棱柱棱锥棱台的表面积和体积教案
- 格式:docx
- 大小:11.60 KB
- 文档页数:2
《8.3.1 棱柱、棱锥、棱台的表面积和体积》教学设计【教材分析】本节课选自《普通高中课程标准数学教科书-必修第二册》(人教A版)第八章《立体几何初步》,本节课主要学习棱柱、棱锥、棱台的表面积和体积的表面积、体积公式及其求法,还有简单组合体的体积的求解。
教材从分析简单几何体的侧面展开图得到了它们的表面积公式,体现了立体问题平面化的解决策略,这是本节课的灵魂,也是立体几何的灵魂,在立体几何中,要注意将立体问题转化为平面几何问题,在教学中应加以重视。
【教学目标与核心素养】课程目标学科素养A..通过对棱柱、棱锥、棱台的研究,掌握棱柱、棱锥、棱台的表面积与体积的求法.B.会求棱柱、棱锥、棱台有关的组合体的表面积与体积.1.数学抽象:棱柱、棱锥、棱台的表面积与体积的公式;2.逻辑推理:推导棱柱、棱锥、棱台的表面积与体积的公式;3.数学运算:求棱柱、棱锥、棱台及有关组合体的表面积与体积;4.直观想象:棱柱、棱锥、棱台体积之间的关系。
【教学重点】:棱柱、棱锥、棱台的表面积与体积;【教学难点】:求棱柱、棱锥、棱台有关的组合体的表面积与体积.【教学过程】教学过程教学设计意图一、复习回顾,温故知新1.北京奥运会场馆图通过观看图片及复习初中所学知识,引入本节新课。
建立知识间的联系,提高学生概括、类2. 北京奥运会结束后,国家对体育场馆都进行了改造,从专业比赛场馆逐步成为公众观光、健身的综合性体育场馆,国家游泳中心也完成了上述变身,新增了内部开放面积,并建成了大型的水上乐园.经营方出于多种考虑,近几年内“水立方”外墙暂不承接商业化广告,但出于长远考虑,决定为水立方外墙订制特殊显示屏,届时“水立方”将重新焕发活力,大放异彩.能否计算出“水立方”外墙所用显示屏的面积?3.学生回答下列公式矩形面积、三角形面积、梯形面积、长方体体积、正方体体积4.在初中已经学过了正方体和长方体的表面积,你知道正方体和长方体的展开图与其表面积的关系吗?二、探索新知探究:棱柱、棱锥、棱台都是由多个平面图形围成的几何体,它们的展开图是什么?如何计算它们的表面积?思考1:棱柱的侧面展开图是什么?如何计算它的表面积?侧面展开图是几个矩形,表面积是上下底面面积与侧面展开图的面积的和。
棱柱,棱锥,棱台的表面积和体积教学设计
摘要:
1.教学目标
2.教学内容
3.教学重点与难点
4.教学方法
5.教学过程
6.教学总结
正文:
一、教学目标
通过本节课的学习,使学生掌握棱柱、棱锥、棱台的表面积和体积的计算方法,能够熟练运用这些公式解决实际问题,提高学生的数学运算能力和空间想象能力。
二、教学内容
1.棱柱的表面积和体积
2.棱锥的表面积和体积
3.棱台的表面积和体积
三、教学重点与难点
1.教学重点:棱柱、棱锥、棱台的表面积和体积的计算公式
2.教学难点:公式的推导和运用
四、教学方法
1.启发式教学法:引导学生通过实例发现公式
2.讲练结合法:讲解与练习相结合,帮助学生掌握知识
3.讨论法:分组讨论,激发学生的思维,提高学生的解题能力
五、教学过程
1.引入:通过讲解实际生活中的例子,激发学生的兴趣,引入本节课的主题
2.讲解:分别讲解棱柱、棱锥、棱台的表面积和体积的计算公式,并结合实例进行推导
3.练习:布置一些习题,让学生运用所学知识进行练习,培养学生的解题能力
4.小组讨论:组织学生进行小组讨论,解决一些具有挑战性的问题,提高学生的思维能力
5.总结:对本节课的内容进行总结,回顾所学知识,布置课后作业
六、教学总结
通过本节课的学习,学生应该能够掌握棱柱、棱锥、棱台的表面积和体积的计算方法,能够熟练运用这些公式解决实际问题。
同时,本节课的教学过程也培养了学生的数学运算能力和空间想象能力,提高了学生的思维品质。
8.3.1 棱柱、棱锥、棱台的表面积和体积(教师独具内容)课程标准:知道棱柱、棱锥、棱台的表面积和体积的计算公式,能用公式解决简单的实际问题.教学重点:棱柱、棱锥、棱台的表面积与体积公式及其应用.教学难点:棱台的表面积与体积公式的推导.核心素养:通过棱柱、棱锥、棱台的表面积和体积公式的推导和应用培养直观想象和数学运算素养.1.计算棱柱、棱锥和棱台的体积,关键是根据条件找出相应的底面面积和高,要充分运用多面体的有关截面,将空间问题转化为平面问题.2.在几何体的体积计算中,体会并运用“分割思想”“补体思想”及“等价转化思想”.1.判一判(正确的打“√”,错误的打“×”)(1)锥体的体积等于其底面面积与高之积.( )(2)棱台的体积可由两个棱锥的体积差得出.( )(3)棱台的侧面展开图是由若干个等腰梯形组成的.( )(4)多面体的表面积等于各个面的面积之和.( )2.做一做(1)正三棱锥的高为3,侧棱长为23,则这个正三棱锥的体积为( )A.274B.94C.2734D.934(2)长方体同一个顶点上的三条棱长分别是3,4,5,则该长方体的体积和表面积分别是____.(3)已知棱台的上、下底面面积分别为4,16,高为3,则该棱台的体积为____.题型一棱柱、棱锥、棱台的表面积例1 (1)现有一个底面是菱形的直四棱柱(侧棱与底面垂直),它的体对角线长为9和15,高是5,求该直四棱柱的侧面积和表面积.