北师大版九年级数学第六章《反比例函数》单元复习练习题(含答案)
- 格式:doc
- 大小:1.06 MB
- 文档页数:15
第六章单元测试卷(时间:100分钟 满分:120分)一、选择题(本大题10小题,每小题3分,共30分) 1. 下列函数中,y 是x 的反比例函数的是(D )A .x(y -1)=1B .y =1x +1C .y =1x 2D .y =3x 2. 图象经过点(2,1)的反比例函数是(B )A .y =-2xB .y =2xC .y =-12xD .y =2x3. 在反比例函数y =m -7x 的图象的每一支上,y 随x 的增大而减小,则m 的取值范围是(A )A .m>7B .m<7C .m =7D .m ≠74. 已知电流I(安培)、电压U(伏特)、电阻R(欧姆)之间的关系为I =UR ,当电压为定值时,I 关于R 的函数图象是(C )5. 一司机驾驶汽车从甲地去乙地,他以平均80千米/小时的速度用了4个小时到达乙地,当他按原路匀速返回时,汽车的速度v 千米/小时与时间t 小时的函数关系式是(B )A .v =320tB .v =320t C .v =20t D .v =20t6. 对于反比例函数y =-3x,下列说法不正确的是(D )A .图象经过点(1,-3)B .图象分布在第二、四象限C .当x >0时,y 随x 的增大而增大D .点A(x 1,y 1),B(x 2,y 2)都在反比例函数y =-3x的图象上,若x 1<x 2,则y 1<y 27. 一次函数y =ax +b 与反比例函数y =a -bx ,其中ab<0,a ,b 为常数,它们在同一坐标系中的图象可以是(C )8. 如图,菱形OABC 的顶点C 的坐标为(3,4),顶点A 在x 轴的正半轴上.反比例函数y =kx (x>0)的图象经过顶点B ,则k 的值为(D )A .12B .20C .24D .32,第8题图) ,第9题图),第10题图)9. 一次函数y 1=kx +b 和反比例函数y 2=mx的图象如图,则使y 1>y 2的x 范围是(B )A .x <-2或x >3B .-2<x <0或x >3C .x <-2或0<x <3D .-2<x <310. 如图,在直角坐标系中,点A 在函数y =4x (x>0)的图象上,AB ⊥x 轴于点B ,AB 的垂直平分线与y 轴交于点C ,与函数y =4x (x>0)的图象交于点D ,连接AC ,CB ,BD ,DA ,则四边形ACBD 的面积等于(C )A .2B .23C .4D .4 3二、填空题(本大题6小题,每小题4分,共24分)11. 若反例函数y =kx 的图象经过点(-1,2),则k 的值是-2.12. 已知反比例函数y =2x,当x<-1时,y 的取值范围为-2<y<0.13. 已知正比例函数y =-2x 与反比例函数y =kx 的图象的一个交点坐标为(-1,2),则另一个交点的坐标为(1,-2).14. 如图,反比例函数y =2x 的图象经过矩形OABC 的边AB 的中点D ,则矩形OABC 的面积为4.,第14题图) ,第15题图),第16题图)15. 如图,直线x =2与反比例函数y =2x ,y =-1x的图象分别交于A ,B 两点,若点P是y 轴上任意一点,则△PAB 的面积是32.16. 某校举行田径运动会,学校准备了某种气球,这些气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P(kPa )是气体体积V(m 3)的反比例函数,其图象如图所示.当气球内的气压大于150 kPa 时,气球会将爆炸,为了安全起见,气体的体积应不小于0.4m 3.三、解答题(一)(本大题3小题,每小题6分,共18分)17. 已知反比例函数的图象与直线y =2x 相交于点A(1,a),求这个反比例函数的表达式.解:将点A(1,a)代入直线y =2x 得a =2×1=2.点A 的坐标为(1,2),代入y =kx 得k=2,∴反比例函数的表达式为y =2x18. 已知反比例函数的图象过点A(-2,3). (1)求这个反比例函数的表达式;(2)这个函数的图象分布在哪些象限?y 随x 的增大如何变化?解:(1)y =-6x (2)分布在第二、四象限,在每个象限内y 随x 的增大而增大19. 如图,一辆汽车从甲地到乙地的行驶时间t(h )与行驶速度v(km /h )的函数关系如图所示,根据图象提供的信息,求:(1)t 与v 之间的函数关系式;(2)若要在3 h 内到达乙地,则汽车的速度应不低于多少?解:(1)t =300v (2)当t =3 h 时,v =100(km /h ).∵t 随v 地增大而减小,∴v ≥100,即汽车的速度应不低于100 km /h四、解答题(二)(本大题3小题,每小题7分,共21分)20. 如图,一次函数y =2x -4的图象与反比例函数y =kx 的图象交于A ,B 两点,且点A的横坐标为3.(1)求反比例函数的表达式; (2)求点B 的坐标.解:(1)把x =3代入y =2x -4得y =6-4=2,则A 的坐标是(3,2).把(3,2)代入y =k x 得k =6,则反比例函数的表达式是y =6x (2)根据题意得2x -4=6x ,解得x =3或x =-1,把x =-1代入y =2x -4得y =-6,则B 的坐标是(-1,-6)21. 已知反比例函数y =kx (k≠0)的图象经过点B(3,2),点B 与点C 关于原点O 对称,BA ⊥x 轴于点A ,CD ⊥x 轴于点D.(1)求这个反比函数的表达式; (2)求△ACD 的面积.解:(1)将B 点坐标代入函数表达式,得k 3=2,解得k =6,反比例函数的表达式为y =6x(2)由B(3,2),点B 与点C 关于原点O 对称,得C(-3,-2).由BA⊥x 轴于点A ,CD ⊥x 轴于点D ,得A(3,0),D(-3,0).S △ACD =12AD·CD=12[3-(-3)]×|-2|=622. 如图,一次函数y =kx +b 的图象与坐标轴分别交于A ,B 两点,与反比例函数y =nx的图象在第一象限的交点为C ,CD ⊥x 轴,垂足为D ,若OB =3,OD =6,△AOB 的面积为3. (1)求一次函数与反比例函数的表达式; (2)直接写出当x>0时,kx +b -nx<0的解集.解:(1)∵S AOB =3,OB =3,∴OA =2,∴B(3,0),A(0,-2),代入y =kx +b 得⎩⎪⎨⎪⎧0=3k +b ,-2=b ,解得k =23,b =-2,∴一次函数的表达式为y =23x -2,∵OD =6,∴D(6,0),CD ⊥x 轴,当x =6时,y =23×6-2=2,∴C(6,2),∴n =6×2=12,∴反比例函数的表达式是y =12x(2)当x>0时,kx +b -nx<0的解集是0<x<6五、解答题(三)(本大题3小题,每小题9分,共27分) 23. 保护生态环境,建设绿色社会已经从理念变为人们的行动,某化工厂1月的利润为200万元.设1月为第1个月,第x 个月的利润为y 万元.由于排污超标,该厂决定从1月底起适当限产,并投入资金进行治污改造,导致月利润明显下降,从1月到5月,y 与x 成反比例,到5月底,治污改造工程顺利完工,从这时起,该厂每月的利润比前一个月增加20万元(如图).(1)分别求该化工厂治污期间及治污改造工程完工后,y 与x 之间的函数关系式; (2)治污改造工程顺利完工后经过几个月,该厂月利润才能达到200万元?(3)当月利润少于100万元时,为该厂资金紧张期,问该厂资金紧张期共有几个月?解:(1)①当1≤x≤5时,y =200x ;②当x>5时,y =20x -60 (2)当y =200时,20x-60=200,解得x =13,13-5=8,所以治污改造工程顺利完工后经过8个月后,该厂利润达到200万元 (3)对于y =200x ,当y =100时,x =2;对于y =20x -60,当y =100时,x =8,所以资金紧张的时间为8-2-1=5(个月)24. 如图,正方形OABC 的面积为9,点O 为坐标原点,点B 在函数y =kx (k >0,x >0)的图象上点P(m ,n)是函数图象上任意一点,过点P 分别作x 轴y 轴的垂线,垂足分别为E ,F.并设矩形OEPF 和正方形OABC 不重合的部分的面积为S.(1)求k 的值;(2)当S =92时,求点P 的坐标;(3)写出S 关于m 的关系式.解:(1)k =9 (2)分两种情况:①当点P 在点B 的左侧时,∵P(m ,n)在函数y =kx 上,∴mn =9,∴S =m(n -3)=mn -3m =92,解得m =32,∴n =6,∴点P 的坐标是P(32,6);②当点P 在点B 的右侧时,∵P(m ,n)在函数y =k x 上,∴mn =9,∴S =n(m -3)=mn -3n =92,解得n =32,∴m =6,∴点P 的坐标是P(6,32),综上所述:P 点坐标为(6,32)或(32,6) (3)当0<m <3时,点P 在点B 的左边,此时S =9-3m ,当m≥3时,点P 在点B 的右边,此时S =9-3n =9-27m25. 如图,一次函数y =kx +b 的图象与反比例函数y =mx (x >0)的图象交于点P(n ,2),与x 轴交于点A(-4,0),与y 轴交于点C ,PB ⊥x 轴于点B ,点A 与点B 关于y 轴对称.(1)求一次函数,反比例函数的表达式; (2)求证:点C 为线段AP 的中点;(3)反比例函数图象上是否存在点D ,使四边形BCPD 为菱形?如果存在,说明理由并求出点D 的坐标;如果不存在,说明理由.解:(1)反比例函数表达式为y =8x ,一次函数表达式为y =14x +1 (2)∵点A 与点B 关于y 轴对称,∴OA =OB ,∵PB ⊥x 轴于点B ,∴∠PBA =∠COA=90°,∴PB ∥CO ,∴OA OB =ACPC =1,即AC =PC ,∴点C 为线段AP 的中点 (3)存在点D ,使四边形BCPD 为菱形.理由:∵点C 为线段AP 的中点,∴BC =12AP =PC ,∴BC 和PC 是菱形的两条边,由y =14x +1可得C(0,1),过点C 作CD∥x 轴,交PB 于点E ,交反比例函数图象于点D ,分别连接PD ,BD ,∴D(8,1),且PB⊥CD,∴PE =BE =1,CE =DE =4,∴PB 与CD 互相垂直平分,即四边形BCPD 为菱形,∴存在满足条件的点D ,其坐标为(8,1)。
