dna双螺旋结构模型的要点
- 格式:docx
- 大小:13.11 KB
- 文档页数:2
DNA双螺旋结构模型的主要内容一、发现DNA双螺旋结构的历史1. 1953年,詹姆斯·沃森和弗朗西斯·克里克提出了DNA双螺旋结构模型2. 他们在《自然》杂志上发表了有关DNA结构的历史性文章3. 这一发现为后续的分子生物学研究奠定了重要基础二、DNA双螺旋结构的组成和特点1. DNA由两条螺旋状的核苷酸链组成2. 每条核苷酸链由磷酸基团、脱氧核糖和碱基组成3. 碱基与对应的碱基之间通过氢键相互配对,形成稳定的双螺旋结构4. DNA双螺旋结构的特点包括双链性、螺旋性和碱基配对规律性三、DNA双螺旋结构的功能1. DNA作为遗传物质,承载着生物体的遗传信息2. DNA双螺旋结构的稳定性保证了遗传信息的准确传递3. DNA通过编码蛋白质的方式参与了生物体的基因表达过程4. DNA双螺旋结构的解旋和复制是生物体遗传信息传递的重要基础四、DNA双螺旋结构的意义和应用1. 对DNA双螺旋结构的理解有助于揭示生命活动的分子机制2. DNA双螺旋结构的研究为生物医学领域的发展提供了重要支持3. DNA双螺旋结构的技术应用已扩展到分子生物学、生物工程等领域4. 对DNA双螺旋结构的深入认识有望为治疗人类疾病提供新的思路和方法五、DNA双螺旋结构的未来发展1. 随着科学技术的不断进步,对DNA双螺旋结构的研究将迎来新的发展阶段2. 新的理论和技术将进一步揭示DNA双螺旋结构的奥秘3. DNA双螺旋结构的发展将为生命科学领域带来更多的突破和创新4. 应用DNA双螺旋结构的相关技术将为人类社会带来更多的福祉和进步六、总结1. DNA双螺旋结构作为生物学领域的重要课题,其研究内容丰富多样,具有重要的理论和应用价值2. 对DNA双螺旋结构的深入研究有助于推动生命科学领域的发展,为人类社会的进步做出贡献3. 期待未来对DNA双螺旋结构的研究能够取得更多的突破和进展,为人类社会带来更多的惊喜和收获。
七、DNA双螺旋结构的新进展1. 近年来,随着生物技术的飞速发展,对DNA双螺旋结构的研究迎来了新的进展。
沃森克里克dna双螺旋结构模型的要点沃森克里克发现了DNA双螺旋结构模型,这一发现奠定了现代生物学的基础,而DNA的结构也成为了分子生物学的核心研究方向。
那么,沃森克里克的DNA双螺旋结构模型的要点是什么呢?下面就来介绍一下。
一、两个反平行的螺旋沃森克里克发现,DNA是由两个螺旋相反的链组成的。
这两个链在结构上是平行排列的,但在方向上却是相反的。
其中一个链的方向是从5'端到3'端,而另一个链的方向是从3'端到5'端。
这种链的形式让DNA具备了双螺旋的结构。
二、碱基对的不变性碱基对是DNA的基本组成单位,由adenine(A)和thymine(T)以及guanine(G)和cytosine(C)组成。
沃森克里克发现,A-T和G-C两对碱基对的比例是恒定的。
在DNA的双螺旋结构中,A总是与T相对应,而G总是与C对应。
这一发现对于DNA的复制及遗传信息的传递具有重要意义。
三、螺旋的孢节DNA的双螺旋结构上,碱基对通过氢键连接。
两条链相互缠绕形成了一个螺旋,而螺旋之间的连接点被称为孢节。
在孢节处,链并不是在交叉,而是在稍微分离的状态下相互连接,这种连结方式让复制DNA 时易于分离两条链。
四、基础的排列方式沃森克里克发现,DNA中碱基的排列方式是有规律的。
A总是放在T 的对面,而G总是放在C的对面。
在同一链中,碱基的排列方式是呈线性的,在不同链间则是对称的。
这种排列方式对于基因编码提供了重要的信息。
以上就是沃森克里克的DNA双螺旋结构模型的主要要点。