(2)已知棱长均为5,底面为正方形的四棱锥S-ABCD如图所示,求它的侧面积、表面积.(3)已知四棱台的上、下底面分别是边长为4和8的正方形,侧面是腰长为8的等腰梯形,求该四棱台的表面积.[跟踪训练1] (1)已知正六棱柱的高为6,底面边长为4,则它的表面积为( )A.48(3+3) B.48(3+23)C.24(6+2) D.144(2)侧面都是等腰直角三角形的正三棱锥,底面边长为a时,该三棱锥的表面积是( )A.3+34a2B.34a2C.3+32a2D.6+34a2(3)正三棱台上、下底面边长分别是a和2a,高为12a,则该正三棱台的侧面积为____,表面积为____.题型二棱柱、棱锥、棱台的体积例2 (1)已知高为3的三棱柱ABC-A1B1C1的底面是边长为1的正三角形,如图所示,则三棱锥B1-ABC的体积为( )A.14B.12C.36D.34(2)如图,已知ABCD-A1B1C1D1是棱长为a的正方体,E为AA1的中点,F为CC1上一点,求三棱锥A1-D1EF的体积.(3)正四棱台两底面边长分别为20 cm和10 cm,侧面面积为780 cm2.求其体积.[跟踪训练2] (1)已知正四棱锥的底面边长为2,高为3,则它的体积为( )A.2 B.4C.6 D.12(2)若棱台的上、下底面面积分别为4,16,高为3,则该棱台的体积为( )A.26 B.28C.30 D.32题型三组合体的表面积与体积例3 (1)某几何体的三视图如图所示,则该几何体的表面积为( )A.54 B.60C.66 D.72(2)一个造桥用的钢筋混凝土预制件的尺寸如图所示(单位:米),浇制一个这样的预制件需要多少立方米混凝土(钢筋体积略去不计,精确到0.01立方米)?[跟踪训练3] (1)若正方体的棱长为2,则以该正方体各个面的中心为顶点的凸多面体的体积为( )A.26B.23C.33D.23(2)如图,在棱长为a的正方体ABCD-A1B1C1D1中,截去三棱锥A1-ABD,求剩余的几何体A1B1C1D1-DBC的表面积.1.已知各面均为等边三角形的四面体的棱长为2,则它的表面积是( )A.2 3 B.4 3C.4 D.62.底面为正方形的直棱柱,它的底面对角线长为2,体对角线长为6,则这个棱柱的侧面积是( )A.2 B.4C.6 D.83.已知三棱锥S-ABC的所有顶点都在球O的球面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此棱锥的体积为( )A.26B.36C.23D.224.已知某几何体的三视图如图所示,则该几何体的体积等于____.5.已知三棱台ABC-A1B1C1上底面的面积为a2,下底面的面积为b2(a>0,b>0),作截面AB1C1,设三棱锥B-AB1C1的高等于三棱台的高,求△AB1C1的面积.一、选择题1.设正六棱锥的底面边长为1,侧棱长为5,那么它的体积为( )A.6 3 B. 3C.2 3 D.22.将一个棱长为a的正方体切成27个全等的小正方体,则表面积增加了( )A.6a2B.12a2C.18a2D.24a23.在正方体ABCD-A1B1C1D1中,三棱锥D1-AB1C的表面积与正方体的表面积的比为( )A.1∶1 B.1∶ 2C.1∶ 3 D.1∶24.某几何体的三视图如图所示,则该几何体的体积为( )A.5603B.5803C.200 D.2405. 如图,已知正三棱锥S-ABC的侧面积是底面积的2倍,正三棱锥的高SO =3,则此正三棱锥的表面积为( )A.9 3 B.18 3C.27 3 D.36二、填空题6.用一张正方形的纸把一个棱长为1的正方体礼品盒完全包住,不将纸撕开,则所需纸的最小面积是____.7. 如图所示,在三棱柱ABC-A′B′C′中,若E,F分别为AC,AB的中点,平面EC′B′F将三棱柱分成体积为V1(棱台AEF-A′C′B′的体积),V2(几何体BFECC′B′的体积)的两部分,那么V∶V2=____.18.已知正三棱锥的侧面积是27 cm2,底面边长是6 cm,则它的高是____ cm.三、解答题9. 如图,正六棱锥P-ABCDEF被过棱锥高PO的中点O′且平行于底面的平面所截,得到正六棱台A1B1C1D1E1F1-ABCDEF和较小的棱锥P-A1B1C1D1E1F1.(1)求大棱锥P-ABCDEF、小棱锥P-A1B1C1D1E1F1、棱台A1B1C1D1E1F1-ABCDEF 的侧面面积之比;(2)若大棱锥P-ABCDEF的侧棱长为12 cm,小棱锥P-A1B1C1D1E1F1的底面边长为4 cm,求截得的棱台A1B1C1D1E1F1-ABCDEF的侧面面积和表面积.10.甲、乙是边长为4a的两块正方形钢板,现要将甲裁剪焊接成一个正四棱柱,将乙裁剪焊接成一个正四棱锥,使它们的表面积都等于这个正方形的面积(不计焊接缝的面积).(1)将你的裁剪方法用虚线标示在图中,并作简要说明;(2)试比较你所制作的正四棱柱与正四棱锥体积的大小,并证明你的结论.1.正六棱锥P-ABCDEF中,G为PB的中点.则三棱锥D-GAC与三棱锥P-GAC体积之比为( )A.1∶1 B.1∶2C.2∶1 D.3∶22.已知长方体的表面积是24,所有棱长的和是24,则长方体的体对角线的长是____.3. 