一、选择题经过第二、四象限,则直线y=2x+k−1经过的象限是( )1.若双曲线y=k−1xA.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限(k≠0)与y=kx+k(k≠0)的图象大致为( )2.在同一直角坐标系中,函数y=kxA.B.C.D.3.如图,一次函数与反比例函数的图象相交于A,B两点,则图中使反比例函数的值大于一次函数的值的x的取值范围是( )A.x<−1B.x>2C.−1<x<0或x>2D.x<−1或0<x<24.如图,矩形ABCD的对角线BD过原点O,各边分别平行于坐标轴,点C在反比例函数y=3k+1x的图象上,若点A的坐标是(−2,−2),则k的值是( )A.−1B.0C.1D.45.如图,双曲线y=kx 与直线y=−12x交于A,B两点,且A(−2,m),则点B的坐标是( )A.(2,−1)B.(1,−2)C.(12,−1)D.(−1,12)6.已知点A(x1,2),B(x2,4),C(x3,−1)都在反比例函数y=kx(k<0)的图象上,则x1,x2,x3的大小关系是( )A.x3<x1<x2B.x2<x1<x3C.x1<x3<x2D.x1<x2<x37.对于反比例函数y=k2x(k为常数,k≠0),有下列说法:①它的图象分布在第一、三象限;②点(k,k)在它的图象上;③它的图象是中心对称图形;④ y随x的增大而增大.正确的说法是( )A.①③④B.②③④C.①②④D.①②③8.如图,一次函数y=x+1和y=2x与反比例函数y=2x的交点分别为点A,B和C,下列结论中,正确的个数是( )①点A与点B关于原点对称;② OA=OC;③点A的坐标是(1,2);④ △ABC是直角三角形.A.1B.2C.3D.49.如图,点A,B为反比例函数y=kx在第一象限上的两点,AC⊥y轴于点C,BD⊥x轴于点D,若B点的横坐标是A点横坐标的一半,且图中阴影部分的面积为k−2,则k的值为( )A.43B.83C.143D.16310.下列说法正确的是( )A.圆面积公式S=πr2中,S与r成正比例关系B.三角形面积公式S=12aℎ中,当S是常量时,a与ℎ成反比例关系C.y=1x+1中,y与x成反比例关系D.y=x−12中,y与x成正比例关系二、填空题11.过双曲线y=kx(k>0)的动点A作AB⊥x轴于点B,P是直线AB上的点,且满足AP= 2AB,过点P作x轴的平行线交此双曲线于点C.如果△APC的面积为8,则k的值是.12.在平面直角坐标系xOy中,已知直线y=mx(m>0)与双曲线y=4x交于A,C两点(点A在第一象限),直线y=nx(n<0)与双曲线y=−1x交于B,D两点.当这两条直线互相垂直,且四边形ABCD的周长为10√2时,点A的坐标为.13.山西拉面,又叫甩面、扯面、抻面,是西北城乡独具地方风味的面食名吃,为山西四大面食之一,将一定体积的面团做成拉面,面条的总长度y(cm)与粗细(横截面面积)x(cm2)之间的关系如图所示(双曲线的一支),如果将这个面团做成粗为0.16cm2的拉面,则做出来的面条的长度为.14.如图,点M,N是反比例函数y=kx(x<0)图象上的两点,过点M,N分别作MA⊥x轴于点A,NB⊥x轴于点B,连接BM,ON,已知点B(−2,0),AM=2,S△ABM=3,则S△BON=.15.如图,在平面直角坐标系中,点M为x轴正半轴上一点,过点M的直线l∥y轴,且直线l分别与反比例函数y=8x (x>0)和y=kx(x>0)的图象交于P,Q两点,若S△POQ=12,则k的值为.16.如图,已知函数y=2x和函数y=kx(k≠0)的图象交于A,B两点,过点A作AE⊥x轴于点E.若△AOE的面积为4,P是坐标平面上的点,且以点B,O,E,P为顶点的四边形是平行四边形,则满足条件的P点坐标是.的图象经过平行四边形ABCD对角线的交点P,已知点A,C,D在17.如图,反比例函数y=kx坐标轴上,BD⊥DC,平行四边形ABCD的面积为6,则k=.三、解答题(m≠0)的图象交于点18.如图,在平面直角坐标系中,一次函数y=kx+b与反比例函数y=mxA(3,1),且过点B(0,−2)(1) 求反比例函数和一次函数的表达式(2) 如果点P是x轴上一点,且△ABP的面积是3,求点P的坐标.(x>0)的图象上有一点A(m,4),过点A作19.如图,在平面直角坐标系中,反比例函数y=kxAB⊥x轴于点B,将点B向右平移2个单位长度得到点C,过点C作y轴的平行线交反比.例函数的图象于点D,CD=43(1) 点D的横坐标为.(用含m的式子表示);(2) 求反比例函数的解析式.(x>0)的20.如图,一次函数y1=kx+2的图象与x轴交于点B(−2,0),与反比例函数y2=mx 图象交于点A(1,a).(1) 求m的值.(2) 点C为x轴上一动点.若△ABC的面积是6,请直接写出点C的坐标.21.如图,已知反比例函数y=mx(x>0)的图象经过点A(4,2),过A作AC⊥y轴于点C.点B 为反比例函数图象上的一动点,过点B作BD⊥x轴于点D,连接AD.直线BC与x轴的负半轴交于点E.(1) 若BD=3OC,求△BDE的面积;(2) 是否存在点B,使得四边形ACED为平行四边形?若存在,请求出点B的坐标;若不存在,请说明理由.22.一个长方形的宽为x cm,长为y cm,面积为24cm2.(1) 求y与x之间的函数关系式.(2) 当x=8时,长方形的长为多少cm.23.如图,反比例函数y1=kx 的图象与一次函数y2=14x的图象交于点A,B,点B的横坐标实数4,点P(1,m)在反比例函数y1=kx的图象上.(1) 求反比例函数的表达式;(2) 观察图象回答:当为何范围时,y1>y2;(3) 求△PAB的面积.24.在平面直角坐标系xOy中,直线y=x+2与双曲线y=k相交于点A(m,3).x(1) 求反比例函数的表达式;(2) 画出直线和双曲线的示意图;(3) 若P是坐标轴上一点,当OA=PA时.直接写出点P的坐标.25.已知A=2(−a2+5+4ab)+(5ab−4+2a2).(1) 化简A;的图象上,求A的值.(2) 若点(a,b)在反比例函数y=3x答案一、选择题1. 【答案】C【解析】∵双曲线y=k−1x经过第二、四象限,∴k−1<0,则直线y=2x+k−1一定经过一、三、四象限.【知识点】k,b对一次函数图象及性质的影响、k对反比例函数的图象及性质的影响2. 【答案】C【知识点】k对反比例函数的图象及性质的影响3. 【答案】C【解析】∵点A的坐标为(−1,2),点B的坐标为(2,−1),∴当−1<x<0或x>2时,反比例函数图象在一次函数图象上方,∴图中使反比例函数的值大于一次函数的值的x的取值范围是−1<x<0或x>2.故选:C.【知识点】反比例函数与方程、不等式4. 【答案】C【解析】∵矩形ABCD的对角线BD过原点O,BO为四边形BGOE的对角线,OD为四边形OHDF的对角线,∴S△BEO=S△BGO,S△OFD=S△OHD,S△CBD=S△ADB,∴S△CBD−S△BGO−S△OHD=S△ADB−S△BEO−S△OFD,∴S四边形CHOG =S四边形AEOF=2×2=4,∴3k+1=4,即k=1.【知识点】反比例函数系数k的几何意义、矩形的性质、反比例函数的解析式5. 【答案】A【解析】当x=−2时,y=−12×(−2)=1,即A(−2,1),将A点坐标代入y=kx,得k=−2×1=−2,反比例函数的解析式为y=−2x,联立双曲线、直线,得{y=−2x,y=−12x,解得 {x 1=−2,y 1=1, {x 2=2,y 2=−1,B (2,−1).【知识点】反比例函数与方程、不等式、反比例函数的解析式6. 【答案】D【解析】 ∵ 反比例函数 y =kx (k <0),如图,∴ 反比例函数图象位于第二、四象限,且在每一个象限 y 随 x 的增大而增大, ∵ 点 A (x 1,2),B (x 2,4),C (x 3,−1) 都在反比例函数 y =kx (k <0) 的图象上, ∴x 1<x 2<x 3.【知识点】k 对反比例函数的图象及性质的影响7. 【答案】D【解析】 ∵k 2>0,∴ ①它的图象分布在第一、三象限,正确; ② x =k 时,y =k 2k=k ,∴ 点 (k,k ) 在它的图象上,正确; ③它的图象是中心对称图形,正确;④应为:在每一个象限内,y 随 x 的增大而增大,错误. ∴ ①②③正确. 故选:D .【知识点】反比例函数的增减性、k 对反比例函数的图象及性质的影响、反比例函数的对称性8. 【答案】D【知识点】勾股逆定理、反比例函数与方程、不等式、一次函数与二元一次方程(组)的关系9. 【答案】B【解析】设 B (t,kt).∵AC ⊥y 轴于点 C ,BD ⊥x 轴于点 D ,B 点的横坐标是 A 点横坐标的一半, ∴AC =2CE =2t , ∴A (2t,k2t ),∴BD=2OC=2BE,在△OCM和△BEM中,{∠OCM=∠MEB,∠CMO=∠EMB, OC=BE,∴△OCM≌△BEM,∴CM=EM=12t,同理可证:△ODN≌△AEN,∴EN=DN=k4t,∴阴影部分的面积=12ME×BE+12NE×AE=12×t2×k2t+12×t×k4t=k−2.解得:k=83.【知识点】反比例函数的解析式10. 【答案】B【知识点】反比例函数的概念二、填空题11. 【答案】12或4【解析】(1)如图:设点A的坐标为:(a,ka ),则点P的坐标为:(a,3ka),点C的纵坐标为:3ka ,代入反比例函数y=kx(k>0),点C的横坐标为:a3,S△APC=12(3ka−ka)×(a−a3)=8,解得:k=12.(2)如图:设点A的坐标为:(a,ka ),则点P的坐标为:(a,−ka),点C的纵坐标为:AC∩AE=A,代入反比例函数y=kx(k>0),点C的横坐标为:−a,S△APC=12×2ka×2a=8,解得:k=4.【知识点】反比例函数的解析式12. 【答案】(√2,2√2)或(2√2,√2)【知识点】反比例函数与方程、不等式、一次函数图象的垂直问题13. 【答案】800cm【解析】设y与x的函数关系式为y=kx(k≠0),将(0.04,3200)代入得k=xy=0.04×3200=128,∴y=128x(x>0),当x=0.16时,y=1280.16=800.【知识点】反比例函数的应用14. 【答案】5【解析】∵MA⊥x轴于点A,AM=2,∴S△ABM=12AB⋅AM=3,即AB=3.∵B(−2,0),即OB=2,∴OA=OB+AB=2+3=5,∴M(−5,2),代入反比例解析式得:k=−5×2=−10,即y=−10x ,则S△BON=12∣k∣=5.【知识点】反比例函数系数k的几何意义、反比例函数的图象与性质15. 【答案】−16【解析】∵S△POQ=S△OMQ+S△OMP,∴12∣k∣+12×∣8∣=12,∴∣k∣=16,而k<0,∴k=−16.【知识点】反比例函数系数k的几何意义16. 【答案】(0,−4)或(−4,−4)或(4,4)【解析】∵AE⊥x轴于点E,△AOE的面积为4,∴k=8,∴函数y=2x和函数y=8x的图象交于A,B两点,令2x=8x,解得x=±2,当x=2时,y=4,当x=−2时,y=−4,∴A(2,4),B(−2,−4),∴E(2,0).如图,以点B,O,E,P为顶点的平行四边形共有3个,满足条件的P点坐标分别为P1(0,−4),P2(−4,−4),P3(4,4).【知识点】平行四边形及其性质、反比例函数与方程、不等式、反比例函数系数k的几何意义17. 【答案】−3【解析】过点P作PE⊥y轴于点E,∵四边形ABCD为平行四边形,∴AB=CD,又∵BD⊥x轴,∴ABDO为矩形,∴AB=DO,∴S矩ABDO =S平行四边形ABCD=6,∵P为对角线交点,PE⊥y轴,∴四边形PDOE为矩形,面积为3,即DO⋅EO=3,∴设P点坐标为(x,y),∴k=xy=−3.