这个模型不但为基因编码提供了关键的信息,还在分子生物学与生物化学等领域提供了重要的指导思想,为人类的生命科学研究开创了新的篇章。
∙DNA右手双螺旋结构的基本要点?答:①DNA分子由两条相互平行但走向相反的脱氧多核苷酸链组成,以右手螺旋方式绕同一公共轴盘。
②.两链以-脱氧核糖-磷酸-为骨架,在外侧;碱基垂直螺旋轴,居双螺旋内側,与对側碱基形成氢键配对(互补配对形式:A=T; GC)③.螺旋直径为2nm;相邻碱基平面距离0.34nm,螺旋一圈螺距3.4nm,一圈10对碱基。
④DNA双螺旋结构稳定的因素:a.氢键维持双链横向稳定性;b.碱基堆积力维持双链纵向稳定性。
∙蛋白质的沉淀与变性的定义与方法?答:(1)蛋白质分子凝聚从溶液中析出的现象称为蛋白质沉淀;(2)当天然蛋白质受物理或化学因素影响后,失去原有的生物活性,并且物理化学性质均以改变的作用称为蛋白质的变性。
(3)沉淀的方法:盐析法,有机溶剂沉淀法,等电点沉淀法,重金属盐沉淀法,生物碱试剂,加热变性沉淀法(4)变性方法:①物理因素:高温,紫外线,X射线,超声波,高压,剧烈的搅拌,震荡②化学因素:强酸和强碱,尿素和胍盐,,去污剂,浓乙醇,重金属盐和三氯乙酸。
∙酶的诱导契合学说?答:酶对于它所作用的底物有着严格的选择,只能催化一定结构或者一些结构近似的化合物,使这些化合物发生生物化学反应。
有的科学家提出,酶和底物结合时,底物的结构和酶的活动中心的结构十分吻合,就好像一把钥匙配一把锁一样。
酶的这种互补形状,使酶只能与对应的化合物契合,从而排斥了那些形状、大小不适合的化合物,这就是“锁钥学说”。
∙为什么说TCA循环式连接糖代谢,脂代谢和氨基酸代谢的枢纽?答:因为三羧酸循环中很多的中间体都可成为其他反应的起始物质或中间物质糖代谢的3-磷酸甘油酸和磷酸二羟丙酮是糖酵解中的果糖-1,6-二磷酸的裂解的产物脂代谢中每脱去2个皆可以产生一个乙酰CoA和一个FADH2 一个NADH 这些都可以进入TCA或者氧化磷酸化产生能量氨基酸代谢中谷氨酸脱去氨基的中间体α-酮戊二酸也存在于TCA中。
∙生物氧化的特点和方式是什么?答:特点:常温、酶催化、多步反应、能量逐步释放、放出的能量贮存于特殊化合物。
图7-7核苷酸及碱基结构图7-8 DNA 链及RNA 链7.2.2 DNA 的双螺旋结构1953年,美国分子生物学家沃森(Watson )和英国分子生物学家克里克(Crick )根据X 射线衍射图谱研究,提出了DNA 双螺旋结构的模型(如图7-9所示)。
・193 ・图7-9 DNA 双螺旋结构模型DNA 双螺旋结构模型的要点如下。
(1)DNA 分子是由两条多核苷酸链螺旋平行盘绕于共同的纵轴上,形成双螺旋结构。
两条多核苷酸链的走向相反。
一条为5′-3′,另一条则为3′-5′,习惯上以3′-5′的为正方向。
(2)碱基位于螺旋内部,磷酸及糖在螺旋表面,碱基的平面与纵轴垂直,糖平面几乎与碱基平面垂直。
(3)两条多核苷酸链上的碱基两两配对,即一条链上的A 与另一条链上的T 之间通过两个氢键配对,同时G 与C 之间通过三个氢键配对,这种碱基间互相匹配的情形称为碱基互补。
(4)在多核苷酸链中碱基的顺序各不相同,具体碱基的顺序就是遗传信息。
(5)配对的碱基平面与螺旋纵轴相垂直,碱基之间堆积距离为0.34nm ,双螺旋直径为2nm 。
顺轴方向,每隔0.34nm 有一个核苷酸,两核苷酸夹角为36°,因此沿中心轴每旋转一周有10个核苷酸,每隔3.4nm (即螺距高度为3.4nm )重复出现同一结构(如图7-9所示)。
