邻两个面积单位间的进率是100,相邻两个体积单位间的进率是1000.7、三维物体所容纳的空间大小,通常叫做它们的容积。
计量液体的容积一般用升作单位。
8、一个正方体的棱长是a,棱长之和是4a,表面积是6a²,体积是a³。
9、一个长方体的长、宽、高分别是a、b、h,它的棱长之和是2(a+b+h),表面积是2(ab+ah+bh),体积是abh。
10、一个正方体的棱长是7分米,它的表面积是294平方分米。
11、一个长方体的长是6厘米,宽和高都是4厘米,它的表面积是88平方厘米。
12、正方体的棱长扩大2倍,表面积扩大4倍,体积扩大8倍。
13、一个长7厘米,宽6厘米,高3厘米的礼盒,用绳子将它捆起来,接头处5厘米,至少要25分米的绳子。
14、有一根长52厘米的铁丝,恰好可以焊接成一个长6厘米,宽4厘米,高3厘米的长方体。
15、用96厘米长的铁丝焊接成一个正方体的框架,然后用纸给它的表面包裹起来,至少需要216平方厘米的纸。
16、一个长方体和一个正方体的棱长之和相等,已知长方体的长为5厘米,宽为3厘米,高为4厘米,求正方体的棱长为2厘米。
17、一个房间的长6米,宽3.5米,高3米,门窗面积是8平方米。
现在要把这个房间的四壁和顶面粉刷水泥,粉刷水泥的面积是63平方米。
14.长方体和正方体(1)拓展
一、填空
1. 做一个底面周长16厘米,高3厘米的长方体框架,需要铁丝()厘米。
2.用24分米长的铁丝做一个长3分米,宽2分米,高()分米的长方体,它右面的面积是()平方分米。
3.小明有6根8厘米、9根10厘米的小棒,用其中的12根搭了一个长方体,这个长方体的棱长总和是()厘米。
4.一个长方体木块,长12厘米,宽8厘米,高6厘米,把它放在地上,占地面积至少是()平方厘米。
5.一张长20cm,宽6cm的长方形纸,把它对折、再对折,打开后围成一个高6cm的长方体的侧面。
如果要为这个长方体配一个底面,这个底面的面积是()平方厘米。
6.一个长方体的底面是面积是9平方分米的正方形,它的侧面展开图正好是一个正方形,这个长方体的表面积是()平方分米。
7.一个长方体长、宽、高都为素数,相邻两个面的面积和是91平方厘米,最短的棱长一定是( )厘米。
8.一个长方体的体积是36立方厘米,如果它的A面的面积是18平方厘米,B面的面积是12平方厘米,则C面的面积是()平方厘米。
9. 右图是用1立方厘米的小正方体在桌面上搭起来的。
(1)这个图形的体积是()立方厘米。
(2)它与桌面接触的面积是()平方厘米。
它的表面积是()平方厘米。
(3)至少再添()个这样的小正方体就能搭成一个
大正方体。
二、应用
10.一根长12厘米、宽9厘米、高7厘米的木料,把它锯成棱长为3厘米的正方体木块,可以锯成几块?
11. 商店营业员用一根塑料带为顾客捆扎两个食品盒,每个食品盒的长、宽、高分别是17厘米、11厘米、4厘米,如右图那样捆扎一道并留下18厘米长为手提环,这样一共需要多少厘米长的塑料带?
12.一个长方体玻璃容器,底面是边长为8厘米的正方形,把四周展开正好是一个正方形。
这个容器的表面积是多少平方厘米?
13. 爸爸从网上买了一个五层书架(如图),书架外包装标明“书架尺寸50×30×160cm”,做这个书架至少需要木料多少平方分米?(木料的厚度忽略不计)
14. 学校科技馆大门前有7级台阶,每级台阶长6米,宽0.4米,高0.2米。
(1)7级台阶一共占地多少平方米?
(2)给这些台阶铺上地砖,至少需要铺多少平方米的地砖?
15.有一个长是50厘米,宽是10厘米,高是10厘米的全封闭的容器,里面装有8厘米高的水。
如果将这个容器竖放,水面的高度是多少厘米?
16.有一个花坛,长5米,宽3米,高0.5米。
四周用砖砌成,砖墙的厚度是0.2米,中间填满泥土。
(1)花坛所占的空间有多大?
(2)花坛里大约有泥土多少立方米?
17.小东做测量“石块体积” 的试验:他先将一块棱长是4cm的正方体铁块,浸没在一个长方体水槽的水中。
然后取出正方体铁块,水槽里的水面下降了1cm。
接着他把要测量的石块浸没在水槽的水中,这时水槽里的水面上升了1.5cm,这个石块的体积是多少?
参考答案
1.44
2.3, 6
3.112
4.48
5.25
6.162
7.2
8.6
9.9, 5, 32, 18
10.24
11.106
12.1152
13.266
14.16.8, 25.2
15.40
16.7.5, 5.98
17.96
详细讲解,请参阅“小学六年级数学思维提升培优拓展题讲解之《14长方体和正方体(1)拓展》”。