【知识点】反比例函数系数k 的几何意义、平行四边形及其性质、矩形的判定三、解答题 18. 【答案】(1) 因为反比例函数 y =m x(m ≠0) 的图象过点 A (3,1),所以 1=m3,所以 m =3.所以反比例函数的表达式为 y =3x .因为一次函数 y =kx +b 的图象过点 A (3,1) 和 B (0,−2). 所以 {3k +b =1,b =−2.解得 {k =1,b =−2.所以一次函数的表达式为 y =x −2. (2) 令 y =0,所以 x −2=0,x =2,所以一次函数 y =x −2 的图象与 x 轴的交点 C 的坐标为 (2,0). 因为 S △ABP =3,12PC ⋅1+12PC ⋅2=3. 所以 PC =2,所以点 P 的坐标为 (0,0) 或 (4,0).【知识点】反比例函数的解析式、一次函数的解析式、三角形的面积19. 【答案】(1) m +2 (2) 因为 CD =43 ,所以点 D 的坐标为 (m +2,43).因为点 A (m,4),点 D (m +2,43) 在函数 y =kx 的图象上, 所以 4m =43(m +2),所以m=1,所以k=4m=4×1=4,所以反比例函数的解析式为y=4x.【知识点】反比例函数的解析式、坐标平面内图形的平移变换20. 【答案】(1) ∵一次函数y1=kx+2的图象与x轴交于点B(−2,0),∴−2k+2=0,∴k=1,∴y1=x+2,∵一次函数y1=kx+2的图象与反比例函数y2=mx(x>0)的图象交于点A(1,a),∴a=1+2=3.把A(1,3)代入y2=mx,得m=3.(2) (2,0)或(−6,0).【解析】(2) 设C点坐标为(t,0),∵B点坐标为(−2,0),∴BC=∣t+2∣,∴S△ABC=12BC⋅∣y A∣=12∣t+2∣×3=6,∴∣t+2∣=4,∴t=2或t=−6,∴C点坐标为(2,0)或(−6,0).【知识点】反比例函数的解析式、坐标平面内图形的面积21. 【答案】(1) ∵反比例函数y=mx(x>0)的图象经过点A(4,2),∴m=8,∴反比例函数y=8x(x>0).∵AC⊥y轴,A(4,2),∴OC=2,∵BD=3OC,∴BD=6,∵BD⊥x轴,∴B(43,6),∵C(0,2),设直线BC的解析式为y=kx+b,则有{b=2,43k+b=6,解得{k=3,b=2,∴直线BC的解析式为y=3x+2,∴E(−23,0),∴DE=23+43=2,∴S△BED=12×DE×BD=6.(2) 存在.如图,设BD交AC于F.设B(a,8a),∵A(4,2),∴AC=4.∵四边形ACED是平行四边形,∴DE=AC=4,且CF∥DE,∴△BCF∽△BED,∴CFDE =BFBD,即a4=8a−28a,解得a=2,∴B(2,4).【知识点】反比例函数的解析式、两角分别相等、反比例函数与四边形综合22. 【答案】(1) 由题意可知:y=24x(x>0).(2) 当x=8时,y=248=3.【知识点】反比例函数的应用、简单的代数式求值23. 【答案】(1) 将x=4代入y2=14x得:y=1,所以B(4,1).所以k=xy=4×1=4,所以反比例函数的表达式为y=4x.(2) 由正比例函数和反比例函数的对称性可知点A的横坐标为−4.所以反比例函数图象位于正比例函数图象上方, 所以 x <−4 或 0<x <4.(3) 过点 A 作 AR ⊥y 轴于 R ,过点 P 作 PS ⊥y 轴于 S ,连接 PO ,设 AP 与 y 轴交于点 C ,如图,因为点 A 与点 B 关于原点对称, 所以 OA =OB , 所以 S △MOP =S △BOP , 所以 S △PAB =2S △AOP .y 1=4x 中,当 x =1 时,y =4,所以 P (1,4).设直线 AP 的函数关系式为 y =mx +n , 把点 A (−4,−1),P (1,4) 代入 y =mx +n , 则 {−4m +n =−1,m +n =4,解得 m =1,n =3.故直线 AP 的函数关系式为 y =x +3, 则点 C 的坐标 (0,3),OC =3,所以 S △AOP =S △AOC +S △POC =12OC ⋅AR +12OC ⋅PS =12×3×4+12×3×1=152,所以 S △PAB =2S △AOP =15.【知识点】反比例函数与一次函数综合、反比例函数与三角形综合、反比例函数与方程、不等式24. 【答案】(1) ∵ 直线 y =x +2 与双曲线 y =kx 相交于点 A (m,3). ∴3=m +2,解得 m =1. ∴A (1,3).把 A (1,3) 代入 y =kx 解得 k =3, ∴y =3x .(2) 如图.(3) P (0,6) 或 P (2,0).【知识点】k 对反比例函数的图象及性质的影响、反比例函数的解析式、勾股定理25. 【答案】(1) 原式=−2a 2+10+8ab +5ab −4+2a 2=13ab +6; (2) ∵ 点 (a,b ) 在反比例函数 y =3x ,∴A=13ab+6=13×3+6=45.【知识点】反比例函数的解析式、整式的加减运算。
第六章反比例函数单元测试北师大版2024—2025学年秋季九年级上册秋季考生注意:本试卷共三道大题,23道小题,满分120分,时量120分钟注意事项:1.本试卷分第I卷(选择题)和第II卷(非选择题)两部分。
笞卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第I卷时,选出每小题答案后,把答案填写在答题卡上对应题目的位置,填空题填写在答题卡相应的位置写在本试卷上无效。
3.回答第II卷时,将答案写在第II卷答题卡上。
4.考试结束后,将本试卷和答题卡一并交回。
第I卷一、选择题(每题只有一个正确选项,每小题3分,满分36分)1.反比例函数y=﹣的图象一定经过的点是()A.(1,10)B.(﹣2,5)C.(2,5)D.(2,8)2.关于反比例函数y=﹣的图象,下列说法正确的是()A.y随着x的增大而减小B.图象分布在一、三象限C.当x>﹣2时,y>3D.若(﹣a,b)在该图象上,则(a,﹣b)也在该图象上3.若点A(1,a),B(﹣2,b),C(2,c)在反比例函数的图象上,则a,b,c的大小关系是()A.c>b>a B.b>a>c C.a>c>b D.b>c>a4.如图,反比例函数的图象过矩形OABC的顶点B,OA,OC分别在x 轴,y轴的正半轴上,若点A(2,0),点C(0,4),则k的值为()A.8B.6C.﹣8D.﹣65.已知正比例函数y1=﹣2x与反比例函数.对于实数m,当x=m时,y1>y2;当x=m+1时,y1<y2,则m的取值范围为()A.m<﹣2或0<m<2B.﹣2<m<2C.﹣3<m<﹣2或1<m<2D.﹣2<m<0或m>26.如图,点A是反比例函数在第二象限内图象上一点,点B是反比例函数在第一象限内图象上一点,直线AB与y轴交于点C,且AC=BC,连接OA、OB,则△AOB的面积是()A.2B.2.5C.3D.3.5 7.如图,点P(﹣2a,a)是反比例函数y=的图象与⊙O的一个交点,图中阴影部分的面积为10π,则该反比例函数的表达式为()A.y=﹣B.y=﹣C.y=﹣D.y=﹣8.两个反比例函数C1:和C2:在第一象限内的图象如图所示,设点P在C1上,PC⊥x轴于点C,交C2于点A,PD⊥y轴于点D,交C2于点B,则四边形P AOB的面积为()A.1B.2C.3D.49.在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标(0,2),顶点B恰好落在第一象限的双曲线上,则该反比例函数的解析式为()A.B.C.D.10.如图,A是反比例函数y=图象上一点,且A点的横坐标为a(a >0).P是y轴负半轴上一点,且P点的纵坐标为b.连结AP,延长AP至点B,使得BP=AP,且点B恰好落在反比例函数y=(k>0,x<0)的图象上.已知ab=﹣2,则k的值为()A.2B.4C.6D.8二.填空题(6小题,每题3分,共18分)11.若y=(m﹣3)x|m|﹣4是反比例函数,则m的值是.12.如图所示,由反比例函数的对称性可知,点P关于原点的对称点Q也在图象y=上.作P A⊥x轴于点A,QC⊥P A交延长线于点C,则△PQC的面积为.(用含k的式子表示)13.若反比例函数的图象的一个分支在第二象限,则m的取值范围是.14.若反比例函数y1=,y2=﹣,当1≤x≤3时,函数y1的最大值是a,函数y2的最大值是b,则a b=.15.如图,反比例函数y=(x<0)的图象经过平行四边形ABCO的顶点A,OC在x轴上,若点B(﹣1,3),S▱ABCO=3,则实数k的值为.16.如图,矩形OABC顶点A、C分别在x、y轴上,双曲线分别交BC、AB 于点D、E,连接DE并延长交x轴于点F,连接AC.下列结论:①DE∥CA;②S四边形ACDF=k;③若BD=2CD,则AE=2BE;④若点E为DF的中点,且S△AEF=3,则k=12;其中正确的有.(填写所有正确结论的序号)第II卷第六章反比例函数单元测试北师大版2024—2025学年秋季九年级上册秋季姓名:____________ 学号:____________准考证号:___________一、选择题12345678910题号答案二、填空题11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17—22题每题10分,23题10分,共计72分,解答题要有必要的文字说明)17.已知y=y1+y2,其中y1与x2成正比例,y2与x成反比例,并且当x=时y=5,当x=1时y=﹣1,求y与x之间的函数关系式.18.如图,一次函数y=kx+b的图象与反比例函数y=的图象交于点A(﹣3,n),B(2,3).(1)求反比例函数与一次函数的函数表达式;(2)请结合图象直接写出不等式kx+b≥的解集;(3)若点P为x轴上一点,△ABP的面积为10,直接写出点P的坐标.19.平面直角坐标系中,A(x1,y1),B(x2,y2),C(x3,y3)是反比例函数图象上的三点,且x1+x2=0.(1)若x1y2=﹣2,求k的值;(2)若x1=y3,求证:x3+y2=0.20.在平面直角坐标系中,已知A(t,0),B(0,﹣t),C(t,2t)三点,其中t>0,双曲线y=分别与线段BC,AC交于点D,E.(1)当t=1时,求点D的坐标;(2)当S△ABE=时,求△ADE的面积;(3)若S△DAB﹣S△BDE=,求t的值.21.如图,A为反比例函数y=(其中x>0)图象上的一点,在x轴正半轴上有一点B,OB=4.连接OA,AB,且OA=AB=2.(1)求k的值;(2)过点B作BC⊥OB,交反比例函数y=(其中x>0)的图象于点C,连接OC交AB于点D,求的值.22.如图,一次函数y=﹣x+的图象与反比例函数y=(k>0)的图象交于A,B两点,过点A作x轴的垂线,垂足为M,△AOM面积为1.(1)求反比例函数的解析式;(2)在x轴上求一点P,使|P A﹣PB|的值最大,并求出其最大值和P点坐标.23.如图,点M、N是反比例函数的图象上的两个动点,过点M作MP⊥y轴、过点N作NQ⊥x轴,分别交反比例函数的图象于点P、Q,连接PN、QM.设点M的横坐标为m(m>0),点N的横坐标为n(n<0).(1)若m=3,求MP的长;(2)若MP=NQ,求mn的值;(3)①求△MNP的面积(用含m、n的代数式表示);②点P、Q到直线MN的距离是否相等?并说明理由.。
