注水区剩余油分布规律及影响因素分析
- 格式:doc
- 大小:24.50 KB
- 文档页数:3
研究区块经过多年开发,地层亏空大,受边底水侵入和高轮次吞吐等因素影响,开发效果变差。
复杂河流相稠油油田局部隔夹层较发育, 为高渗稠油油藏。
优化水平井参数, 为辅助蒸汽吞吐, 采用高效油溶性复合降黏剂, 充分利用其协同降黏作用、混合传质及增能助排性能, 大幅度降低注汽压力、扩大吞吐波及范围。
一、不同区域剩余油分布规律分析1.典型井组选取根据研究单元不同区域的储层厚度、原油物性、构造位置、周期生产效果、水淹类型等的差异,平面上划分了4个区域:(1)受边底水影响西北部受到馆陶弱边水影响,部分井高含水;平均单井日液33.5t,单井日油1.9t,综合含水94.3%,平均动液面209m。
(2)受潜水底水和南部区域注入水影响的中部井区受到南部区域边水、潜山底水侵入,高含水问题突出;该井区井况问题突出,储量失控严重。
管外窜问题严重,制约老井利用(3)高泥质较高东部井区层薄物性差,产能低;油井主要表现为注汽压力高的特征,一般注汽压力达18.0MPa~19.5MPa。
单井平均周期生产效益较差。
(4)水平井区一是井筒附近采出程度高,周期递减大,二是非均质性强,井间热连通,汽窜严重。
综上,从4个典型区域选取了5个开发井组,共涉及井数62口,面积4.2km2,在历史拟合基础上,分析剩余油分布规律及影响因素。
2.地质模型建立三维地质模型采用Petrel软件,模拟层位为研究区块馆陶组3个砂组、5个小层。
3.数值模型建立利用CMG数值模拟软件,分别建立四个区域数值模型,并进行了历史拟合。
拟合过程中,依据岩心分析资料,首先对孔隙度、空气渗透率、含油饱和度进行了校正,并对相对渗透率在合理范围内进行了修正,对模型区含水进行了精细拟合使拟合含水上升趋势与实际一致,并对重点井进行了精细拟合,单井拟合符合程度达到85%。
4.地下三场规律分析(1)压力场分析研究区块原始地层压力9.5MPa,目前地层平均压力7.0MPa;其中A区块及东部区域整体地层压力偏低,西北及中部区域受边底水影响压力相对较高。
油田高含水期剩余油精准挖潜技术分析我国大部分油田均是陆相沉积型油田,而且油田的平面、储层内和储层间的渗透率改变情况均比较大。
由于油田主要是采取注水方式进行开发,随着开发工作的不断推进,油田的开采也会逐步进入高含水期,而高含水期剩余油的分布也会变得越来越复杂,这样便会增加挖潜油田的难度。
为此,本文首先对油田高含水期剩余油的分布特征和影响因素进行了分析,接着对其挖潜对策进行了探讨,以期为提高油田的开采潜力及效率提供一些参考依据。
标签:高含水;剩余油;精准挖潜;技术分析1.油田高含水期剩余油分布特征及影响因素1.1油田高含水期剩余油分布特征(1)片状剩余油。
片状剩余油是指在注水的过程中,由于水没有驱入,造成剩余油残留于模型的边角位置,进而产生的剩余油。
片状剩余油主要包括两种,一是簇状剩余油;二是连片剩余油,所谓的簇状剩余油指的是四周环绕着较大孔道的小喉道中的剩余油,事实上簇状剩余油属于水淹区内的小范围剩余油块,是注水绕流于空隙中而产生的。
(2)分散型剩余油。
所谓的分散型剩余油,指孔隙占用较少的剩余油,其主要包括两种:一是孤岛状剩余油;二是柱状剩余油。
其中,孤岛状剩余油属于一种亲水孔隙结构的石油,其主要是通过水驱油而逐步形成的,注水顺着亲水岩壁表面的水膜进入,在没有彻底驱完之前,注水已蔓延至喉道,阻止了油的流动,随着孔隙中油滴的不断增多、孔隙不断增大,从而逐步形成了孤岛状剩余油。
而柱状剩余油主要分布在喉道位置,且喉道大部分是由孔隙相连而形成的,且较为细长。
1.2剩余油分布影响因素(1)地质因素。
