汤家凤高等数学辅导讲义
- 格式:docx
- 大小:17.00 KB
- 文档页数:2
汤家凤高等数学讲义15页例4
摘要:
一、题目与要求
二、分析
1.函数在x 趋近于1 时,分母趋近于0
2.分子可以写成(x - 1)(x - 2) 的形式
3.判断分子在x 趋近于1 时的极限是否存在
三、解答
1.分子在x 趋近于1 时的极限为-1
2.函数的极限存在
3.极限的值为-1
正文:
汤家凤高等数学讲义15 页例4 中,我们要求函数f(x) = (x^2 - 3x + 2)/(x - 1) 在x 趋近于1 时的极限。
首先,我们分析题目。
函数f(x) 在x 趋近于1 时,分母趋近于0,需要判断极限是否存在。
接着,我们将分子x^2 - 3x + 2 写成(x - 1)(x - 2) 的形式,当x 趋近于1 时,分子趋近于0。
由于分母x - 1 趋近于0,所以我们需要判断分子(x - 1)(x - 2) 在x 趋近于1 时的极限是否存在。
接下来,我们进行解答。
当x 趋近于1 时,分子(x - 1)(x - 2) 的极限为-1。
由于分母x - 1 趋近于0,而分子(x - 1)(x - 2) 的极限为-1,所以当x 趋近于1 时,函数f(x) 的极限存在。
最后,我们求得极限的值为-1。
汤家凤高等数学辅导讲义摘要:一、汤家凤高等数学辅导讲义的背景和特点1.汤家凤的高等数学辅导讲义在考研数学领域的地位和影响力2.讲义的内容和特点:全面、系统、深入、易懂二、汤家凤高等数学辅导讲义的主要内容1.基本概念和原理的讲解2.典型题型的归纳和解题方法的讲解3.注重基础,强化训练三、汤家凤高等数学辅导讲义的使用建议1.针对不同层次考生的使用建议2.与其他数学复习资料的配合使用建议3.复习策略和技巧的指导正文:汤家凤高等数学辅导讲义是考研数学领域的经典教材,受到了广大考生的青睐。
作者汤家凤老师拥有30 多年的考研数学辅导经验,对考研数学的考试方向和重点有着深刻的理解。
他的高等数学辅导讲义内容全面、系统、深入、易懂,不仅涵盖了所有考研数学知识点,还通过丰富的例题和讲解,使考生能够快速掌握解题方法和技巧。
讲义分为基础篇和提高篇两部分,其中基础篇注重概念和原理的讲解,帮助考生打牢基础;提高篇则针对典型题型进行归纳和解题方法的讲解,帮助考生提高解题能力。
此外,讲义还附有大量的练习题,供考生巩固所学知识。
针对不同层次的考生,汤家凤高等数学辅导讲义有着不同的使用方法。
对于基础较薄弱的考生,可以先从基础篇开始,逐章节学习,并完成相应的练习题;对于基础较好的考生,可以直接进入提高篇,强化训练。
当然,考生也可以根据自身的实际情况,有针对性地选择学习讲义中的部分内容。
在使用汤家凤高等数学辅导讲义的同时,考生还可以搭配其他数学复习资料,如教材、习题集、模拟题等,以提高复习效果。
同时,考生还需注意调整复习策略和技巧,如合理安排时间、分阶段复习、及时总结等,以期在考试中取得理想的成绩。
第一讲 极限与连续主要内容概括〔略〕 重点题型讲解一、极限问题类型一:连加或连乘的求极限问题 1.求以下极限: 〔1〕⎪⎪⎭⎫⎝⎛+-++⨯+⨯∞→)12)(12(1531311lim n n n ; 〔2〕11lim 332+-=∞→k k nk n π;〔3〕∑=∞→+nk nn k k 1])1(1[lim ;2.求以下极限:〔1〕⎪⎪⎭⎫ ⎝⎛++++++∞→n n n n n 22241241141lim ; 3.求以下极限: 〔1〕⎪⎪⎭⎫⎝⎛++++++∞→22222212111lim n n n n n ; 〔2〕nn nn !lim∞→; 〔3〕∑=∞→++ni n ni n 1211lim。