北师大版九年级数学第六单元《反比例函数》单元练习题(含答案)一、单选题1.如图,正比例函数y x =和反比例函数(0)k y k x =≠的图象在第一象限交于点,A 且2,OA =则k 的值为 ( )A .22B .1C .2D .22.在下列函数中,y 是x 的反比例函数的是( )A .y =3xB .y =3xC .y =3xD .y =31x - 3.在同一平面直角坐标系中,函数()10y kx k =-+≠的图象和()0k y k x=≠的图象大致是( ) A .B .C . D .4.已知某用电器的输出功率为P 、电阻为R ,通过的电流为I ,当P 为定值时,下面说法正确的是( )A .I 是R 的正比例函数B .2I 是R 的正比例函数C .I 是R 的反比例函数D .2I 是R 的反比例函数 5.如图所示,直线y 1=﹣43x 与双曲线y =k x交于A ,B 两点,点C 在x 轴上,连接AC ,BC .当AC ⊥BC ,S △ABC =15时,求k 的值为( )A .﹣10B .﹣9C .6D .46.若点1(3,)A y -,2(2,)B y -,3(1,)C y 都在反比例函数12y x =-的图象上,则1y ,2y ,3y 的大小关系是( ) A .213y y y << B .312y y y << C .123y y y << D .321y y y <<7.如图,A 为反比例函数y =k x图象上一点,AB ⊥x 轴与点B ,若S △AOB =2,则k 为( )A .4B .2C .1D .无法确定8.在同一平面直角坐标系中,函数y=kx (k>0)与k y x=(k>0)的图象可能是( ) A . B . C . D .9.关于函数2y x=,下列判断正确的是( ) A .当x 增大时,y 减小; B .该函数的图象在第二、四象限C .该函数的图象是抛物线D .若点()a b ,在该函数的图象上,则点()b a ,也在该函数的图象上10.如图,Rt AOB ∆中,90OAB ∠=︒,6OA =,OA 在x 轴的正半轴,OB ,AB 分别与双曲线1k y x =()10k ≠,21k y x=()20k ≠相交于点C 和点D ,且:1:2BC CO =,若//CD OA ,则点E 的横坐标为( )A .4B .3C .83D .2611.如图,直线y=﹣x+2与x 轴交于点A ,与y 轴交于点B ,与反比例函数(x<0)的图象交于点C ,点D(3,a)在直线y=﹣x+2上,连接OD ,OC ,若∠COD=135°,则k 的值为( )A .﹣2B .﹣4C .﹣6D .﹣812.已知一个反比例函数的图像经过点A (3,﹣4),那么不在这个函数图像上的点是( )A .(﹣3,﹣4)B .(﹣3,4)C .(2,﹣6)D .(22,﹣122)二、填空题13.如图,矩形OABC 的对角线OB ,CA 交于点D ,OA =1,∠ODA =60°.双曲线y =经过点B ,则k =_____.14.直线y =ax(a >0)与双曲线y =3x交于A(x 1,y 1),B(x 2,y 2)两点.则4x 1y 2-3x 2y 1=____. 15.如图,已知点A 在反比例函数(0)k y k x =≠的图象上,过点A 作AB y ⊥轴于点B ,OAB 的面积是2.则k 的值是_________.16.如果反比例函数kyx=(k是常数,k≠0)的图象经过点(-1,2),那么这个反比例函数的图象在第______象限.17.如图,点A,B是双曲线上的点,分别过点A,B作轴和轴的垂线段,若图中阴影部分的面积为2,则两个空白矩形面积的和为____________.18.如图,点A是反比例函数y=-2的图象第二象限分支上的动点,连结AO并延长交另一支于点B,以AB为斜边作等腰直角三角形ABC,顶点C在第三象限,AC与x轴交于点D,连结BD.当BD平分∠ABC时,点C的坐标是___.19.如图,反比例函数3(0)y xx=>的图像与矩形ABCO的边AB交于点G,与边BC交于点D,过点A,D作DE//AF,交直线y = kx (k < 0)于点E,F,若OE=OF,BG=3GA,则四边形ADEF 的面积为_____;20.如图,点P 在反比例函数图象上,PA 垂直y 轴于点A ,点B 为x 轴上任意一点,且PAB 的面积为2,则这个反比例函数的解析式为______.三、解答题21.如图,在平面直角坐标系中,一次函数1y k x b =+的图像与反比例函数2k y x=的图像交与A (4,-2),B (-2,n )两点,与x 轴交与点C .(1)求2k ,n 的值;(2)请直接写出不等式21k k x b x+<的解集; (3)点A 关于x 轴对称得到点A ’,连接A ’B ,A ’C ,求△A ’BC 的面积.22.如图,一次函数y=kx+b 与反比例函数y k x'=(x>0)的图象交于点A(a ,3)和B(3,1). (1)求一次函数的解析式.(2)观察图象,写出反比例函数值小于一次函数值时x的取值范围.(3)点P是线段AB上一点,过点P作PD⊥x轴于点D,交反比例函数图象于点Q,连接OP、OQ,若△POQ的面积为12,求P点的坐标。
可编辑修改精选全文完整版九年级数学上册第六章《反比例函数》测试卷-北师大版(含答案)(满分 120 分)一、选择题(每题3分,共30分) 1.下列函数中,是反比例函数的是( )A. y = -2xB. y =-12xC. y =11x- D. y =21x2.已知点 P (-1,4)在反比例函数y = kx(k =0)的图象上,则K 值是( ) A. -14B.14 C. 4 D. -4 3.下列各点中,在函数y = -6x图象上的是( )A. (-2,-4)B.(2,3)C.(-1,6)D.(-12,3)4.反比例函数y =5m x-的图象在第二、四象限内,那么m 的取值范围是( ) A. m <0B. m >0C.m >5D. m <55. 函数4y=-x,当x >0时的图象为下图中的( )6.已知点(1,y 1),B (2,y 2),C (-3,y 3)都在反比例函数y =6x 的图象上,则y 1,y 2 ,y 3;的大小关系是( ) A. y 3<y 1 <y 2; B. y 1<y 2<y 3; C. y 2,y 1,y 3; D. y 3<y 2<y 1;7.关于反比例函数y = 4x的图象,下列说法正确的是( ) A.必经过点(1,1)B.两个分支分布在第二、四象限C.两个分支关于x轴成轴对称D.两个分支关于原点成中心对称8.三角形的面积为4 c m²,底边上的高y(c m)与底边x(c m)之间的函数关系图象大致应为()9. 函数y= ax与y=αx-a(a≠0)在同一坐标系中的大致图象是()10.如图,函数y1=x-1和函数y2=-2x的图象相交于点M(2,m),N(-1,n),若y1<y2,则x的取值范围是()A.x<-1或0<x<2B.x<-1或x>2C.-1<x<0或0<x<2D.-1<x<0或x>2二、填空题(每题4分,共28分)11.反比例函数y=- 1x的图象在第__________象限,在每个象限内,y随x的增大而________ .12. 反比例函数y= kx过A(-1,4)和B(2,m)两点,则m= ___________________.13.对于函数y= 3x,当x>0时y__________0,这部分图象在第_____________象限.14.完成某项任务可获得500 元报酬,考虑由x人完成这项任务,试写出人均报酬y(元)与人数x(人)之间的函数关系式_________________________________.15.若点P(1,m),P,(2,n)在反比例函数y=kx(k<0)的图象上,则m_____n(填">""<"或"=").16.如图,已知点A在反比例函数图象上,A M⊥x轴于点M,且⊥AO M的面积为1,则反比例函数的解析式为______________________.17.如图,一次函数y= kx+b与反比例函数y=mx的图象交于A(2,1),B(-1,n)两点.连接OA,OB,则三角形OAB 的面积为____________.三、解答题(一)(每题6分,共18 分)18.某打印店要完成一批电脑打字任务,如果每天完成100 页,需8天完成任务.(1)每天完成的页数y与所需天数x之间是什么函数关系?(2)要求4天完成,每天应完成几页?19.已知反比例函数y =kx(k为常数,k≠0)的图象经过A(2,3).(1)求这个函数的解析式;(2)判断点B(-1,6)是否在这个函数的图象上,并说明理由.20.如图,反比例函数y =kx(k为常数,且k≠0)经过点A(1,3).(1)求反比例函数的解析式;(2)在x轴正半轴上有一点B,若⊥AOB 的面积为6,求直线AB的解析式.四、解答题(二)(每题8 分,共24 分)21.码头工人以每天30 吨的速度往一艘轮船上装载货物,装载完毕恰好用了8 天时间.(1)轮船到达目的地后开始卸货,卸货速度ν(单位:吨/天)与卸货时间t(单位:天)之间有怎样的函数关系?(2)由于遇到紧急情况,船上的货物必须在不超过5天内卸载完毕,那么平均每天至少要卸多少吨货物?22.如图,已知A (-4,2),B (n ,-4)是一次函数y =kx +b 的图象与反比例函数y =mx的图象的两个交点. (1)求此反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值小于反比例函数的值的x 的取值范围.23.如图,已知在平面直角坐标系x O y 中,0是坐标原点,点A (2,5)在反比例函数y =kx的图象上,过点A 的直线y =x +b 交x 轴于点 B. (1)求k 和b 的值; (2)求⊥OAB 的面积;(3)当-3≤x ≤-1时,反比例函数值的范围为_________________.五、解答题(三)(每题10 分,共 20 分) 24.一次函数y =k 1x +b 与反比例函数y =2k x(x <0)的图象相交于A ,B 两点,且与坐标轴的交点为(-6,0),(0,6),点B 的横坐标为-4.(1)试确定反比例函数的解析式; (2)求⊥AOB 的面积; (3)直接写出不等式后k 1x +b>2k x的解.25.对教室进行"薰药消毒".已知药物在燃烧释放过程中,室内空气中每立方米含药量y (毫克)与燃烧时间x (分钟)之间的关系如图所示(即图中线段 OA 和双曲线在 A 点及其右侧的部分),根据图象所示信息,解答下列问题: (1)写出从药物释放开始,y 与x 之间的函数关系式及自变量的取值范围; (2)据测定,当空气中每立方米的含药量低于 2 毫克时,对人体无毒害作用,那么从消毒开始,至少在多长时间内,师生不能进入教室?参考答案一、1.B 2.D 3.C 4.D 5.B 6.D 7.D 8.B 9.A 10. A 二、11.二、四 增大 12. -2 13. > 一 14.500y x= 15. <16. y =-2x 17. 32三、18.解:(1)800y x=,反比例函数 (2)当x =4,800y x== 200(页) 19.解:(1) 6y x= (2)不在,理由如下: 当x = -1,61y =-= -6≠6 ⊥点B(-1,6)不在y =6x 的图象上。