砂岩的空间分布、碎屑岩的沉积韵律特点、储层的非均质性、沉积层理种类、薄夹层分布以及沉积微相展布等地质因素均取决于沉积条件。
其中,小断层、沉积微上以及储层的非均质性等是影响剩余油的主要原因。
同时,随着构造运动的不断进行,其所形成的裂缝、断层及不整合面也会在一定程度上影响油水的运动,进而对剩余油的分布产生影响。
①断层构造与油层微构造给剩余油分布造成的影响。
探讨开发后期剩余油分布规律与挖潜措施[摘要]经过长期注水开采,油田进入高含水期,油层内油、气、水交错渗流,剩余油的挖潜难度加大。
高含水剩余油分布研究主要从剩余油分布研究方法、剩余油分布特征、剩余油分布控制因素三方面进行。
总结目前剩余油分布及挖潜技术状况和最新进展,提出周期注水、降压开采等剩余油挖潜措施。
[关键词]油田开发后期剩余油控制因素挖潜措施中图分类号:p618.13 文献标识码:a 文章编号:1009-914x (2013)08-257-01前言陆相沉积油田近90%采用注水开采方式,其基本规律是注水开发早、中期含水上升快,采出程度高。
油田进入高含水后期开发后,剩余油分布越来越复杂,给油田稳产和调整挖潜带来的难度越来越大。
剩余油的分布与沉积微相、储层非均质、流体非均质、断层、开发因素(注采关系、井网部署)等诸多因素有关,高含水期的剩余油研究内容不仅要搞清楚剩余油分布的准确位置及数量,还要搞清楚其成因以及分布的特点,并根据剩余油分布规律,采用相应的挖掘技术,提升油田的开发潜力。
1 剩余油分布规律1.1剩余油分布控制因素高含水期剩余油的形成与分布主要受地质和开发两大因素的控制。
地质因素主要指沉积微相,储层微观特征、宏观非均质性,油层微型构造,油藏构造,流体性质等。
开发因素主要指注采系统。
各种因素互相联系,互相制约,共同控制着剩余油的分布。
1.1.1地质因素。
(1)沉积微相控制剩余油的分布。
沉积微相决定储集砂体的外部形态及内部构造,因此也决定着储层平面和垂向非均质性,控制着油气水的运动方向,从而导致剩余油沿一定的相带分布。
沉积微相对剩余油分布的控制作用主要表现为4个方面:砂体的外部几何形态;砂体的延伸方向和展布规律;砂体内部构造;不同微相带影响井的生产情况。
(2)油层微构造和断层构造对剩余油分布的控制作用。
不同的微型构造模式其剩余油富集程度和油井生产情况不同。
油层微型构造对剩余油的分布和油井生产有明显的控制作用。
注水开发影响因素分析及改善措施摘要:某油田为典型低渗透油藏,经过多年水驱开发取得较好开发效果。
但也存在注水井吸水能力低、启动压力和注水压力高、油井受效时间长、压力和产量变化不敏感等问题。
针对低渗透油田注水开发中存在的问题,分析影响水驱开发效果的主要因素,提出有效开发低渗透油田的主要技术措施。
关键词:低渗透油田;水驱开发;影响因素;技术对策;评价某油田属于背斜带上的一个三级构造。
含油层段为新近系上新统的上、下油砂山组,岩性主要为深色的泥岩类、灰岩类夹少量砂岩、粉砂岩及白云岩。
储层发育原生粒间孔、次生溶蚀孔,残余粒间孔、晶间孔和微裂缝。
储层平均孔隙度为14石%,平均渗透率为2.98mD,储层排驱压力、饱和中值压力低,孔喉半径小,储层渗流性能差,属于中高孔一低渗透储层。
1水驱开发存在问题某油田注水开发,采用反九点法注采井网,辖区内注采井数比为1:3。
取得一定注水效果的同时,开发过程中的问题及矛盾也日益突出。
1.1采用消耗方式开发,产量递减快,压力下降快。
低渗透油田天然能量不充足,原始地层压力为17.2MPa,渗流阻力大,能量消耗快,采用自然枯竭方式开发,产量递减快,地层压力下降快,在依靠天然能量开采阶段,产油量的年递减率为40%,地层压力下降幅度很大,每采出1%地质储量,地层压力下降4.2MPa。
为了获得较长的稳产期和较高的采收率,采用保持压力的开发方式是势在必行的。