类型二:利用重要极限求极限的问题 1.求以下极限:〔1〕)0(2cos 2cos 2cos lim 2≠∞→x x x x n n ;〔2〕nn n n n n 1sin )1(lim 1+∞→+;2.求以下极限: 〔1〕()xx xcos 1120sin 1lim -→+;〔3〕)21ln(103sin 1tan 1lim x xx x x +→⎪⎭⎫⎝⎛++;〔4〕21cos lim x x x ⎪⎭⎫ ⎝⎛∞→;类型三:利用等价无穷小和麦克劳林公式求极限的问题 1.求以下极限:〔1〕)cos 1(sin 1tan 1lim 0x x xx x -+-+→;〔2〕)cos 1(lim tan 0x x e e x x x --→;〔3〕]1)3cos 2[(1lim30-+→x x x x ; 〔4〕)tan 11(lim 220xx x -→; 〔5〕203)3(lim xx xx x -+→; 〔6〕设A a x x f x x =-+→1)sin )(1ln(lim,求20)(lim x x f x →。
2.求以下极限:xx ex x x sin cos lim 3202-→-类型四:极限存在性问题:1.设01,111=-+=+n n x x x ,证明数列}{n x 收敛,并求n n x ∞→lim 。
汤家凤高数基础班讲义1. 引言本讲义旨在介绍汤家凤高数基础班的课程内容和教学方法。
汤家凤高数基础班是一门为初学者设计的高等数学课程,旨在帮助学生建立扎实的高数基础,为进一步学习高等数学打下坚实的基础。
2. 课程目标•掌握代数与初等函数相关知识;•理解微积分的基本概念和方法;•学会运用微积分解决实际问题;•培养逻辑思维和问题解决能力。
3. 课程大纲3.1 代数与初等函数•实数与复数•集合论与不等式•函数与映射关系•初等函数及其性质3.2 极限与连续•数列极限及其性质•函数极限及其性质•连续性及其应用3.3 导数与微分•导数的概念与计算法则•高阶导数与隐函数求导法则•微分中值定理及其应用3.4 积分与应用•不定积分与定积分•定积分的计算法则•积分中值定理及其应用3.5 微分方程•常微分方程的基本概念•一阶常微分方程及其解法•高阶常微分方程及其解法4. 教学方法4.1 理论讲解教师将通过清晰明了的语言和示例,对每个知识点进行详细讲解。
教师会引导学生理解概念、掌握基本原理,并提供相关的数学推导过程。
4.2 练习与讨论教师将提供大量练习题,并指导学生进行课堂练习和小组讨论。
通过实际操作和合作交流,加深对知识点的理解和应用能力。
4.3 解题技巧分享教师将分享一些常见的解题技巧和方法,帮助学生更好地应对考试和实践中的各种问题。
同时,鼓励学生探索不同的解题思路,培养独立思考和创新能力。
4.4 实践案例分析教师将选取一些实际问题,通过案例分析的方式,将抽象的数学知识与实际问题相结合。
通过分析和解决实践问题,加深学生对数学应用的理解和体验。
5. 学习资源•教材:《高等数学》(第三版),汤家凤、吴立宗编著•参考书:《高等数学辅导教程》,汤家凤、吴立宗编著•网上资源:汤家凤高数基础班在线课程6. 考核方式•平时成绩:包括课堂表现、作业完成情况等;•期中考试:对前半个学期的知识进行检测;•期末考试:对全年知识进行综合考核。
汤家凤高等数学辅导讲义是一本非常实用的高等数学辅导资料,它由汤家凤老师团队精心编写,涵盖了高等数学的核心内容和重要知识点。
该讲义的特点是内容全面、重点突出,能够帮助学生更好地掌握高等数学的核心内容。
首先,汤家凤高等数学辅导讲义的内容非常全面,几乎涵盖了高等数学的所有核心内容。
包括函数极限连续、一元函数微积分、多元函数微积分、常微分方程等章节,每个章节都有详细的知识点和解题方法。
这为想要系统学习高等数学的同学们提供了全面的指导。
其次,讲义的重点突出,对于不同水平的学生,讲义的难易程度也不同。
汤家凤团队根据多年的教学经验,总结出了各个章节的重点和难点,并在讲义中特别强调。
这对于想要有针对性地学习高等数学的同学们来说,是非常有用的。
同时,讲义中还包含了一些趣味性的小贴士和总结,可以帮助学生更好地理解和记忆知识点。
再次,汤家凤高等数学辅导讲义的排版和印刷质量也非常出色。