第六章 反比例函数6.1 反比例函数基础题知识点1 反比例函数的概念1.下列函数是反比例函数的是( )A .y =xB .y =kx -1C .y =-8xD .y =8x22.反比例函数y =-25x 中,k 的值是( )A .2B .-2C .-25D .-523.若函数y =x 2m +1为反比例函数,则m 的值是( )A .1B .0 C.12D .-14.在函数y =1x -1中,自变量x 的取值范围是( )A .x ≠1B .x ≠0C .x<1D .一切实数5.若y =m (m -3)x是反比例函数,则满足的条件是( )A .m ≠0B .m =3C .m =0或m =3D .m ≠0且m≠3知识点2 判断反比例函数关系6.如果直角三角形的面积一定,那么下列关于这个直角三角形边的关系中,正确的是( ) A .两条直角边成正比例 B .两条直角边成反比例C .一条直角边与斜边成正比例D .一条直角边与斜边成反比例7.用电器的输出功率P 与通过的电流I 、用电器的电阻R 之间的关系是P =I 2R ,下面说法正确的是( ) A .P 为定值,I 与R 成反比例B .P 为定值,I 2与R 成反比例 C .P 为定值,I 与R 成正比例D .P 为定值,I 2与R 成正比例8.下列问题中,两个变量间的函数关系式是反比例函数的是( ) A .小颖每分钟可以制作2朵花,x 分钟可以制作y 朵花B .体积为10 cm 3的长方体,高为h cm ,底面积为S cm 2C .用一根长50 cm 的铁丝弯成一个矩形,一边长为x cm ,面积为S cm 2D .汽车油箱中共有油50升,设平均每天用油5升,x 天后油箱中剩下的油量为y 升知识点3 建立反比例函数模型9.小华以每分钟x 个字的速度书写,y 分钟写了300个字,则y 与x 的函数关系式为( ) A .y =x 300 B .y =300xC .y =300-xD .y =300-xx10.近视眼镜的度数y(度)与镜片焦距x(m)成反比例,已知400度近视眼镜镜片的焦距为0.25 m ,则y 与x 的函数关系式为( )A .y =400xB .y =14xC .y =100xD .y =1400x11.若y 与x 成反比例,且x =3时,y =7,则y 与x 的函数关系式为________.12.计划修建铁路1 200 km ,试写出铺轨天数y(d)与每天铺轨量x(km/d)之间的函数关系式,并判断该函数是否是反比例函数.中档题13.已知y 与x 成正比例,z 与y 成反比例,那么z 与x 之间的关系是( ) A .成正比例 B .成反比例C .有可能成正比例,也有可能成反比例D .无法确定14.已知函数y =(n +2)xn 2+n -3(n 是常数),当n =________时,此函数是反比例函数. 15.列出下列问题中的函数关系式,并判断它们是否为反比例函数.(1)某农场的粮食总产量为1 500 t ,则该农场人数y(人)与平均每人占有粮食量x(t)的函数关系式;(2)在加油站,加油机显示器上显示的某一种油的单价为每升4.75元,总价从0元开始随着加油量的变化而变化,则总价y(元)与加油量x(L)的函数关系式;(3)小明完成100 m 赛跑时,时间t(s)与他跑步的平均速度v(m/s)之间的函数关系式.16.已知函数y 与x +1成反比例,且当x =-3时,y =2. (1)求y 与x 的函数关系式;(2)当x =3时,求y 的值.17.已知函数y=(5m-3)x2-n+(n+m).(1)当m,n为何值时,为一次函数?(2)当m,n为何值时,为正比例函数?(3)当m,n为何值时,为反比例函数?综合题18.(丽水中考)如图,科技小组准备用材料围建一个面积为60 m2的矩形科技园ABCD,其中一边AB靠墙,墙长为12 m.设AD的长为x m,DC的长为y m.(1)求y与x之间的函数关系式;(2)若围成矩形科技园ABCD的三边材料总长不超过26 m,材料AD和DC的长都是整米数,求出满足条件的所有围建方案.参考答案1.C 2.C 3.D 4.A 5.D 6.B 7.B 8.B 9.B 10.C 11.y =21x 12.∵铺轨天数=铁路长÷每天铺轨量,∴y=1 200x .∴y 是x 的反比例函数. 13.B 14.1 15.(1)y =1 500x,是反比例函数.(2)y =4.75x ,不是反比例函数.(3)t =100v ,是反比例函数. 16.(1)由题意,设y 与x +1的函数关系式为y =k x +1(k≠0),将x =-3,y =2代入,得k -3+1=2.解得k =-4.所以y 与x 的函数关系式为y =-4x +1.(2)将x =3代入,得y =-43+1=-1. 17.(1)由题意,得2-n =1,且5m -3≠0,解得n =1且m≠35.(2)由题意,得2-n =1,5m -3≠0,且m +n =0,解得n =1,m =-1.(3)由题意,得2-n =-1,5m -3≠0,且m +n =0,解得n =3,m =-3. 18.(1)由题意,得S矩形ABCD=AD·DC=xy ,故y =60x .(2)由y =60x ,且x ,y 都是正整数,可得x 可取1,2,3,4,5,6,10,12,15,20,30,60.∵2x +y≤26,0<y≤12,∴符合条件的围建方案为AD =5 m ,DC =12 m 或AD =6 m ,DC =10 m 或AD =10 m ,DC=6 m.第2课时 反比例函数的性质基础题知识点1 反比例函数图象的增减性1.反比例函数y =1x(x >0)的图象如图所示,随着x 值的增大,y 值( )A .减小B .增大C .不变D .先减小,后不变2.(随州中考)关于反比例函数y =2x 的图象,下列说法正确的是( )A .图象经过点(1,1)B .两个分支分布在第二、四象限C .两个分支关于x 轴成轴对称D .当x <0时,y 随x 的增大而减小3.(宁夏中考)已知两点P 1(x 1,y 1),P 2(x 2,y 2)在函数y =5x 的图象上,当x 1>x 2>0时,下列结论正确的是( )A .0<y 1<y 2B .0<y 2<y 1C .y 1<y 2<0D .y 2<y 1<04.(永州中考)已知点A(1,y 1),B(-2,y 2)在反比例函数y =kx (k >0)的图象上,则y 1_______y 2.(填“>”“<”或“=”)5.(上海中考)已知反比例函数y =kx (k 是常数,k ≠0),在其图象所在的每一个象限内,y 的值随着x 的值的增大而增大,那么这个反比例函数的表达式是________________(只需写一个).6.已知下列反比例函数:①y=1x ;②y=-1x ;③y=12x ;④y =1-2x ;⑤y=k 2+1x ,在其图象所在的每个象限内,y 随x 的值的增大而增大的函数有______________(填序号). 7.反比例函数y =(2m -1)xm 2-2,当x >0时,y 随x 的增大而增大,求m 的值.知识点2 反比例函数中k 的几何意义8.(宜昌中考)如图,点B 在反比例函数y =2x (x>0)的图象上,横坐标为1,过B 分别向x 轴,y 轴作垂线,垂足分别为A ,C ,则矩形OABC 的面积为( ) A .1 B .2 C .3 D .49.如图,正方形ABOC 的边长为2,反比例函数y =kx 的图象经过点A ,则k 的值是( )A .2B .-2C .4D .-4中档题10.已知反比例函数y =-5x ,下列结论中不正确的是( )A .图象必经过点(1,-5)B .y 随x 的增大而增大C .图象在第二、四象限内D .若x >1,则-5<y <011.(贵州中考)如果点A(-2,y 1),B(-1,y 2),C(2,y 3)都在反比例函数y =kx (k>0)的图象上,那么y 1,y 2,y 3的大小关系是( )A .y 1<y 3<y 2B .y 2<y 1<y 3C .y 1<y 2<y 3D .y 3<y 2<y 112.(黔东南中考)如图,正比例函数y =x 与反比例函数y =1x 的图象相交于A ,B 两点,BC ⊥x 轴于点C ,则△ABC的面积为( )A .1B .2 C.32 D.5213.已知反比例函数y =2k +1x (k 为常数,k ≠-12).(1)若在这个函数图象的每一分支上,y 随x 的增大而增大,求k 的取值范围;14.(柳州中考)如图,函数y =kx 的图象过点A(1,2).(1)求该函数的表达式;(2)过点A 分别向x 轴和y 轴作垂线,垂足为B 和C ,求四边形ABOC 的面积;(3)求证:过此函数图象上任意一点分别向x 轴和y 轴作垂线,这两条垂线与两坐标轴所围成矩形的面积为定值.综合题15.(苏州中考)如图,已知函数y =kx (x >0)的图象经过点A ,B ,点A 的坐标为(1,2),过点A 作AC∥y 轴,AC =1(点C 位于点A 的下方),过点C 作CD∥x 轴,与函数的图象交于点D ,过点B 作BE⊥CD,垂足E 在线段CD 上,连接OC ,OD.(1)求△OCD 的面积;(2)当BE =12AC 时,求CE 的长.参考答案1.A 2.D 3.A 4.> 5.y =-1x (不唯一,只要k <0即可) 6.②④ 7.根据题意,得m 2-2=-1,解得m =±1.∵当x >0时,y 随x 的值的增大而增大,∴2m -1<0.解得m <12.∴m =-1. 8.B 9.D 10.B 11.B 12.A 13.(1)∵在这个函数图象的每一分支上,y 随x 的增大而增大,∴2k +1<0.解得k<-12.(2)点M(3,-3)在这个函数的图象上.理由:∵当k =-5时,2k +1=-9,∴反比例函数的表达式为y =-9x .当x =3时,y =-3,∴点M(3,-3)在这个函数的图象上. 14.(1)∵函数y =k x 的图象过点A(1,2),∴将点A 的坐标代入反比例函数表达式,得2=k1.解得k =2.∴反比例函数的表达式为y =2x .(2)∵点A 是反比例函数上一点,∴矩形ABOC 的面积S =AC·AB=|xy|=|k|=2.(3)证明:设图象上任一点的坐标为(x ,y).∴过这点分别向x 轴和y 轴作垂线,矩形面积为|xy|=|k|=2.∴矩形的面积为定值. 15.(1)∵y=kx (x >0)的图象经过点A(1,2),∴k =2.