学生到工厂劳动实践,利用3D打印技术制作模型.如图,该模型为长方体ABCD-A1B1C1D1挖去四棱锥O-EFGH后所得的几何体.其中O为长方体的中心,E,F,G,H分别为所在棱的中点,AB=BC=6 cm,AA=4 cm.3D打印所用原料密1度为0.9 g/cm3,不考虑打印损耗,制作该模型所需原料的质量为____g.4.如图所示,已知ABCD-A1B1C1D1是棱长为a的正方体,E,F分别为AA1,CC的中点,求四棱锥A1-EBFD1的体积.15.已知一个三棱台的上、下底面分别是边长为20 cm和30 cm的正三角形,侧面是全等的等腰梯形,且侧面面积等于上、下底面面积之和,求棱台的高和体积.8.3.1 棱柱、棱锥、棱台的表面积和体积(教师独具内容)课程标准:知道棱柱、棱锥、棱台的表面积和体积的计算公式,能用公式解决简单的实际问题.教学重点:棱柱、棱锥、棱台的表面积与体积公式及其应用.教学难点:棱台的表面积与体积公式的推导.核心素养:通过棱柱、棱锥、棱台的表面积和体积公式的推导和应用培养直观想象和数学运算素养.1.计算棱柱、棱锥和棱台的体积,关键是根据条件找出相应的底面面积和高,要充分运用多面体的有关截面,将空间问题转化为平面问题.2.在几何体的体积计算中,体会并运用“分割思想”“补体思想”及“等价转化思想”.1.判一判(正确的打“√”,错误的打“×”)(1)锥体的体积等于其底面面积与高之积.( )(2)棱台的体积可由两个棱锥的体积差得出.( )(3)棱台的侧面展开图是由若干个等腰梯形组成的.( )(4)多面体的表面积等于各个面的面积之和.( )答案(1)×(2)√(3)×(4)√2.做一做(1)正三棱锥的高为3,侧棱长为23,则这个正三棱锥的体积为( )A.274B.94C.2734D.934(2)长方体同一个顶点上的三条棱长分别是3,4,5,则该长方体的体积和表面积分别是____.(3)已知棱台的上、下底面面积分别为4,16,高为3,则该棱台的体积为____.答案(1)D (2)60,94 (3)28题型一 棱柱、棱锥、棱台的表面积例1 (1)现有一个底面是菱形的直四棱柱(侧棱与底面垂直),它的体对角线长为9和15,高是5,求该直四棱柱的侧面积和表面积.(2)已知棱长均为5,底面为正方形的四棱锥S -ABCD 如图所示,求它的侧面积、表面积.(3)已知四棱台的上、下底面分别是边长为4和8的正方形,侧面是腰长为8的等腰梯形,求该四棱台的表面积.[解] (1)如图,设底面对角线AC =a ,BD =b ,交点为O ,对角线A 1C =15,B 1D =9,∴a 2+52=152,b 2+52=92,∴a 2=200,b 2=56.∵该直四棱柱的底面是菱形, ∴AB 2=⎝ ⎛⎭⎪⎫AC 22+⎝ ⎛⎭⎪⎫BD 22=a 2+b 24=200+564=64,∴AB =8. ∴该直四棱柱的侧面积S 侧=4×8×5=160. ∴该直四棱柱的底面积S 底=12AC ·BD =207.∴该直四棱柱的表面积S 表=160+2×207=160+407. (2)∵四棱锥S -ABCD 的各棱长均为5, ∴各侧面都是全等的正三角形.设E 为AB 的中点,连接SE ,则SE ⊥AB ,∴S 侧=4S △SAB =4×12AB ×SE=2×5×52-⎝ ⎛⎭⎪⎫522=253,S 表=S 侧+S 底=253+25=25(3+1).(3)如图,在四棱台ABCD -A 1B 1C 1D 1中,过B 1作B 1F ⊥BC ,垂足为F ,在Rt △B 1FB 中,BF =12×(8-4)=2,B 1B =8,故B 1F =82-22=215,所以S 梯形BB 1C 1C =12×(8+4)×215=1215,故四棱台的侧面积S 侧=4×1215=4815,所以四棱台的表面积S 表=4815+4×4+8×8=80+4815.1.棱柱、棱锥、棱台的表面积求法 (1)多面体的表面积是各个面的面积之和.(2)棱柱、棱锥、棱台的表面积等于它们的侧面积与各自底面积的和. 2.求解棱锥的表面积时,注意棱锥的四个基本量:底面边长、高、斜高、侧棱,并注意它们组成的直角三角形的应用.3.求解正棱台的表面积时注意棱台的四个基本量:底面边长、高、斜高、侧棱,并注意两个直角梯形的应用:(1)高、侧棱、上下底面多边形的中心与顶点连线所成的直角梯形;(2)高、斜高、上下底面边心距所成的直角梯形.[跟踪训练1] (1)已知正六棱柱的高为6,底面边长为4,则它的表面积为( )A .48(3+3)B .48(3+23)C .24(6+2)D .144(2)侧面都是等腰直角三角形的正三棱锥,底面边长为a 时,该三棱锥的表面积是( )A .3+34a 2B .34a 2C .3+32a 2D .6+34a 2(3)正三棱台上、下底面边长分别是a 和2a ,高为12a ,则该正三棱台的侧面积为____,表面积为____.答案 (1)A (2)A (3)332a 2 1134a 2解析 (1)由题意,知侧面积为6×6×4=144,两底面积之和为2×34×42×6=483,所以表面积S =48(3+3).