整个讲义的排版简洁明了,让人一目了然。
同时,印刷质量也非常高,纸张质量、颜色准确性等方面都做得非常好。
这为学生的学习体验增添了不少分。
最后,对于使用过汤家凤高等数学辅导讲义的同学来说,普遍反馈效果良好。
它帮助他们更好地理解和掌握高等数学的核心内容,提高了做题速度和准确性。
同时,汤家凤团队还提供了一些额外的辅导资源,如在线答疑、视频讲解等,可以更好地帮助学生解决学习中的问题。
总之,汤家凤高等数学辅导讲义是一本非常实用的辅导资料,它全面覆盖了高等数学的核心内容,重点突出,排版印刷质量出色。
使用过该讲义的同学普遍反馈效果良好,认为它帮助他们更好地理解和掌握高等数学的核心知识,提高了做题速度和准确性。
在使用该讲义的过程中,同学们需要注意以下几点:首先,要按照自己的学习进度和需求,有选择地阅读讲义中的内容;其次,要结合汤家凤老师的视频课程或其他辅导资源,更好地理解和掌握知识点;再次,要注重做题和总结,将学到的知识应用到解题实践中;最后,要积极参与汤家凤团队提供的在线答疑和视频讲解等辅导资源,解决学习中的问题。
考研数学一考试范围及参考书目考研数学一是众多考研学子需要攻克的重要科目之一。
它的考试范围广泛,对考生的数学基础和综合运用能力有较高要求。
了解其考试范围和参考书目对于备考至关重要。
一、考试范围1、高等数学函数、极限、连续:包括函数的概念及性质,数列极限与函数极限的定义及性质,无穷小量和无穷大量的概念及关系,函数连续的概念及性质。
一元函数微分学:导数和微分的概念、几何意义、基本公式和运算法则,函数的单调性、极值、凹凸性及拐点。
一元函数积分学:原函数和不定积分的概念,定积分的概念、性质、计算和应用,反常积分的概念和计算。
向量代数和空间解析几何:向量的概念、运算,空间直角坐标系,平面和直线的方程,曲面和空间曲线的方程。
多元函数微分学:多元函数的概念、极限和连续,偏导数和全微分的概念、计算和应用,多元函数的极值和条件极值。
多元函数积分学:二重积分、三重积分的概念、性质、计算和应用,曲线积分和曲面积分的概念、性质和计算。
无穷级数:数项级数的收敛和发散的概念、性质和判别法,幂级数的收敛半径、收敛区间和收敛域,幂级数的和函数,函数展开成幂级数。
常微分方程:常微分方程的基本概念,变量可分离的方程、齐次方程、一阶线性方程、可降阶的高阶方程、线性常系数齐次和非齐次方程的解法。
2、线性代数行列式:行列式的概念、性质和计算。
矩阵:矩阵的概念、运算,逆矩阵、伴随矩阵,矩阵的初等变换和矩阵的秩。
向量:向量的概念、线性组合和线性表示,向量组的线性相关和线性无关,向量组的秩和极大线性无关组。
线性方程组:线性方程组的解的存在性、唯一性和结构,齐次线性方程组的基础解系和通解,非齐次线性方程组的解的结构和通解。
矩阵的特征值和特征向量:矩阵的特征值和特征向量的概念、性质和计算,相似矩阵的概念和性质,矩阵可相似对角化的条件和方法,实对称矩阵的特征值和特征向量的性质。
二次型:二次型及其矩阵表示,合同变换和合同矩阵,二次型的秩,惯性定理,二次型的标准形和规范形,用配方法和正交变换化二次型为标准形,正定二次型的判别法。
考研数学高分导学班讲义汤家凤课程配套讲义说明1、配套课程名称2013年考研数学高分导学(汤家凤,16课时)2、课程内容此课件为汤家凤老师主讲的2013考研数学高分导学班课程。
此课程包含线代和高数,请各位学员注意查看。
3、主讲师资汤家凤——文都独家授课师资,数学博士,教授,全国著名考研数学辅导专家,全国唯一一个能脱稿全程主讲的数学辅导老师,全国大学生数学竞赛优秀指导老师。
汤老师对数学有着极其精深的研究,方法独到。
汤老师正是凭借多年从事考研阅卷工作的经验,通过自己的归纳总结,在课堂上为学生列举大量以往考过的经典例子。
深入浅出,融会贯通,让学生真正掌握正确的解题方法。
严谨的思维、激情的课堂,轻松的学习,这是汤老师课堂的特色!主讲:高等数学、线性代数。