∵AC∥y 轴,AC =1,∴点C 的坐标为(1,1).∵CD ∥x 轴,点D 在函数图象上,∴点D 的坐标为(2,1).∴S △OCD =12×1×1=12.(2)∵BE=12AC ,∴BE =12.∵BE ⊥CD ,∴点B 的横坐标是43,纵坐标是32.∴CE =43-1=13.6.3 反比例函数的应用基础题知识点1 反比例函数的实际应用1.(临沂中考)已知甲、乙两地相距20千米,汽车从甲地匀速行驶到乙地,则汽车行驶时间t(单位:小时)关于行驶速度v(单位:千米/小时)的函数关系式是( ) A .t =20v B .t =20v C .t =v 20 D .t =10v2.(河北中考)一台印刷机每年可印刷的书本数量y(万册)与它的使用时间x(年)成反比例关系,当x =2时,y =20,则y 与x 的函数图象大致是( )3.某蓄水池的排水管每时排水8 m 3,6 h 可将满池水全部排空.如果增加排水管,使每时的排水量达到Q(m 3),那么将满池水排空所需的时间为t(h).写出t 与Q 之间的关系:________. 知识点2 反比例函数跨学科应用4.(台州中考)在一个可以改变体积的密闭容器内装有一定质量的某种气体,当改变容器的体积时,气体的密度也随之改变.密度ρ(单位:kg/m 3)与体积V(单位:m 3)满足函数关系式ρ=k V (k 为常数,k ≠0),其图象如图所示,则k 的值为( )A .9B .-9C .4D .-45.水平地面上重1 500 N 的物体,与地面的接触面积为x m 2,那么该物体对地面的压强y(单位:N/m 2)与地面的接触面积x(m 2)之间的函数关系可以表示为________.6.蓄电池的电压为定值.使用此电源时,电流I(A)是电阻R(Ω)的反比例函数,其图象如图所示. (1)求这个反比例函数的表达式;(2)当R =10 Ω时,电流能是4 A 吗?为什么?知识点3 反比例函数与一次函数的综合应用7.(广安中考)如图,一次函数y 1=k 1x +b(k 1,b 为常数,且k 1≠0)的图象与反比例函数y 2=k 2x (k 2为常数,且k 2≠0)的图象都经过点A(2,3).则当x >2时,y 1与y 2的大小关系为( ) A .y 1>y 2 B .y 1=y 2C .y 1<y 2D .以上说法都不对8.(枣庄中考)已知正比例函数y =-2x 与反比例函数y =kx 的图象的一个交点坐标为(-1,2),则另一个交点的坐标为________.9.(黔南中考)如图,正比例函数y 1=k 1x 与反比例函数y 2=k 2x 的图象交于A ,B 两点,根据图象可直接写出当y 1>y 2时,x 的取值范围是____________.中档题10.某种气球内充满了一定质量的气体,当温度不变时,气球内气体的气压p(kPa)是气球体积V 的反比例函数,其图象如图所示,当气球内的气压大于120 kPa 时,气球将爆炸,为了安全,气球的体积应该( ) A .不大于54 m 3 B .小于54 m 3C .不小于45 m 3D .小于45m 311.随着私家车的增加,城市的交通也越来越拥挤,通常情况下,某段高架桥上车辆的行驶速度y(千米/时)与高架桥上每百米拥有车的数量x(辆)的关系如图所示,当x≥10时,y 与x 成反比例函数关系,当车速度低于20千米/时,交通就会拥堵,为避免出现交通拥堵,高架桥上每百米拥有车的数量x 应该满足的范围是________.12.(益阳中考)我市某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且温度为18 ℃的条件下生长最快的新品种.图是某天恒温系统从开启到关闭及关闭后,大棚内温度y(℃)随时间x(小时)变化的函数图象,其中BC 段是双曲线y =kx 的一部分.请根据图中信息解答下列问题:(1)恒温系统在这天保持大棚内温度18 ℃的时间有多少小时?(2)求k 的值;(3)当x =16时,大棚内的温度约为多少度?综合题13.(玉林中考)工匠制作某种金属工具要进行材料煅烧和锻造两个工序,即需要将材料烧到800 ℃,然后停止煅烧进行锻造操作,经过8 min 时,材料温度降为600 ℃.煅烧时,温度y(℃)与时间x(min)成一次函数关系;锻造时,温度y(℃)与时间x(min)成反比例函数关系(如图).已知该材料初始温度是32 ℃. (1)分别求出材料煅烧和锻造时y 与x 的函数关系式,并且写出自变量x 的取值范围;(2)根据工艺要求,当材料温度低于480 ℃时,须停止操作.那么锻造的操作时间有多长?参考答案1.B 2.C 3.t =48Q 4.A 5.y =1 500x 6.(1)设I =k R (k≠0),把(4,9)代入,得k =4×9=36,∴I =36R .(2)当R=10 Ω时,I =3.6 A ≠4 A ,∴电流不可能是4 A . 7.A 8.(1,-2) 9.-1<x <0或x >1 10.C 11.0<x≤40 12.(1)恒温系统在这天保持大棚温度18 ℃的时间为10小时.(2)∵点B(12,18)在双曲线y =k x 上,∴18=k12.解得k =216.(3)当x =16时,y =21616=13.5,所以当x =16时,大棚内的温度约为13.5 ℃. 13.(1)停止加热时,设y=k x (k≠0),由题意得600=k 8.解得k =4 800.当y =800时,4 800x =800,解得x =6.∴点B 的坐标为(6,800).材料加热时,设y =ax +32(a≠0),由题意得800=6a +32,解得a =128.∴材料加热时,y 与x 的函数关系式为y =128x +32(0≤x≤6);停止加热进行操作时,y 与x 的函数关系式为y =4 800x (6<x≤150).(2)把y =480代入y =4 800x ,得x =10,故锻造的操作时间为10-6=4(分钟).专题训练 反比例函数中k 的几何意义1.如图,在平面直角坐标系中,点A 是双曲线y =3x (x >0)上的一个动点,过点A 作x 轴的垂线,交x 轴于点B ,点A 运动过程中△AOB 的面积将会( ) A .逐渐增大 B .逐渐减小 C .先增大后减小 D .不变2.如图,过反比例函数y =2x (x >0)图象上任意两点A ,B 分别作x 轴的垂线,垂足分别为C ,D ,连接OA ,OB ,设AC 与OB 的交点为E ,△AOE 与梯形ECDB 的面积分别为S 1,S 2,比较它们的大小,可得( ) A .S 1>S 2 B .S 1<S 2 C .S 1=S 2D .S 1、S 2的大小关系不能确定3.(鄂州中考)点A 为双曲线y =kx (k ≠0)上一点,B 为x 轴上一点,且△AOB 为等边三角形,△AOB 的边长为2,则k 的值为( )A .2 3B .±2 3 C. 3 D .± 34.设P 是函数y =2x 在第一象限的图象上的任意一点,点P 关于原点的对称点为点P ′,过点P 作PA 平行于y 轴,过点P ′作P ′A 平行于x 轴,PA 与P ′A 交于A 点,则△PAP ′的面积( ) A .随P 点的变化而变化 B .等于1 C .等于2 D .等于45.如图,点A 是反比例函数y =kx 图象上的一点,过点A 作AB ⊥x 轴,垂足为点B ,点C 为y 轴上的一点,连接AC ,BC.若△ABC 的面积为3,则k 的值是( ) A .3 B .-3 C .6 D .-66.(黔西南中考)如图,点A 是反比例函数y =kx 图象上的一个动点,过点A 作AB ⊥x 轴,AC ⊥y 轴,垂足点分别为B 、C ,矩形ABOC 的面积为4,则k =________.7.(陕西中考)如图,在平面直角坐标系中,过点M(-3,2)分别作x 轴,y 轴的垂线与反比例函数y =4x 的图象交于A ,B 两点,则四边形MAOB 的面积为________.8.(临沂中考)如图,反比例函数y =4x 的图象经过直角△OAB 的顶点A ,D 为斜边OA 的中点,则过点D 的反比例函数的表达式为________.9.如图,矩形ABCD 的边AB 与y 轴平行,顶点A 的坐标为(1,2),点B 与点D 在反比例函数y =6x (x >0)的图象上,则点C 的坐标为________.10.(铁岭中考)如图,点P 是正比例函数y =x 与反比例函数y =kx 在第一象限内的交点,PA ⊥OP 交x 轴于点A ,△POA的面积为2,则k 的值是________.11.(资阳中考)如图,在平面直角坐标系中,点M 为x 轴正半轴上一点,过点M 的直线l ∥y 轴,且直线l 分别与反比例函数y =8x (x >0)和y =kx(x >0)的图象交于P 、Q 两点,若S △POQ =14,则k 的值为________.12.如图,已知反比例函数y =kx (k <0)的图象经过点A(-3,m),过点A 作AB ⊥x 轴于点B ,且△AOB 的面积为 3.求k 和m 的值.13.反比例函数y =1x 和y =k x (k ≠0)在第一象限内的图象如图所示,点P 在y =kx 的图象上,PC ⊥x 轴,垂足为C ,交y =1x 的图象于点A ,PD ⊥y 轴,垂足为D ,交y =1x 的图象于点B.已知点A(m ,1)为线段PC 的中点. (1)求m 和k 的值;(2)求四边形OAPB 的面积.参考答案1.D 2.C 3.D 4.D 5.D 6.-4 7.10 8.y =1x 9.(3,6) 10.2 11.-20 12.设点A 的坐标为(x ,y).∵△AOB 的面积为3,∴12|x|·|y|=12|k|= 3.解得|k|=2 3.又∵k <0,∴k =-2 3.∴反比例函数表达式为y =-23x .∵反比例函数图象经过点A(-3,m),∴m =-23-3.解得m =2.综上可知:k =-23,m =2. 13.(1)把A(m ,1)代入y =1x ,得m =1,∴A 点坐标为(1,1).∵点A(1,1)为线段PC 的中点,∴点P 坐标为(1,2).把(1,2)代入y =k x ,得k =1×2=2.(2)∵点P 坐标为(1,2),∴四边形OCPD 的面积为1×2=2.又∵△ODB 的面积为12,△OAC 的面积为12,∴四边形O APB 的面积为2-12-12=1.专题训练 反比例函数与一次函数综合1.(益阳中考)正比例函数y =6x 的图象与反比例函数y =6x 的图象的交点位于( )A .第一象限B .第二象限C .第三象限D .第一、三象限2.若在同一坐标系中,直线y =k 1x(k 1≠0)与双曲线y =k 2x 无交点,则有( )A .k 1+k 2>0B .k 1+k 2<0C .k 1k 2>0D .k 1k 2<03.(怀化中考)已知一次函数y =kx +b 的图象如图,那么正比例函数y =kx 和反比例函数y =kx 在同一坐标系中的图象大致是( )4.(菏泽中考)如图,在平面直角坐标系xOy 中,已知一次函数y =kx +b 的图象经过点A(1,0),与反比例函数y =mx (x>0)的图象相交于点B(2,1). (1)求m 的值和一次函数的表达式;(2)结合图象直接写出:当x>0时,不等式kx +b>mx 的解集.5.