(2)因为底面边长为a ,侧面都是等腰直角三角形,所以斜高为a 2,故S 侧=3×12a ·a 2=34a 2,而S 底=34a 2,故S 表=3+34a 2. (3)如图,O 1,O 分别为上、下底面的中心,D ,D 1分别为AC ,A 1C 1的中点,过D 1作D 1E ⊥DO ,垂足为E ,在直角梯形ODD 1O 1中,OD =13×32×2a =33a ,O 1D 1=13×32a =36a ,所以DE =OD -O 1D 1=36a . 在Rt △DED 1中,D 1E =a2,则D 1D =⎝ ⎛⎭⎪⎫36a 2+⎝ ⎛⎭⎪⎫a 22= 112a 2+a 24=33a ,所以S棱台侧=3×12(a+2a)×33a=332a2.所以S棱台表=S上底+S下底+S棱台侧=34a2+34×(2a)2+332a2=1134a2.题型二棱柱、棱锥、棱台的体积例2 (1)已知高为3的三棱柱ABC-A1B1C1的底面是边长为1的正三角形,如图所示,则三棱锥B1-ABC的体积为( )A.14B.12C.36D.34(2)如图,已知ABCD-A1B1C1D1是棱长为a的正方体,E为AA1的中点,F为CC1上一点,求三棱锥A1-D1EF的体积.(3)正四棱台两底面边长分别为20 cm和10 cm,侧面面积为780 cm2.求其体积.[解析](1)设三棱锥B1-ABC的高为h,则V三棱锥B1-ABC =13S△ABCh=13×34×3=34.(2)由V三棱锥A1-D1EF=V三棱锥F-A1D1E,∵S△A1D1E=12EA1·A1D1=14a2,又三棱锥F-A1D1E的高为CD=a,∴V三棱锥F-A1D1E=13×a×14a2=112a3,∴V三棱锥A1-D1EF=112a3.(3)正四棱台的大致图形如图所示,其中A1B1=10 cm,AB=20 cm,取A1B1的中点E1,AB的中点E,则E1E为斜高.设O1,O分别是上、下底面的中心,则四边形EOO1E1为直角梯形.∵S侧=4×12×(10+20)×EE1=780(cm2),∴EE1=13 cm.在直角梯形EOO1E1中,O1E1=12A1B1=5 cm,OE=12AB=10 cm,∴O1O=132-10-52=12(cm).故该正四棱台的体积为V=13×12×(102+202+10×20)=2800(cm3).[答案](1)D (2)见解析(3)见解析求几何体体积的常用方法[跟踪训练2] (1)已知正四棱锥的底面边长为2,高为3,则它的体积为( )A.2 B.4C.6 D.12(2)若棱台的上、下底面面积分别为4,16,高为3,则该棱台的体积为( )A.26 B.28C.30 D.32答案(1)B (2)B解析(1)正四棱锥的底面积为2×2=4,则体积为13×4×3=4.(2)所求棱台的体积V=13×(4+16+4×16)×3=28.题型三组合体的表面积与体积例3 (1)某几何体的三视图如图所示,则该几何体的表面积为( )A.54 B.60C.66 D.72(2)一个造桥用的钢筋混凝土预制件的尺寸如图所示(单位:米),浇制一个这样的预制件需要多少立方米混凝土(钢筋体积略去不计,精确到0.01立方米)?[解析] (1)根据几何体的三视图,可得该几何体的直观图为如图所示的几何体ABC -DEF ,其中AB ⊥AC ,AB =4,AD =5,AC =3,BE =2,故其表面积为S =S △DEF +S △ABC +S梯形ABED +S梯形CBEF +S矩形ACFD=12×3×5+12×3×4+12×(5+2)×4+12×(5+2)×5+3×5=60. (2)将预制件看成由一个长方体挖去一个底面为等腰梯形的四棱柱后剩下的几何体.S 底=0.6×1.1-12×(0.5+0.3)×0.3=0.54(平方米), V =S 底·h =0.54×24.8≈13.39(立方米).故浇制一个这样的预制件需要约13.39立方米混凝土. [答案] (1)B (2)见解析求组合体的表面积与体积的方法求组合体的表面积或体积的问题,首先应弄清它的组成,其表面有哪些底面和侧面,各个面应该怎样求,然后再根据公式求出各面的面积,最后再相加或相减.求体积时也要先弄清组成,求出各简单几何体的体积,然后再相加或相减.[跟踪训练3] (1)若正方体的棱长为2,则以该正方体各个面的中心为顶点的凸多面体的体积为( )A .26B .23C.33D.23(2)如图,在棱长为a的正方体ABCD-A1B1C1D1中,截去三棱锥A1-ABD,求剩余的几何体A1B1C1D1-DBC的表面积.答案(1)B (2)见解析解析(1)如图所示,以正方体各个面的中心为顶点的凸多面体是由两个全等的正四棱锥组合而成,该棱锥的高是正方体棱长的一半,底面面积是正方体一个面面积的一半,则该凸多面体的体积为V=2×13×⎝⎛⎭⎪⎫12×2×2×22=23.(2)由题图可知△A1BD是边长为2a的等边三角形,其面积为32a2,故所求几何体A1B1C1D1-DBC的表面积S=S△A1BD+3S△DBC+3S正方形A1B1C1D1=32a2+3×12×a2+3a2=3+92a2.1.已知各面均为等边三角形的四面体的棱长为2,则它的表面积是( ) A.2 3 B.4 3C.4 D.6答案 B解析S表=4×34×22=4 3.故选B.2.