DNA 是一种生物超分子,两条互补的DNA 单链通过互相之间的识别和作用,自组装形成稳定的DNA 双螺旋结构。
由于碱基互补原则,当一条核苷酸链的顺序确定以后,即可推知另一条互补核苷酸链的碱基顺序。
DNA 的自我复制、转录及反转录的分子基础都是碱基互补。
・194 ・7.2.3 RNARNA 有几种类型,它们基本上是单链分子,并且分子中并不严格遵守碱基配对原则。
经常遇到的RNA 结构是一条单链在分子的某一段或几段具有两股互补的排列,其他区域则以单股形式存在。
例如,从酵母中分离出的丙氨酸转移核糖体结构(如图7-10所示)因其形状像三叶草,故称三叶草结构。
dna双螺旋结构模型的要点及意义
DNA双螺旋结构模型的要点包括以下几点:
1、主链(backbone):由脱氧核糖和磷酸基通过酯键交替连接而成,主链有二条,它们似“麻花状绕一共同轴心以右手方向盘旋,相互平行而走向相反形成双螺旋构型。
主链处于螺旋的外则,这正好解释了由糖和磷酸构成的主链的亲水性。
2、碱基对(base pair):碱基位于螺旋的内则,它们以垂直于螺旋轴的取向通过糖苷键与主链糖基相连。
同一平面的碱基在二条主链间形成碱基对。
配对碱基总是A与T和G与C。
碱基对以氢键维系,A与T 间形成两个氢键。
3、大沟和小沟:大沟和小沟分别指双螺旋表面凹下去的较大沟槽和较小沟槽。
小沟位于双螺旋的互补链之间,而大沟位于相毗邻的双股之间。
这是由于连接于两条主链糖基上的配对碱基并非直接相对,从而使得在主链间沿螺旋形成空隙不等的大沟和小沟。
在大沟和小沟内的碱基对中的N 和O 原子朝向分子表面。
4、结构主要参数:螺旋直径2nm;螺旋周期时间包括10对碱基;螺距3.4nm;相邻碱基对平面的间距0.34nm。
此外,DNA双螺旋结构模型的意义在于揭示了DNA分子的结构特点和遗传信息存储方式,为进一步研究DNA的复制、转录和表达奠定了基础,并促进了基因工程、生物技术和其他相关领域的发展。
同时,该模型也为其他复杂生物分子结构和功能的探索提供了启示和借鉴。
dna二级结构的结构要点DNA是生物体内的遗传物质,其二级结构是指由两条螺旋状的DNA 链相互缠绕而成的形态。
DNA的二级结构具有以下要点:1. 双螺旋结构:DNA的二级结构是由两条互补的DNA链以螺旋状相互缠绕而成的。
这两条链以反平行方式排列,即一个链的5'端与另一个链的3'端相对应。
这种双螺旋结构使得DNA具有较高的稳定性,并且便于DNA复制和遗传信息传递。
2. 螺旋的方向:DNA的螺旋结构呈右旋,也就是所谓的B型DNA。
这种右旋结构是由于DNA链中的磷酸基团与脱氧核糖的连接方式决定的。
螺旋的每一转包含10个核苷酸残基,且每个残基沿螺旋轴向上移动约0.34纳米。
3. 核苷酸组成:DNA的二级结构是由四种不同的核苷酸组成的。
这四种核苷酸分别是腺嘌呤(A)、鸟嘌呤(G)、胸腺嘧啶(T)和胞嘧啶(C)。
这四种核苷酸按照特定的配对规则组成了DNA的双螺旋结构,A与T之间形成两个氢键连接,G与C之间形成三个氢键连接。
这种配对方式保证了DNA的稳定性和可靠性。
4. 螺旋的稳定性:DNA的二级结构具有较高的稳定性,这主要是由于碱基间的氢键相互作用。
氢键的形成使得DNA的两条链相互固定在一起,防止其解开或断裂。
此外,DNA链上的磷酸基团和脱氧核糖也为DNA的稳定性提供了支撑。
5. 螺旋的变形:DNA的二级结构并不是完全规则的螺旋,它可以发生一些变形。
例如,在某些特定的序列区域,DNA链可能发生扭曲或局部变形,形成所谓的DNA结构异质体。
这些结构异质体对DNA 的功能和调控起着重要作用。
6. 超螺旋结构:除了双螺旋结构外,DNA还可以形成超螺旋结构。