(宜昌中考)下表中,y 是x 的一次函数.x -2 1 2 5(2)已知该函数图象上一点M(1,-3)也在反比例函数y =mx 图象上,求这两个函数图象的另一交点N 的坐标.6.(成都中考)如图,一次函数y =kx +5(k 为常数,且k≠0)的图象与反比例函数y =-8x 的函数交于A(-2,b),B 两点.(1)求一次函数的表达式;(2)若将直线AB 向下平移m(m >0)个单位长度后与反比例函数的图象有且只有一个公共点,求m 的值.7.(自贡中考)如图,一次函数y =kx +b 与反比例函数y =6x (x >0)的图象交于A(m ,6),B(3,n)两点.(1)求一次函数的表达式;(2)根据图象直接写出kx +b -6x <0的x 的取值范围;参考答案1.D 2.D 3.B 4.(1)反比例函数y =mx (x>0)的图象经过点B(2,1),则m =1×2=2.∵一次函数y =kx +b 的图象经过点A(1,0),B(2,1)两点,∴一次函数的表达式为y =x -1.(2)x>2. 5.(1)4 -6 设该一次函数为y =kx +b(k≠0).∵当x =-2时,y =6,当x =1时,y =-3,∴⎩⎪⎨⎪⎧-2k +b =6,k +b =-3.解得⎩⎪⎨⎪⎧k =-3,b =0.∴一次函数的表达式为y =-3x.当x =2时,y =-6;当y =-12时,x =4.(2)∵点M(1,-3)在反比例函数y =m x (m≠0)上,∴-3=m1.∴m =-3.∴反比例函数表达式为y =-3x .∵⎩⎪⎨⎪⎧y =-3x ,y =-3x .解得⎩⎪⎨⎪⎧x =1,y =-3或⎩⎪⎨⎪⎧x =-1,y =3.∴另一交点坐标为(-1,3). 6.(1)把A(-2,b)代入y =-8x ,得b =4.∴A 点坐标为(-2,4).把A(-2,4)代入y =kx +5,得-2k +5=4.解得k =12.∴一次函数表达式为y =12x +5.(2)将直线AB 向下平移m(m >0)个单位长度得直线表达式为y =12x+5-m.根据题意方程组⎩⎪⎨⎪⎧y =-8x ,y =12x +5-m只有一组解,消去y 得-8x =12x +5-m ,整理得12x 2-(m -5)x +8=0.Δ=(m-5)2-4×12×8=0.解得m 1=9,m 2=1,即m 的值为1或9. 7.(1)∵A(m,6),B(3,n)两点在反比例函数y =6x(x>0)图象上.∴m=1,n =2,即A(1,6),B(3,2).又∵A(1,6),B(3,2)在一次函数y =kx +b 图象上,∴⎩⎪⎨⎪⎧6=k +b ,2=3k +b.解得⎩⎪⎨⎪⎧k =-2,b =8.∴一次函数表达式为y =-2x +8.(2)根据图象可知kx +b -6x <0的x 的取值范围是0<x <1或x >3.(3)分别过A ,B 点作AE⊥x 轴,BC ⊥x 轴,垂足分别为E ,C 点,直线AB 交x 轴于D 点.令y =-2x +8=0,得x =4,即D(4,0).∵A(1,6),B(3,2),∴AE =6,BC =2.∴S △AOB =S △AOD -S △DOB =12×4×6-12×4×2=8.单元测试 反比例函数(满分:150分,考试用时120分钟)一、选择题(本大题共15个小题,每小题3分,共45分) 1.下列函数中,变量y 是x 的反比例函数的是( ) A .y =1x 2 B .y =x -1C .y =2x +3D .y =1x-12.已知y =8x n -2,当n =________时,y 是x 的反比例函数( )A .1B .-1C .1或-1D .0 3.下列各点中,在反比例函数y =3x 图象上的是( )A .(3,1)B .(-3,1)C .(3,13)D .(13,3)4.若反比例函数y =k -1x 的图象位于第二、四象限,则k 的取值可以是( )A .0B .1C .2D .以上都不是5.对于反比例函数y =2x,下列说法正确的是( )A .点(-2,1)在它的图象上B .它的图象经过原点C .它的图象在第一、三象限D .当x>0时,y 随x 的增大而增大6.已知三角形的面积一定,则它底边a 上的高h 与底边a 之间的函数关系的图象大致是( )7.下面关于反比例函数y =-3x 与y =3x的说法,不正确的是( )A .其中一个函数的图象可由另一个函数的图象沿x 轴或y 轴翻折“复印”得到B .它们的图象都是轴对称图形C .它们的图象都是中心对称图形D .当x>0时,两个函数的函数值都随自变量的增大而增大 8.反比例函数y =kx 的图象如图所示,则k 的值可能是( )A .-1 B.12C .1D .29.已知反比例函数y =10x ,当1<x <2时,y 的取值范围是( )A .0<y <5B .1<y <2C .5<y <10D .y >1010.如图,M 为反比例函数y =kx 的图象上的一点,MA 垂直于y 轴,垂足为点A ,△MAO 的面积为2,则k 的值为( )A .-4B .4C .-2D .211.已知直线y =mx 与双曲线y =kx 的一个交点坐标为(3,4),则它们的另一个交点坐标为( )A .(-3,4)B .(-4,-3)C .(-3,-4)D .(4,3) 12.若y 与1x 成反比例,x 与1z 成正比例,则y 是z 的( )A .正比例函数B .反比例函数C .一次函数D .以上均不对13.若A(x 1,y 1),B(x 2,y 2),C(x 3,y 3)是反比例函数y =3x 图象上的点,且x 1<x 2<0<x 3,则y 1、y 2、y 3的大小关系正确的是( )A .y 3>y 1>y 2B .y 1>y 2>y 3C .y 2>y 1>y 3D .y 3>y 2>y 114.在同一直角坐标系中,函数y =kx +1与y =-kx(k ≠0)的图象大致是( )15.如图,A ,B 两点在双曲线y =4x上,分别经过A ,B 两点向轴作垂线段,已知S 阴影=1,则S 1+S 2=( )A .3B .4C .5D .6二、填空题(本大题共5小题,每小题5分,共25分)16.若反比例函数y =kx的图象经过点(-1,2),则k 的值是________.17.小玲将一篇8 000字的社会调查报告录入电脑,那么完成录入的时间t(秒)与录入文字的速度v(字/秒)的函数关系式是________.18.已知y 是x 的反比例函数,当x>0时,y 随x 的增大而减小.请写出一个满足以上条件的函数表达式:________________________.19.如图,已知函数y =kx 的图象经过点A(2,2),结合图象,请直接写出函数值y≥-2时,自变量x 的取值范围是____________.20.如图,反比例函数y =kx (k >0)的图象与矩形ABCO 的两边相交于E ,F 两点,若E 是AB 的中点,S △BEF =2,则k的值为________.三、解答题(本大题共7个小题,各题分值见题号后,共80分)21.(8分)已知反比例函数的图象与直线y =2x 相交于点A(1,a),求这个反比例函数的表达式.22.(8分)反比例函数y =kx ,当x 的值由4增加到6时,y 的值减少3,求这个反比例函数的表达式.23.(10分)已知反比例函数y =k -1x(k 为常数,k ≠1).(1)若在这个函数图象的每一分支上,y 随x 的增大而减小,求k 的取值范围;(2)若k =13,试判断点C(2,5)是否在这个函数的图象上,并说明理由.24.(12分)如图,在平面直角坐标系中,点O 为原点,反比例函数y =kx 的图象经过点(1,4),菱形OABC 的顶点A在函数的图象上,对角线OB 在x 轴上.(1)求反比例函数的表达式; (2)直接写出菱形OABC 的面积.25.(12分)如图,已知反比例函数y =kx (k >0)的图象经过点A(1,m),过点A 作AB⊥y 轴于点B ,且△AOB 的面积为1.(1)求m ,k 的值;(2)若一次函数y =nx +2(n≠0)的图象与反比例函数y =kx 的图象有两个不同的公共点,求实数n 的取值范围.26.(14分)一辆汽车匀速通过某段公路,所需时间t(h)与行驶速度v(km/h)满足函数关系:t =kv ,其图象为如图所示的一段曲线,且端点为A(40,1)和B(m ,0.5).(1)求k 和m 的值;(2)若行驶速度不得超过60 km/h ,则汽车通过该路段最少需要多少时间?27.(16分)已知:如图,反比例函数y =kx 的图象与一次函数y =x +b 的图象交于点A(1,4)、点B(-4,n).(1)求一次函数和反比例函数的表达式;(2)求△OAB 的面积;(3)直接写出一次函数值大于反比例函数值的自变量x 的取值范围.参考答案1.B 2.A 3.A 4.A 5.C 6.D 7.D 8.B 9.C 10.B 11.C 12.B 13.A 14.D 15.D 16.-2 17.t =8 000v 18.答案不唯一,只要k>0即可,如:y =2x 19.x≤-2或x >0 20.8 21.设反比例函数表达式为y =kx .将点A(1,a)代入直线y =2x ,得a =2×1=2.∴点A 的坐标为(1,2),代入y =kx ,得k =2.∴反比例函数的表达式为y =2x . 22.当x =4时,y =k 4;当x =6时,y =k 6.∵当x 的值由4增加到6时,y 的值减少3,∴k 4-k6=3.解得k=36.∴这个反比例函数的表达式为y =36x . 23.(1)∵这个函数图象的每一分支上,y 随x 的增大而减小,∴k -1>0.解得k >1.(2)点C(2,5)不在这个函数的图象上.理由:∵当k =13时,k -1=12,∴反比例函数的表达式为y =12x .当x =2时,y =6≠5,∴点C(2,5)不在这个函数的图象上. 24.(1)∵反比例函数y =kx 的图象经过点(1,4),∴4=k 1.即k =4.∴反比例函数的表达式为y =4x .(2)8. 25.(1)由已知,得S △AOB =12×1×m =1,解得m =2.把A(1,2)代入反比例函数表达式,得k =2.(2)由(1)知反比例函数表达式是y =2x ,由题意知2x =nx +2有两个不同的解,方程去分母,得nx 2+2x -2=0,则Δ=4+8n >0,解得n >-12且n≠0. 26.(1)将(40,1)代入t =k v ,得1=k 40,解得k =40.∴该函数的表达式为t =40v .当t =0.5时,0.5=40m,解得m =80.所以k =40,m =80.(2)令v =60,得t =4060=23.结合函数图象可知,汽车通过该路段最少需要23小时. 27.(1)把A 点(1,4)分别代入反比例函数y =k x ,一次函数y =x +b ,得k =1×4,1+b =4,解得k =4,b =3.反比例函数的表达式是y =4x ,一次函数表达式是y =x +3.(2)设AB 与x 轴交于点C.当x =-4时,y =-1,∴B(-4,-1).当y =0时,x +3=0,x =-3,∴C(-3,0).∴S △AOB =S △AOC +S △BOC =12×3×4+12×3×1=152.(3)∵B(-4,-1),A(1,4),∴根据图象可知:当x >1或-4<x <0时,一次函数值大于反比例函数值.。