底面为正方形的直棱柱,它的底面对角线长为2,体对角线长为6,则这个棱柱的侧面积是( )A.2 B.4C.6 D.8答案 D解析由题意知,该几何体为长方体,底面正方形的边长为1,长方体的高为6-2=2,故这个棱柱的侧面积为1×2×4=8.3.已知三棱锥S-ABC的所有顶点都在球O的球面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此棱锥的体积为( )A.26B.36C.23D.22答案 A解析由于三棱锥S-ABC与三棱锥O-ABC底面都是△ABC,O是SC的中点,因此三棱锥S-ABC的高是三棱锥O-ABC高的2倍,所以三棱锥S-ABC的体积也是三棱锥O-ABC体积的2倍.如图所示,在三棱锥O-ABC中,其棱长都是1,作出三棱锥O-ABC的高OD,连接DC,则S△ABC=12×1×32=34,OD=OC2-CD2=12-⎝⎛⎭⎪⎫332=63,所以V S-ABC=2V O-ABC=2×13×34×63=26.4.已知某几何体的三视图如图所示,则该几何体的体积等于____.答案160 3解析由题意,知该几何体是由一个直三棱柱和一个四棱锥组成的组合体,其中直三棱柱的底面为等腰直角三角形,面积为8,高为4,故V直三棱柱=8×4=32,四棱锥的底面是边长为4的正方形,高为4,故V四棱锥=13×16×4=643,故该几何体的体积V=V直三棱柱+V四棱锥=32+643=1603.5.已知三棱台ABC-A1B1C1上底面的面积为a2,下底面的面积为b2(a>0,b>0),作截面AB1C1,设三棱锥B-AB1C1的高等于三棱台的高,求△AB1C1的面积.解将三棱台分割成三棱锥A-A1B1C1,B-AB1C1及C1-ABC,设三棱台的高为h,则这三个三棱锥的高都是h.由于V ABC-A1B1C1=V A-A1B1C1+V B-AB1C1+V C1-ABC,即13(a2+ab+b2)h=13a2h+13S△AB1C1·h+13b2h,得S△AB1C1=ab,故△AB1C1的面积为ab.一、选择题1.设正六棱锥的底面边长为1,侧棱长为5,那么它的体积为( ) A .6 3 B . 3 C .2 3 D .2答案 B解析 由正六棱锥的底面边长为1和侧棱长为5,可知高h =2,又因为底面积S =332,所以体积V =13Sh =13×332×2= 3.2.将一个棱长为a 的正方体切成27个全等的小正方体,则表面积增加了( )A .6a 2B .12a 2C .18a 2D .24a 2 答案 B解析 棱长为a 的正方体的表面积为S 1=6a 2,由棱长为a 的正方体切成的27个全等的小正方体的表面积和为S 2=27×⎣⎢⎡⎦⎥⎤6×⎝ ⎛⎭⎪⎫a 32=18a 2,因此表面积增加了12a 2,故选B.3.在正方体ABCD -A 1B 1C 1D 1中,三棱锥D 1-AB 1C 的表面积与正方体的表面积的比为( )A .1∶1B .1∶ 2C .1∶ 3D .1∶2 答案 C解析 如图,三棱锥D 1-AB 1C 的各面均是正三角形,其边长为正方体的面对角线.设正方体的棱长为a ,则面对角线长为2a ,S 锥 =4×12×(2a )2×32=23a 2,S 正方体=6a 2,故S 锥∶S 正方体=1∶ 3.4.某几何体的三视图如图所示,则该几何体的体积为( )A.5603B.5803C.200 D.240答案 C解析由三视图可作出如图所示几何体,该几何体为直四棱柱,其底面为等腰梯形,上底长为1,下底长为9,高为4,故底面积S=1+9×42=20.又棱柱的高为10,所以体积V=Sh=20×10=200.5. 如图,已知正三棱锥S-ABC的侧面积是底面积的2倍,正三棱锥的高SO =3,则此正三棱锥的表面积为( )A.9 3 B.18 3C.27 3 D.36答案 C解析如图,设正三棱锥的底面边长为a,斜高为h′,过点O作OE⊥AB,与AB交于点E,连接SE,则SE⊥AB,SE=h′.∵S侧=2S底,∴12·3a ·h ′=34a 2×2.∴a =3h ′.∵SO ⊥OE ,∴SO 2+OE 2=SE 2. ∴32+⎝ ⎛⎭⎪⎫36×3h ′2=h ′2.∴h ′=23,∴a =3h ′=6.∴S 底=34a 2=34×62=93,S 侧=2S 底=18 3. ∴S 表=S 侧+S 底=183+93=27 3. 二、填空题6.用一张正方形的纸把一个棱长为1的正方体礼品盒完全包住,不将纸撕开,则所需纸的最小面积是____.答案 8解析 如图(1)为棱长为1的正方体礼品盒,先把正方体的表面按图所示方式展成平面图形,再把平面图形尽可能拼成面积较小的正方形,如图(2)所示,由图知正方形的边长为22,其面积为8.7. 如图所示,在三棱柱ABC -A ′B ′C ′中,若E ,F 分别为AC ,AB 的中点,平面EC ′B ′F 将三棱柱分成体积为V 1(棱台AEF -A ′C ′B ′的体积),V 2(几何体BFECC ′B ′的体积)的两部分,那么V 1∶V 2=____.答案 7∶5解析设三棱柱的高为h,底面面积为S,体积为V,则V=V1+V2=Sh.因为E,F分别为AC,AB的中点,所以S△AEF=14 S,所以V1=13h⎝⎛⎭⎪⎫S+14S+S·S4=712Sh,V 2=V-V1=512Sh.所以V1∶V2=7∶5.8.已知正三棱锥的侧面积是27 cm2,底面边长是6 cm,则它的高是____ cm. 