1.2注水井吸水能力低,启动压力和注水压力高。
该油田注水井吸水能力低,启动压力和注水压力高,而且随着注水时间的延长,层间、层内矛盾日益加剧,甚至发展到注不进水的地步。
由于注采井距偏大、油层吸水能力低,注水井的能量(压力)难以传递、扩散出去,致使注水井井底附近产生鳖压,注水压力升高。
1.3油井见注水效果较慢,压力、产量变化不敏感。
该油田由于油层渗流阻力大,注采井距偏大,注水井到油井间的压力消耗多,因而油井见注水效果不仅时间晚,而且反应比较平缓,压力、产量变化幅度不大,有的甚至恢复不到油井投产初期的产量水平。
剩余油分布规律及控制的多方位研究【摘要】关于剩余油分布规律及控制因素的研究认识,是科学合理制定提高采收率的基础,利用试井资料确定剩余的分布是一种方便、经济,可靠的实用方法。
同时通过对河流成因储层非均质性及注采状况的阐明,进而认识到剩余油分布的宏观地质控制因素,对河流成因储层剩余油的挖潜具有较好的指导作用。
【关键词】剩余油;分布规律;控制因素;储层1.利用河流成因储层的探讨1.1河流成因储层主要特征河流相沉积为陆相冲积环境的主导沉积,主要有辨状河和曲流河两种类型。
河流的水流属牵引流,碎屑沉积物以砂、粉砂为主,分选差至中等,分选系数一般大于1.2,粒度概率曲线显示明显的跳跃、悬浮两段型,并以跳跃总体为特征,悬浮物总含量为2%~3%。
其层理发育,类型繁多,包括块状层理、韵律层理、粒序层理、水平层理、平行层理、交错层理,但以板块和大型槽状交错层理为特征,一般有半数以上的层具交错层理。
细层倾斜方向指向砂体延伸方向,倾角15°~30°,由下至上层系及细层的厚度变薄、粒度变细,细层具粒度正韵律特征,层系厚度一般30cm或更薄,很少超过1m。
在河流沉积剖面上大型板状、槽状交错层理发育在下部,小型板状、槽状交错层理发育在上部,波状层理发育在剖面顶部。
河流沉积中,常见流水不对称波痕,也可见砾石的叠瓦状排列,砾石扁平面向上游倾斜,倾角约为10°~30°。
河床最底部常见明显的侵蚀、切割及冲刷构造,即冲刷面与底砾岩。
河流沉积砂体在平面上多呈弯曲的长条状、带状、树枝状等,在横剖面上呈上平下凸的透镜状或板状嵌于四周河漫泥质沉积中。
如辨状河心滩砂体,总是呈对称的透镜状成群出现,交错叠置,四周为泥质沉积所包围,显示河道的多次往复迁移。
曲流河边滩砂体则呈不对称的透镜状,凸岩沉积厚、凹岩砂体薄,平面上多呈弯曲的条状、带状,反映河道长期侧向迁移、加积的沉积特征。
河流沉积特征决定了其储层孔渗性较好,但平面及纵向上具有很强的非均质性。
油藏的开发规律分析及注水探讨摘要:在油田的开发过程中会逐步呈现出现相关问题,本文主要是从油藏的开发规律出发,对其进行分析,探讨对应的调整方案来提升油田开发效果,为相关人员提供理论参考。
关键词:油藏;开发规律;采油指数1、注水开发动态分析技术1. 1应用示踪荆监浏技术示踪剂是指易溶、在极低浓度下仍可检出、能指示溶解它的液体在多孔介质中的存在、流动方向和渗透速度的物质。
示踪剂监测指加入与被示踪流体性态同步的物质,通过见剂时间、见剂量、水驱速度等情况分析,监测被示踪流体的运动状况,从而完成井间参数分析与解释。
应用示踪剂监测技术可评价注水开发油藏井间动态连通性、注入水流动方向,以及油藏剩余油分布规律,评价油田注水开发效果,同时对监测结果应用综合解释技术进行数值模拟分析,得出储层井间连通状况,物性分布特征等参数,为油藏的注采调整提供重要的依据。
1. 2注水井分层动态分析分层注水是二次采油的普遍措施。
注水井问题已经成为各个油田关注的焦点问题。
通过对注水井分层动态的分析,可以得到分层注水指示曲线,这不但克服了多层合采时指示曲线斜率为负的不足,且还能根据分层指示曲线反演地层动态参数,利用现代计算机技术作出不同时期不同层位的吸水剖面图。