4、讲义20页(电子版)文都网校2011年9月15日2013考研数学高分导学班讲义线性代数部分—矩阵理论一、矩阵基本概念1、矩阵的定义—形如??mn m m n n a a a a a a a a a 212222111211,称为矩阵n m ?,记为n m ij a A ?=)(。
特殊矩阵有(1)零矩阵—所有元素皆为零的矩阵称为零矩阵。
(2)方阵—行数和列数都相等的矩阵称为方阵。
(3)单位矩阵—主对角线上元素皆为1其余元素皆为零的矩阵称为单位矩阵。
(4)对称矩阵—元素关于主对角线成轴对称的矩阵称为对称矩阵。
2、同型矩阵—行数和列数相同的矩阵称为同型矩阵。
若两个矩阵同型且对应元素相同,称两个矩阵相等。
3、矩阵运算(1)矩阵加、减法:=??????? ??=mn m m n n mn m m n n b b b b b b b b b B a a a a a a a a a A 212222111211212222111211,,则±±±±±±±±±=±mn mn m m m m n n n n b a b a ba b a b a b a b a b a b a B A221122222221211112121111。
汤家凤高数基础班讲义一、导论在汤家凤高数基础班中,我们将学习高等数学的基本概念和技巧。
高等数学是大学数学的核心课程之一,对于理工科学生来说尤为重要。
本讲义将帮助学生建立高数的基础知识框架,并提供实用的解题方法,以帮助学生更好地应对高数学习。
二、函数与极限1. 函数的定义与性质:函数的定义及基本性质,包括定义域、值域、单调性、奇偶性等。
2. 一些常见函数:介绍常见的函数类型,如线性函数、幂函数、指数函数、对数函数等,并讲述它们的基本性质。
3. 极限的概念与性质:解释极限的概念并引入极限的性质,包括左极限、右极限、无穷大与无穷小等。
三、导数与微分1. 导数的定义与求导法则:介绍导数的定义,包括导数的几何意义和物理意义,以及常用的求导法则。
2. 高阶导数与隐函数求导:讲解高阶导数的定义,以及如何求解隐函数的导数。
3. 微分与微分中值定理:解释微分的概念,介绍微分中值定理的原理和应用。
四、积分与其应用1. 不定积分与定积分:引入不定积分与定积分的概念,讨论它们的性质和基本计算方法。
2. 牛顿-莱布尼茨公式:介绍牛顿-莱布尼茨公式的原理和应用,解释它与积分的关系。
3. 定积分的应用:探讨定积分在曲线长度、曲面面积和体积计算中的应用。
五、级数与幂级数1. 级数的概念与性质:解释级数的概念,介绍级数的性质,如收敛性、发散性和部分和的计算方法。
2. 常见级数及其性质:介绍常见级数,如几何级数、调和级数等,并讲述它们的性质与求和方法。
3. 幂级数的收敛域:讨论幂级数的收敛域的求解方法,并举例说明。
六、常微分方程1. 常微分方程的基本概念:介绍常微分方程的定义、解的存在唯一性定理,以及一阶常微分方程的基本解法。
2. 高阶常微分方程:讲解高阶常微分方程的基本概念、特解与常数变易法。
3. 稳定性与相图:介绍稳定性的概念,讨论常微分方程的相图、稳定解和解的行为。
七、多元函数与偏导数1. 多元函数的概念与性质:引入多元函数的概念,介绍多元函数的极限、连续性以及偏导数。
课程配套讲义说明1、配套课程名称2013年考研数学高数中值定理及定积分公开课(汤家凤)2、课程内容此课程为2013年考研数学高数部分的公开课,主要讲授定积分部分。
3、主讲师资汤家凤——主讲高等数学、线性代数。
著名考研辅导专家,南京大学博士,南京工业大学教授,江苏省大学生数学竞赛优秀指导教师。
凭借多年从事考研阅卷工作的经验,通过自己的归纳总结,在课堂上为学生列举大量以往考过的经典例子。
深入浅出,融会贯通,让学生真正掌握正确的解题方法。
4、讲义:6页(电子版)文都网校2011年5月27日公开课二:定积分理论一、实际应用背景1、运动问题—设物体运动速度为)(t v v =,求],[b a t ∈上物体走过的路程。