答案 6解析如图所示,正三棱锥P-ABC的底面边长为6 cm,过点P作PO⊥平面ABC,O为垂足,取AB的中点D,连接PD,OD.由题意得3×12×AB×PD=27,所以PD=3 cm.又OD=36×6= 3 cm,所以它的高PO=PD2-OD2=9-3= 6 cm.三、解答题9. 如图,正六棱锥P-ABCDEF被过棱锥高PO的中点O′且平行于底面的平面所截,得到正六棱台A1B1C1D1E1F1-ABCDEF和较小的棱锥P-A1B1C1D1E1F1.(1)求大棱锥P-ABCDEF、小棱锥P-A1B1C1D1E1F1、棱台A1B1C1D1E1F1-ABCDEF 的侧面面积之比;(2)若大棱锥P-ABCDEF的侧棱长为12 cm,小棱锥P-A1B1C1D1E1F1的底面边长为4 cm,求截得的棱台A1B1C1D1E1F1-ABCDEF的侧面面积和表面积.解(1)由题意知S小棱锥侧∶S大棱锥侧=1∶4,则S大棱锥侧∶S小棱锥侧∶S棱台侧=4∶1∶3.(2)∵小棱锥P-A1B1C1D1E1F1的底面边长为4 cm,∴大棱锥P-ABCDEF的底面边长为8 cm,又PA=12 cm,∴A1A=6 cm.又梯形ABB1A1的高h′=62-22=42(cm),∴S棱台侧=6×4+82×42=1442(cm2),∴S棱台表=S棱台侧+S上底+S下底=1442+243+963=(1442+1203)(cm2).10.甲、乙是边长为4a的两块正方形钢板,现要将甲裁剪焊接成一个正四棱柱,将乙裁剪焊接成一个正四棱锥,使它们的表面积都等于这个正方形的面积(不计焊接缝的面积).(1)将你的裁剪方法用虚线标示在图中,并作简要说明;(2)试比较你所制作的正四棱柱与正四棱锥体积的大小,并证明你的结论.解(1)将正方形甲按图中虚线剪开,以两个正方形为底面,四个长方形为侧面,焊接成一个底面边长为2a,高为a的正四棱柱.将正方形乙按图中虚线剪开,以两个长方形焊接成边长为2a的正方形为底面,三个等腰三角形为侧面,两个直角三角形合拼成为一个侧面,焊接成一个底面边长为2a,斜高为3a的正四棱锥.(2)因为正四棱柱的底面边长为2a,高为a,所以其体积V柱=(2a)2·a=4a3.又因为正四棱锥的底面边长为2a ,高为h =9a 2-a 2=22a , 所以其体积V 锥=13(2a )2·22a =823a 3.因为42-⎝ ⎛⎭⎪⎫8232=16-1289=169>0,即4>823,所以4a 3>823a 3,所以V 柱>V 锥, 故所制作的正四棱柱的体积比正四棱锥的体积大.1.正六棱锥P -ABCDEF 中,G 为PB 的中点.则三棱锥D -GAC 与三棱锥P -GAC 体积之比为( )A .1∶1B .1∶2C .2∶1D .3∶2答案 C解析 ∵G 为PB 的中点,∴V P -GAC =V P -ABC -V G -ABC =2V G -ABC -V G -ABC =V G -ABC .又多边形ABCDEF 是正六边形,∴S △ABC =12S △ACD .∴V D -GAC =V G -ACD =2V G -ABC .∴V D -GAC ∶V P -GAC =2∶1.2.已知长方体的表面积是24,所有棱长的和是24,则长方体的体对角线的长是____.答案 2 3解析 设长方体的长、宽、高分别为x ,y ,z , 则有⎩⎨⎧2xy +xz +yz =24,4x +y +z =24⇒⎩⎨⎧xy +xz +yz =12,x +y +z =6,则长方体的体对角线的长为x 2+y 2+z 2 =x +y +z2-2xy +xz +yz =36-24=2 3.3. 学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体ABCD -A 1B 1C 1D 1挖去四棱锥O -EFGH 后所得的几何体.其中O 为长方体的中心,E ,F ,G ,H 分别为所在棱的中点,AB =BC =6 cm ,AA 1=4 cm.3D 打印所用原料密度为0.9 g/cm 3,不考虑打印损耗,制作该模型所需原料的质量为____g.答案 118.8解析 由题知挖去的四棱锥的底面是一个菱形,对角线长分别为6 cm 和4 cm ,故V 挖去的四棱锥=13×12×4×6×3=12(cm 3).又V 长方体=6×6×4=144(cm 3),所以模型的体积为V 长方体-V 挖去的四棱锥=144-12=132(cm 3),所以制作该模型所需原料的质量为132×0.9=118.8(g).4.如图所示,已知ABCD -A 1B 1C 1D 1是棱长为a 的正方体,E ,F 分别为AA 1,CC 1的中点,求四棱锥A 1-EBFD 1的体积.解 因为EB =BF =FD 1=D 1E =a 2+⎝ ⎛⎭⎪⎫a 22=52a ,D 1F ∥EB ,所以四边形EBFD 1是菱形, 连接EF ,则△EFB ≌△EFD 1.易知三棱锥A 1-EFB 与三棱锥A 1-EFD 1的高相等, 故V A 1-EBFD 1=2V A 1-EFB =2V F -EBA 1. 又因为S △EBA 1=12EA 1·AB =14a 2,则V F -EBA 1=112a 3,所以V A 1-EBFD 1=2V A 1-EFB =2VF -EBA 1=16a 3.5.