注水井的分层动态分析结果有助于采油工程师采取及时准确的措施,控制高渗透层的注水量,增加中、低渗透层的注水量,进行注水量分配调整。
1.3水淹图辅助分析法根据单元目前油井含水率,做出各小层水淹状况图,直观反映油层平面上各部位含水率的高低.由于大多数生产井是多层合采,其含水率反映的是主要出力层的含水,因此在做各小层的水淹图时,首先需要判断各小层的含水状况。
一是通过附近单采井的资料,二是通过动态监测资料,如对应水井的吸水剖面资料、饱和度测井资料、RFT测压资料等综合判断。
1.4不稳定注水技术不稳定注水技术主要指改变注水方式、注水周期以及注水量波动幅度的注水开发技术。
不稳定注水技术可以改善非均质油藏储量动用状况,提高储量动用程度,改善油藏水驱效果,提高油藏采收率;利用开发侧井、生产测井、试井分析、检查井取心资料分析等方法,可以半定量、定量描述油藏水驱动用状况及剩余汕分布的阶段动态变化,为不稳定注水工程参数的进一步优化提供依据。
油田开发过程中剩余油的形成0.前言油藏在开发之前呈现动态平衡系统。
投入开发后,由于钻井、采油、注水以及注汽等开发措施,使得油藏变为动态的非平衡系统。
在这一非平衡系统中,部分区块或者层段驱替程度高、油汽采出程度高,而另外区块或者层段驱替程度低、油汽采出程度低,从而形成剩余油的分布。
剩余油分布的研究成为了油田开发中后期提高采收率的关键。
1.剩余油的概念油藏中聚集的原油,在经历不同开发方式或者不同开发阶段后,仍保存或者直流在油藏的油藏不同地质环境中的原油即为广义上的剩余油。
其中一部分原油可通过对油藏的再认识或者改善油田的开发工艺措施、进行方案的调整而被开发出来,这部分称为可动剩余油;另一部分是当前的工艺水平和开采条件下不能开采出来的、仍滞留在储集层中的原油,这部分称为残余油。
故广义的剩余油包括可动剩余油和残余剩余油两部分。
2.剩余油形成的控制因素剩余油的形成可以从油藏的内部原因以及油藏开采过程中的外部因素来分析。
2.1油藏内部控制原因2.1.1 地质构造(1)构造控制剩余油的分布。
在油藏的不同开发阶段,构造对剩余油形成与分布的影响和控制程度是不一样的。
在油田的开发早期,剩余油分布主要受断块构造的控制。
油田开发中后期,背斜构造虽然也起到一定的控制,但微型构造对剩余油的分布起到了主要的控制作用。
(2)断层对剩余油分布的影响。
断层分为封闭性和开启性两类,封闭性断层附近往往是剩余油较富集区,开启性断层附近的剩余油相对贫乏。
原因是断层封堵致使采油井注水受效差,或者采油井单一方向受效,有利于剩余油富集。
由于断层的封闭程度不同,往往造成在封闭性好的断层附近有较多剩余油,剩余油饱和度相对高。
剩余油在封闭性断层附近及砂岩尖灭线附近相对富集,这些部位的平均剩余油饱和度高出同层位平均剩余油饱和度5个百分点以上。
2.1.2 油藏储层(1)层间干扰造成的剩余油区。
在多层合采的情况下,由于层间非均质性的影响,多油层间会出现层间干扰问题。
油藏剩余油分布研究及潜力评价通过对该油藏进行数值模拟,对剩余油分布状况取得了几点认识,从总体上看,剩余油在平面上的分布与储集体的物性变化、沉积相的平面展布、断层构造、注采井网的完善程度、注水强度等因素密切相关,特点如下:⑴由于物性变化的影响,在层内非均质性强的区域,会由于注入水首先沿连通性好、渗透率高的区域快速突进,造成高渗透带采出程度高,水淹严重;而在相对低渗透区存在较多的剩余油。
同样由于层间非均质性的影响,物性较好的层,其采出程度相对较高。
⑵各小层由于目前注采井网不完善,注采井距不协调,注水强度小,累计注水量小的区域,有大部分的剩余油分布。
⑶各小层在有效厚度由厚变薄尖灭的过渡区域,有较多剩余油分布。