超螺旋是由DNA链的扭转和环形化而形成的一种结构。
超螺旋结构在某些功能区域上起着重要的作用,如DNA的包装和染色质的调控。
7. DNA的折叠和组装:DNA的二级结构不仅仅是简单的双螺旋结构,还包括了DNA的折叠和组装。
DNA可以通过与蛋白质相互作用,形成染色质的基本单位——核小体。
DNA双螺旋结构模型的要点
由两条碱基互补的、反向平行排列的脱氧多核苷酸单链组成,碱基互补的方式是A与T,C与G对应;两条互补链围绕一“主轴”向右盘旋形成双螺旋结构。
DNA 分子结构由4种碱基(A、T、G、C)的排列顺序决定储存遗传信息。
dna双螺旋结构模型的要点
(1)两条多核苷酸链以相反的平行缠结,依赖成对的碱基上的氢键结合形成双螺旋状,亲水的脱氧核糖基和磷酸基骨架位于双链的外侧,而碱基位于内侧,两条链的碱基之间以氢键相结合,一条链的走向是5’到3’,另一条链的走向是3’到5’;
(2)碱基平面向内延伸,与双螺旋链成垂直状;
(3)向右旋,顺长轴方向每隔0.34nm有一个核苷酸,每隔3.4nm重复出现同一结构;
(4)A与T配对,其间距离1.11nm;G与C配对,
其间距离为1.08nm,两者距离几乎相等,以便保持链间距离相等;
(5)在结构上有深沟和浅沟;
(6)DNA双螺旋结构稳定的维系横向稳定靠两条链间互补碱基的氢键维系,纵向则靠碱基平面间的疏水性递积力维持。
dna双螺旋结构模型的要点
DNA双螺旋结构模型是由詹姆斯·沃森和弗朗西斯·克里克于
1953年提出的。
他们的发现是当代生物学史上的重大突破,对于遗传
信息的传递和维持起了关键作用。
以下是DNA双螺旋结构模型的要点:
1. DNA是脱氧核糖核酸(Deoxyribonucleic Acid)的缩写,由磷
酸基团、脱氧核糖糖分子和四种碱基(腺嘌呤、鸟嘌呤、胸腺嘧啶和
鸟腺嘧啶)组成。
2. DNA的双螺旋结构由两根相互缠绕的链组成,两条链以氢键相
互连接。
这两条链通过碱基之间的互补配对形成。
腺嘌呤与鸟嘌呤之
间形成三个氢键,胸腺嘧啶与鸟腺嘧啶之间形成两个氢键。
3. DNA的两条链是反向的,即一个链的5'末端与另一个链的3'末
端相连。
这种反向排列使得DNA分子能够稳定地保存遗传信息,并在
复制过程中减少错误。
4. DNA的结构有规则的直径和螺距。
直径为20埃,螺距为34埃,即相邻两个碱基之间的垂直距离。
5. DNA的双螺旋结构具有不对称性,即在一个链上的碱基序列完
全可以确定另一个链上的序列。
这种互补配对意味着DNA的复制是半
保留的,即每条新的DNA分子都包含了一个原有链和一个新合成出的链。
6. DNA的双螺旋结构是稳定的,不易被外界因素破坏。
DNA能够
包裹在具有抗腐蚀性的蛋白质(称为组蛋白)中,进一步保护其结构
和功能。
7. DNA的双螺旋结构具有很高的信息密度,碱基的排列顺序决定
了遗传信息的编码。
通过DNA的转录和翻译,遗传信息可以被转化为
蛋白质,从而决定了生物的特征和功能。
8. DNA双螺旋结构模型的提出使得我们能够更好地理解遗传信息的传递和变异。
这一发现为后续的基因工程、遗传学研究和生物技术的发展提供了坚实的基础。
9. DNA双螺旋结构模型的发现被认为是20世纪最重要的科学突破之一,沃森和克里克因此获得了1962年的诺贝尔生理学或医学奖。
总结来说,DNA双螺旋结构模型的要点包括:DNA由磷酸基团、脱氧核糖糖分子和四种碱基组成;两条链以氢键互相连接,并通过互补配对形成双螺旋结构;DNA是稳定的且具有高信息密度;双螺旋结构为遗传信息的传递和变异提供了基础。
这些要点的发现对于遗传学和生物技术的研究产生了重大的影响。