已知一个三棱台的上、下底面分别是边长为20 cm 和30 cm 的正三角形,侧面是全等的等腰梯形,且侧面面积等于上、下底面面积之和,求棱台的高和体积.解 如图所示,在三棱台ABC -A ′B ′C ′中,O ′,O 分别为上、下底面的中心,D ,D ′分别是BC ,B ′C ′的中点,连接OO ′,A ′D ′,AD ,DD ′,则DD ′是等腰梯形BCC ′B ′的高,记为h 0,所以S 侧=3×12×(20+30)h 0=75h 0.上、下底面面积之和为S 上+S 下=34×(202+302)=3253(cm 2). 由S 侧=S 上+S 下,得75h 0=3253, 所以h 0=1333(cm). 又O ′D ′=13×32×20=1033(cm),OD =13×32×30=53(cm), 记棱台的高为h ,则h =O ′O =h 20-OD -O ′D ′2=⎝ ⎛⎭⎪⎫13332-⎝⎛⎭⎪⎫53-10332=43(cm),由棱台的体积公式,可得棱台的体积V =h3(S 上+S 下+S 上S 下)=433×⎝ ⎛⎭⎪⎫3253+34×20×30=1900(cm 3).。
8.3.1 棱柱、棱锥、棱台的表面积和体积(教案)一、教学目标1、了解棱柱、棱锥、棱台的表面积公式;2、了解棱柱、棱锥、棱台的体积公式;3、运用棱柱、棱锥、棱台的表面积与体积公式解决问题.二、教学重点、难点重点:了解记忆棱柱、棱锥、棱台的表面积与体积公式难点:棱柱、棱锥、棱台的表面积与体积公式解决简单的实际问题.三、学法与教学用具1、学法:学生在老师的引导下,通过阅读教材,自主学习、思考、交流、讨论和概括,从而完成本节课的教学目标.2、教学用具:多媒体设备等四、教学过程(一)创设情景,揭示课题【回顾】正方体及其展开图长方体及其展开图正方体棱长为a长方体三条棱长分别为,,a b c表面积表面积26 S a=正方体表面积222 S ab bc ca=++长方体表面积体积体积3 V a=正方体V abc=长方体【情景】许多建筑在装修时,需要知道它们的表面积或体积,以便计算用料和工时.【问题】如何求多面体的表面积与体积?(二)阅读精要,研讨新知【发现1】棱柱、棱锥、棱台都是多面体,多面体的表面积就是围成多面体各个面的面积的和.三棱柱及平面展开图三棱锥及平面展开图三棱台及平面展开图【例题研讨】阅读领悟课本114P 例1、例2(用时约为1分钟,教师作出准确的评析.)例1如图8.3-1,四面体P ABC -的各棱长均为a ,求它的表面积.解:由已知,四面体P ABC -的四个面都是边长为a 的正三角形,且234S a =正三角形 所以四面体P ABC -的表面积22343P ABC S a -==【发现2】棱柱、棱锥、棱台的体积棱柱棱锥棱台底面积为S ,高为h底面积为S ,高为h上底面积为S ',下底面积为S ,高为hV Sh =棱柱13V Sh =棱锥1()3V h S S S S ''=++棱台例2 如图8.3-2,一个漏斗的上面部分是一个长方体,下面部分是一个四棱锥,两部分的高都是0.5m ,公共面ABCD 是边长为1m 的正方形,那么这个漏斗的容积是多 少立方米(精确到0.01 m 3)? (计算漏斗的容积时不考虑漏斗的厚度)解:由已知,这个漏斗的容积为ABCD A B C D P ABCD V V V ''''--=+1112110.5110.50.673263V =⨯⨯+⨯⨯⨯=+=≈( m 3)【小组互动】完成课本116P 练习1、2、3、4,同桌交换检查,老师答疑.(三)探索与发现、思考与感悟1. 已知正三棱锥S ABC -(侧棱相等,底面是正三角形)的底面边长为a ,高为66a ,则此三棱锥的表面积为( )A. 234a B.233+ C. 2334a D. 234 解:如图,在三棱锥S ABC -中, 6,AB a SO ==,013sin 603OD AB =⋅⋅= 所以2263()()662aSD a a =+= 所以正三棱锥S ABC -的表面积为22133332244a S a a a =⨯⨯⨯+=表面积,故选B2.已知正方体的8个顶点中,有4个为正四面体(各个棱长相等)的顶点,则这个三棱锥与正方体的表面积之比为( )A. 1:2B. 1:322D. 6解:如图,三棱锥B ACD ''-为正四面体,且四个面为全等的等边三角形, 设正方体的棱长为1,则2AB '=所以2342)234B ACD S ''-=⨯=表面积6S =正方体表面积 所以:2363B ACD S S ''-==正方体表面积表面积,故选B.3. 如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为 .解:如图,平面ABCD 2为底面边长,高为1的正四棱锥, 所以其体积为2142(2)133V =⨯⨯=. 答案:434. 正四棱台1111ABCD A B C D -,两底面边长分别为20 cm 和10 cm ,侧面面积为780 cm 2,求正四棱台的体积.解:如图,1110A B =,20AB =,取11A B 的中点1E ,AB 的中点E ,则1E E 为斜高. 设1,O O 分别是上、下底面的中心,则四边形11EOO E 为直角梯形. 因为114(1020)7802S EE =⨯+⨯=侧。