⑷在断层边角或附近由于注采井网无法控制,注入水无法驱替而形成部分的剩余油分布。
(5)由于油藏底水突进较快,油井在井筒附近水淹,而在井筒外部的剩余油较多。
1.剩余油潜力定量分析1.1 K1S1砂组K1S1砂组没有细分小层,剩余油储量分布见表1-1,截止到2011年9月的累计产量为3.76⨯104t,剩余地质储量为100.49⨯104t。
表1-1 K1S1砂组剩余油储量分布全区宏观分析,K1S1累积采油3.76×104,采出程度3.6%,剩余油储量100.49×104t,剩余储量较多。
1.2 K1S2砂组K1S2砂组各小层剩余油分布见表1-2,截止到2011年9月的累计产量为11.36 ×104t,剩余地质储量为92.93 ×104t,主要集中在k1s2-6、k1s2-7、k1s2-8小层。
从小层原始地质储量、剩余油储量、累积产油量、采出程度进行分析,以剩余储量为主要指标,剩余油量大于5×104t为剩余油主力层段,根据数值模拟计算结果,重点挖潜层位有:k1s2-7 、k1s2-8。
表1-2 K1S2砂组剩余油储量分布图1-1 K1S2砂组各油组储量分布全区宏观分析,各油组储量分布如图1-1,主要含油层位基本动用,但各油组采出程度差异大,总采出程度11.33%,k1s2-6油组采出程度10%,k1s2-8油组采出程度仅有4.28%,剩余油储量分布看,k1s2-7、k1s2-8油组是剩余油富集区,k1s2-7、k1s2-8油组合计剩余油88.4×104t。
注水区剩余油分布规律及影响因素分析
油田开采过程中产生的大量信息资料,无论是电地质勘探还是石油开采过程,都值得我们关注和重视。
在此过程中,实现了对油田动态信息的收集和分析,从多方面探讨了油井产能减少的原因,将现有泵转换为螺杆泵形式,提高泵效率能力,减少重油问题引起的油井产量减少等,以科学的技术方法解决了油井生产不足问题。
本文基于注水区剩余油分布规律及影响因素分析展开论述。
标签:注水区;剩余油分布规律;影响因素分析
引言
中国东部老油田大多数已经进入高含水开发阶段,剩余油分布高度分散和复杂,注采矛盾日益加剧,认清剩余油的分布规律成为老油田稳产控油、提高采收率的重中之重。
目前,剩余油研究的方法和技术多种多样,包括开发地质学分析、水淹层测井解释和油藏数值模拟等;剩余油研究的对象日趋精细,逐渐由宏观厚层砂体向微观孔喉转变。
其中,油藏数值模拟作为一种定量预测技术,具有精度高、三维可视化的特点,在剩余油研究中发挥了重要的作用。
1控制剩余油富集区的地质因素
大坝是控制剩余油分布的地质因素。
异构存储层是影响石油开发效果和剩余分配的重要内部因素。
它们主要受到沉积和火灾的影响。
它们是矿床、矿床、矿床、沉积变化、水平连续性、高格式化合物、孔结构、下沉特性和水分特性的主要特征。
上升的微观结构是控制不同层异质性的主要因素,这些异质性可能形成不同的穿孔开口、挖空结构和浸润特性,具有不同的驱动效率和不同的剩余分布特性。
洪水开发阶段储备量性质的垂直和水平差异是通过微相沉积控制剩余分布的主要特点。
岩石背景排水地区的水处理过程中,水一般优先流入流向下游的水文良好的河流,并开始向上游和下游扩展,从而进一步增加了河流两侧剩余水的水饱和度。
2稳油控水的技术措施
发展新型钻井为合理控制单井生产奠定了基础,确定了单井含水量,确定了油层含水量和水处理后的洪水。
储油层低时,剩余的油会被大量抽干。
绝大部分岩石孔中都充满了水,从而减少了剩余的石油储量。
多挖水平井,促进薄水箱中的石油流动。
发展水平井配水,降低油层看到水的可能性,保证水驱的优化发展,满足油田后期开发的生产要求,实现额外产出。
为保持高含水量的基于库存的石油储量开采规模,加大了对剩余石油开采措施的研究力度。