(1)取b t t t a n =<<<= 10,],[],[],[],[12110n n t t t t t t b a -⋃⋃⋃= , 其中)1(1n i t t t i i i ≤≤-=∆-; (2)任取)1](,[1n i x x i i i ≤≤∈-ξ,ini it f S ∆≈∑=)(1ξ;(3)取}{max 1i ni x ∆=≤≤λ,则ini ix f S ∆=∑=→)(lim1ξλ2、曲边梯形的面积—设曲线)(0)(:b x a x f y L ≤≤≥=,由b x a x L ==,,及x 轴围成的区域称为曲边梯形,求其面积。
(1)取b x x x a n =<<<= 10,],[],[],[],[12110n n x x x x x x b a -⋃⋃⋃= , 其中)1(1n i x x x i i i ≤≤-=∆-; (2)任取)1](,[1n i x x i i i ≤≤∈-ξ,ini ix f A ∆≈∑=)(1ξ;(3)取}{max 1i ni x ∆=≤≤λ,则ini ix f A ∆=∑=→)(lim1ξλ。
二、定积分理论(一)定积分的定义—设)(x f 为],[b a 上的有界函数,(1)取b x x x a n =<<<= 10,],[],[],[],[12110n n x x x x x x b a -⋃⋃⋃= , 其中)1(1n i x x x i i i ≤≤-=∆-; (2)任取)1](,[1n i x x i i i ≤≤∈-ξ,作ini ix f ∆∑=)(1ξ;(3)取}{m a x 1i ni x ∆=≤≤λ,若ini ix f ∆∑=→)(lim 1ξλ存在,称)(x f 在],[b a 上可积,极限称为)(x f 在],[b a 上的定积分,记⎰badx x f )(,即⎰badx x f )(i ni i x f ∆=∑=→)(lim 1ξλ。
汤家凤高等数学辅导讲义
【最新版】
目录
一、汤家凤《高等数学辅导讲义》简介
二、讲义的主要特点和优势
三、讲义的内容和结构
四、如何有效利用讲义进行高等数学学习
五、结论
正文
一、汤家凤《高等数学辅导讲义》简介
汤家凤《高等数学辅导讲义》是一本针对考研数学一、数学二、数学三考试的辅导书籍。
本书由考研数学辅导老师汤家凤编写,总结了全国硕士研究生招生考试数学部分涉及的高等数学基础知识,包括基本概念、基本原理和基本公式,精选了典型的基本题型和综合题型,并对解题方法进行了详尽的讲解。
二、讲义的主要特点和优势
1.全面系统:汤家凤《高等数学辅导讲义》系统全面地总结和概括了考研数学涉及的高等数学部分的基础知识,帮助考生深入了解考试重点。
2.精选题型:本书精选了 76 种题型,涵盖了 36 类知识点,可以帮助考生全面掌握考试中可能出现的各种题型。
3.详尽讲解:汤家凤老师在书中对每个题型的解题方法进行了详尽的讲解,并附有典型例题,方便考生学习和参考。
4.适用广泛:本书适用于数学一、数学二、数学三的考生,无论您报考哪一类数学,都可以从本书中找到适合自己的学习内容。
三、讲义的内容和结构
汤家凤《高等数学辅导讲义》共分为若干章,每章内容包括:考察要求、核心题型、题型解析和练习题。
书中按照考试大纲编写,既注重基础知识的讲解,又注重解题技巧的传授。
四、如何有效利用讲义进行高等数学学习
1.熟悉考试大纲:在学习讲义之前,要先了解考试大纲的要求,明确学习目标和重点。
2.系统学习:按照讲义的章节顺序进行学习,从基础知识开始,逐步掌握题型和解题方法。
3.多做练习:通过做练习题来检验自己的学习效果,及时发现并弥补知识漏洞。
4.及时复习:学习过程中要适时进行复习,加深对知识点的理解和记忆。
5.交流讨论:与同学或老师进行交流和讨论,共同进步。
五、结论
汤家凤《高等数学辅导讲义》是一本非常适合考研数学考生的辅导书籍,全面系统地总结了考试重点和解题技巧。