1. 3.1柱体、锥体、台体的表面积与体积【教学目标】1.通过对柱、锥、台体的研究,掌握柱、锥、台的表面积的求法。
2.通过对柱、锥、台体的研究,掌握柱、锥、台的体积的求法。
3.能运用公式求解,柱体、锥体和台全的全积,并且熟悉台体与术体和锥体之间的转换关系。
【教学重难点】教学重点:运用公式解决问题教学难点:理解计算公式的由来.【教学过程】(一)情景导入讨论:正方体、长方体的侧面展开图?→正方体、长方体的表面积计算公式?讨论:圆柱、圆锥的侧面展开图?→圆柱的侧面积公式?圆锥的侧面积公式?那么如何计算柱体、锥体、台体的表面积,进而去研究他们的体积问题,这是我们这节主要学习的内容。
(二)展示目标这也是我们今天要学习的主要内容:1.通过对柱、锥、台体的研究,掌握柱、锥、台的表面积的求法。
2.通过对柱、锥、台体的研究,掌握柱、锥、台的体积的求法。
3.能运用公式求解,柱体、锥体和台全的全积,并且熟悉台体与术体和锥体之间的转换关系。
(三)检查预习1.棱柱的侧面展开图是由,棱锥的侧面展开图是由,梭台的侧面展开图是由,圆柱的侧面展开图是,圆锥的侧面展开图是,圆台的侧面展开图是。
2.几何体的表面积是指,棱柱、棱锥、棱台的表面积问题就是求、,圆柱、圆锥、圆台的表面积问题就是求、、、。
3.几何体的体积是指 ,一个几何体的体积等于。
(四)合作探究面积探究:讨论:如何求棱柱、棱锥、棱台等多面体的表面积?(展开成平面图形,各面面积和) 讨论:如何求圆柱、圆锥、圆台的侧面积及表面积?(图→侧→表)体积探究:讨论:正方体、长方体、圆柱、圆锥的体积计算公式?五)交流展示略(六)精讲精练1. 教学表面积计算公式的推导:① 讨论:如何求棱柱、棱锥、棱台等多面体的表面积?(展开成平面图形,各面面积和)② 练习:1.已知棱长为a ,各面均为等边三角形的正四面体S-ABC 的表面积.(教材P 24页例1)2. 一个三棱柱的底面是正三角形,边长为4,侧棱与底面垂直,侧棱长10,求其表面积.③ 讨论:如何求圆柱、圆锥、圆台的侧面积及表面积?(图→侧→表)圆柱:侧面展开图是矩形,长是圆柱底面圆周长,宽是圆柱的高(母线), S 圆柱侧=2rl π,S 圆柱表=2()r r l π+,其中为r 圆柱底面半径,l 为母线长。
教案:棱柱、棱锥和棱台的表面积和体积
一、教学目标
1.理解棱柱、棱锥和棱台的概念;
2.掌握计算棱柱、棱锥和棱台的表面积和体积的方法;
3.能够应用所学知识解决实际问题。
二、教学内容
1.棱柱的定义及性质;
2.棱锥的定义及性质;
3.棱台的定义及性质;
4.计算棱柱、棱锥和棱台的表面积公式;
5.计算棱柱、棱锥和棱台的体积公式;
6.实际问题应用。
三、教学方法
1.演示法:通过示意图、实物模型等形式展示各种几何体,帮助学生理解概念。
2.讲解法:结合示例,详细讲解计算表面积和体积的公式及步骤。
3.练习法:设计一系列练习题,让学生巩固所学知识。
4.讨论法:引导学生思考并讨论如何应用所学知识解决实际问题。
四、教学过程
第一步:引入
1.利用图片或实物模型展示棱柱、棱锥和棱台,引导学生观察并描述它们的特
点。
2.引导学生思考如何计算这些几何体的表面积和体积。
第二步:讲解概念和性质
1.讲解棱柱的定义:底面为多边形,侧面是连接底面相对顶点的线段。
2.讲解棱锥的定义:底面为多边形,侧面是连接底面顶点与一个点(称为顶点)
的线段。
3.讲解棱台的定义:底面为多边形,顶面为平行于底面的同样形状的多边形,
侧面是连接底面边与顶面相对顶点的线段。
4.通过示意图或实物模型展示各种几何体,并帮助学生理解其性质。
第三步:计算表面积公式
1.计算棱柱表面积:底面积加上所有侧面积之和。
公式为S=2B+Pℎ,其中
B为底面积,P为底边周长,ℎ为高度。
2.计算棱锥表面积:底面积加上侧面积。
公式为S=B+L,其中B为底面
积,L为侧面积。
3.计算棱台表面积:底面积加上顶面积加上所有侧面积之和。
公式为S=
B1+B2+L,其中B1和B2分别为底面和顶面的面积,L为侧面积。
第四步:计算体积公式
1.计算棱柱体积:底面积乘以高度。
公式为V=Bℎ,其中B为底面积,ℎ
为高度。
2.计算棱锥体积:底面积乘以高度再除以3。
公式为V=1
Bℎ,其中B为底
3
面积,ℎ为高度。
3.计算棱台体积:(上底面积加下底面积加平行截面的乘积)乘以高度再除以
(B1+B2+√B1⋅B2)ℎ,其中B1和B2分别为上下底的3。
公式为V=1
3
面积,ℎ为高度。
第五步:解决实际问题
1.提供一些实际问题,要求学生运用所学知识计算表面积和体积。
2.引导学生分析问题,确定解题思路,并进行计算。
3.学生展示解题过程和答案,进行讨论和评价。
第六步:练习巩固
1.设计一系列练习题,包括计算棱柱、棱锥和棱台的表面积和体积。
2.让学生独立完成练习,并互相交流、讨论答案。
3.教师布置作业,要求学生完成剩余的练习题。
五、评价方式
1.观察学生在课堂上的表现,包括对概念的理解、计算公式的运用等;
2.批改作业,评价学生对所学知识的掌握程度;
3.针对解决实际问题的能力进行评估,包括解题思路、计算过程等。