确保通过技术控制有效开采剩余石油。
钻井可以水平钻井,在水平方向浅浅油层中钻出多余的油,从而减少钻井量,降低油田开发成本。
优化油气勘探管理措施,将油田生产数字化结合起来,利用现代仪器监测和分析剩余油田的状况,确保顺利实施各种油气勘探技术,确保单一油井的最佳产量。
把油的含水量降到最低,检查油层进行水处
理,实时调整注入剖面,确保注入水渗入薄壁油层,更换剩余油。
结合在油田开采土木工程产品的技术措施,正在实施含水量高的大坝项目,以防止产生更多的水,从而导致地下水含量增加。
将水文测量应用于低引进压力的油层会增加油层的强度,从而提高单井的产油量。
聚合物第三次流产后,油层酸化,化学溶液中最好的酸,聚合物堵塞问题的解决,油层连接的恢复和油流量的缓解。
3控制剩余油富集区的开发因素
在注射和生产过程中,层组合、井网布局、注射生产响应、注射生产强度、注射生产率等因素是剩余油分布的发展因素。
注水井与生产井和生产井之间设定的压降不受影响或不影响小区域,原油未使用或使用程度低是剩余油富集区形成的主要因素。
因此,下次要加强注入和礦井调整工作,增加注入波和体积,继续挖掘剩余油,降低产量,控制稳定水油,改善水驱效果。
4剩余油研究方法
(1)制定地质方法,从地质角度研究源头、储层微观结构、微观结构、异质性,并通过对大坝地质的详细描述研究剩余分布控制的影响。
跟踪技术确定了确定剩余油分布的方法,例如b.通过在集水池和生产格栅之间进行标识建立数值模拟。
(3)通过井的测量方法确定剩余饱和度;4)利用流体动力学模型模拟油库河流的渗流特性,并根据石油浓度、水处理工艺、井布置等定量数据对剩余分布进行数值模拟。
(5)为地质、卫生和物流等研究目的,通过研究对特征特定界面的理解和比较,建立高分辨率顺序框架,分析土壤级框架与河流单元之间的关系,对储层内流体的控制进行详细的比较层研究。
将特殊岩石和集水池基准的映射与单井曲线特征相结合,比较了顺序土壤分割,为分析提供了依据,如。
b.一个水渠、一层薄薄的储层和残余分布。
(6)通过一系列岩石显微镜观察显微镜的剩余分布情况,并通过水驱实验研究页岩过程中油滴分布情况,以确定分布格局,确定剩余油总量的分布情况。
在实际生产中,有许多不同的剩余利用途径,经常利用存储层动态分析和数值模拟,通过更详细地描述储层残余分布状况来控制油田的调整。
随着其余油气勘探方法的推广,可以更好地应用于双方。
但是,只有在没有完整的理论结构的情况下才能获得结果。
与此同时,下面列出了其余油的常用截获方法。
由于平面的差异,目前还未受井控制的剩余油流量采用了诸如z等技术。
b.低温井、侧井等。
对于因层之间的差异而产生的剩余油,分页、阻塞压力、重排层等技术经常成为用于设计限制性油或大部分残余油时,采用有针对性的残馀油挖掘。
结束语
水驱油田进入高含水期后,潜势很高,剩余油分布更复杂,必须掌握剩余油挖掘的潜技术,才能改善水驱采油。
因此,应根据剩余油分布探讨有效的窃听技术,提高驱油效果。
保障剩余石油的窃听潜力。
参考文献:
[1]苏明,吴小斌,王立宁,任江龙,杨武.低渗河道水驱砂岩油藏剩余油分布规律——以鄂尔多斯盆地胡尖山A21井区长2油藏为例[J].非常规油气,2018,5(04):58-64+74.
[2]于鹏.高含水油田剩余油分布规律研究[J].石化技术,2018,25(07):148.
[3]李丹,景佳骏,李明林,李光帅,李健.天然水驱高含水油藏见水规律及剩余油分布研究[J].中国矿业,2018,27(S1):377-381.
[4]刘海,林承焰,张宪国,王宏伟,付晓亮,李佳.孔店油田馆陶组辫状河储层构型及剩余油分布规律[J].吉林大学学报(地球科学版),2018,48(03):665-677.。