北师大版九年级数学上册第六章 反比例函数 单元测试题一、选择题(每小题3分,共24分)1.已知反比例函数的表达式为y =|a|-2x,则a 的取值范围是( )A .a ≠2B .a ≠-2C .a ≠±2D .a =±22.如果点(3,-4)在反比例函数y =kx的图象上,那么下列各点中,在此图象上的是( )A .(3,4)B .(-2,-6)C .(-2,6)D .(-3,-4)3.对于反比例函数y =-2x,下列说法不正确的是( )A .图象分布在第二、四象限B .当x>0时,y 随x 的增大而增大C .图象经过点(1,-2)D .若点A(x 1,y 1),B(x 2,y 2)都在图象上,且x 1<x 2,则y 1<y 24.如图,在△AOB 中,AO =AB ,点A 在第一象限,点B 在x 轴上,△AOB 的面积为4,反比例函数y =kx (x >0)的图象经过点A ,则k 的值等于( )A .1B.2C .4D .85.已知A ,B 两点分别在反比例函数y =3m x (m ≠0)和y =2m -5x (m ≠52)的图象上.若点A 与点B 关于x 轴对称,则m的值为( )A .4B.2 C .1D .36.码头工人往一艘轮船上装载货物,装完货物所需时间y(min)与装载速度x(t/min)之间的函数关系如图(双曲线y =kx的一支).如果以5 t/min 的速度卸货,那么卸完货物需要的时间是( )min.A .120B.125C .130D .1357.已知反比例函数y =kx(k≠0),当-2≤x≤-1时,y 的最大值是3,则当x≥6时,y 有( )A .最大值-12B .最大值-1C .最小值-12D .最小值-18.在平面直角坐标系中,点A 在反比例函数y 1=kx (x >0)的图象上,点A ′与点A 关于点O 对称,直线AA ′的表达式为y 2=mx ,将直线AA ′绕点A ′顺时针旋转,与反比例函数图象交于点B ,直线A ′B 的表达式为y 3=m2x +n.若△AA ′B 的面积为3,则k 的值为( ).A .±25B.±4 C .±3D .±2二、填空题(每小题3分,共21分) 9.已知函数y =(m -2)xm2-10是反比例函数,且当x <0时,y 随x 的增大而减小,则m 的值是________.10.如图,一次函数y 1=ax +b 和反比例函数y 2=kx 的图象相交于A ,B 两点,则使y 1>y 2成立的x 的取值范围是________.11.正比例函数y =x 的图象与反比例函数y =4x 的图象在第一象限内交于点B ,点C 是反比例函数y =4x 在第一象限图象上的一个动点.当△OBC 的面积为3时,点C 的横坐标是________.12.在平面直角坐标系中,对于点P(x ,y)和Q(x ,y ′),给出如下定义:如果当x ≥0时,y ′=y ;当x <0时,y ′=-y ,那么称点Q 为点P 的“关联点”.例如:点(-5,6)的“关联点”为(-5,-6).若点N(t ,t -1)在反比例函数y =2x的图象上,且点N 是点M 的“关联点”,则点M 的坐标为________.13.如图,将反比例函数y =kx (k >0)的图象向左平移2个单位长度后记为图象c ,c 与y 轴相交于点A ,点P 为x轴上一点,点A 关于点P 的对称点B 在图象c 上,以线段AB 为边作等边△ABC ,顶点C 恰好在反比例函数y =-kx (x>0)的图象上,则k =________.14.如图,已知直线AB 交x 轴于点A ,分别与函数y =a x (x >0,a >0)和y =bx (x >0,b >a >0)的图象相交于点B ,C ,过点B 作BD ∥x 轴,交函数y =b x 的图象于点D ,过点C 作CE ∥x 轴,交函数y =ax 的图象于点E ,连接AD ,BE.若BC AB =12,S △ABD =2,则S △BCE =________.15.如图,将双曲线y =kx (k <0)在第四象限的一支沿直线y =-x 方向向上平移到点E 处,交该双曲线在第二象限的一支于A ,B 两点,连接AB 并延长交x 轴于点C.双曲线y =mx (m >0)与直线y =x 在第三象限的交点为D ,将双曲线y =mx 在第三象限的一支沿射线OE 方向平移,D 点刚好可以与C 点重合,此时该曲线与前两支曲线围成一条“鱼”(如图中阴影部分).若C 点坐标为(-5,0),AB =32,则mk 的值为________三、解答题(共55分)16.如图,已知反比例函数y =kx的图象经过点A(4,m),AB ⊥x 轴,且△AOB 的面积为4.(1)k =_____,m =_____;(2)若点C(x ,y)也在反比例函数y =kx的图象上,当y ≤2(y ≠0)时,求自变量x 的取值范围.17.如图,在平面直角坐标系xOy 中,正比例函数y =kx 的图象与反比例函数y =mx的图象都经过点A(2,-2).(1)分别求这两个函数的表达式;(2)将直线OA 向上平移3个单位长度后与y 轴交于点B ,与反比例函数图象在第四象限内的交点为C ,连接AB ,AC ,求点C 的坐标及△ABC 的面积.18.如图,在平面直角坐标系xOy 中,已知正比例函数y =12x 的图象与反比例函数y =kx 的图象交于A(a ,-2),B两点.(1)求反比例函数的表达式和点B 的坐标;(2)P 是第一象限内反比例函数图象上一点,过点P 作y 轴的平行线,交直线AB 于点C ,连接PO.若△POC 的面积为3,求点P 的坐标.19.如图,已知一次函数y 1=kx +b 与反比例函数y 2=mx (x >0)的图象分别交于点A(2,4)和点B(4,n),与坐标轴分别交于点C 和点D.(1)求反比例函数和一次函数的表达式; (2)求y 1<y 2时,自变量x 的取值范围;(3)若点P 是x 轴上一动点,当△ABP 为直角三角形时,求点P 的坐标.20.如图,菱形OABC 的一边OA 在x 轴负半轴上,O 是坐标原点,点A(-13,0),对角线AC 与OB 相交于点D ,且AC ·OB =130.若反比例函数y =kx(x <0)的图象经过点D ,并与BC 的延长线交于点E.(1)求双曲线y =kx 的表达式;(2)求S △AOB ∶S △OCE 的值.21.如图,在平面直角坐标系中,直线l 1:y =-12x 与反比例函数y =kx 的图象交于A ,B 两点(点A 在点B 左侧),已知A 点的纵坐标是2.(1)求反比例函数的表达式;(2)根据图象直接写出-12x <kx的解集;(3)将直线l 1:y =-12x 沿y 向上平移后的直线l 2与反比例函数y =kx 在第二象限内交于点C ,如果△ABC 的面积为30,求平移后的直线l 2与y 轴的交点坐标.22.小明根据学习函数的经验,对函数y =x +1x的图象与性质进行了探究.下面是小明的探究过程,请补充完整:(1)函数y =x +1x的自变量x 的取值范围是_____;(2)下表列出了y 与x 的几组对应值,请写出m ,n 的值:m =_____,n =_____;(3)如图,在平面直角坐标系xOy 中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;(4)结合函数图象,请完成: ①当y =-174时,x =_____;②写出该函数的一条性质_____;③若方程x +x1=t 有两个不相等的实数根,则t 的取值范围是_____.23.如图,一次函数y =kx +b 的图象交反比例函数y =ax (x >0)的图象于A(4,-8),B(m ,-2)两点,交x 轴于点C ,P 是x 轴上一个动点.(1)求反比例函数与一次函数的表达式;(2)根据图象回答:当x 为何值时,一次函数的值大于反比例函数的值?(3)若△BCP 与△OAC 相似,请直接写出点P 的坐标.参考答案1、C2、C3、D4、C5、C6、A7、C8、D9、3 10、x <-2或0<x <4 11、1或4 12、(2,1)或(-1,2) 13、2 3 14、2315、-2516、(1)k =8,m =2 (2)解:当y ≤2(y ≠0)时,x <0或x ≥4. 17、解:(1)将点A(2,-2)代入y =kx ,得-2=2k , 解得k =-1.∴正比例函数的表达式为y =-x. 将点A(2,-2)代入y =mx ,得-2=m2,解得m =-4.∴反比例函数的表达式为y =-4x.(2)直线OA :y =-x 向上平移3个单位长度后的表达式为y =-x +3, 则点B 的坐标为(0,3).联立⎩⎨⎧y =-x +3,y =-4x ,解得{x =-1,y =4或{x =4,y =-1.∴第四象限内的交点C 的坐标为(4,-1). 连接OC ,∵OA ∥BC ,∴S △ABC =S △OBC =12BO ·x C =12×3×4=6.18、解:(1)把A(a ,-2)代入y =12x ,可得a =-4,∴A(-4,-2).把A(-4,-2)代入y =kx ,得k =8,∴反比例函数的表达式为y =8x .∵点B 与点A 关于原点对称, ∴B(4,2).(2)过点P 作PE ⊥x 轴于点E ,交AB 于点C , 设P(m ,8m ),则C(m ,12m).∵△POC 的面积为3,∴12m ·|12m -8m |=3,解得m =27或2(负值舍去). ∴P(27,477)或(2,4).19、解:(1)把A(2,4)代入y 2=mx ,得m =2×4=8,∴反比例的表达式为y 2=8x.把B(4,n)代入y 2=8x ,得4n =8,解得n =2.∴B(4,2).把A(2,4)和B(4,2)代入y 1=kx +b ,得{2k +b =4,4k +b =2,解得{k =-1,b =6.∴一次函数的表达式为y 1=-x +6. (2)当0<x <2或x >4时,y 1<y 2. (3)设P(t ,0),∵A(2,4),B(4,2),∴PA 2=(t -2)2+42=t 2-4t +20,PB 2=(t -4)2+22=t 2-8t +20,AB 2=(4-2)2+(2-4)2=8.①当∠PAB =90°时,PA 2+AB 2=PB 2,即t 2-4t +20+8=t 2-8t +20,解得t =-2,此时P 点坐标为(-2,0); ②当∠PBA =90°时,PB 2+AB 2=PA 2,即t 2-8t +20+8=t 2-4t +20,解得t =2,此时P 点坐标为(2,0); ③当∠APB =90°时,PA 2+PB 2=AB 2,即t 2-4t +20+t 2-8t +20=8,整理,得t 2-6t +16=0,方程没有实数解.综上所述,P 点坐标为(-2,0)或(2,0). 20、解:(1)过点C 作CG ⊥AO 于点G , ∵AC ·OB =130, ∴S 菱形OABC =12AC ·OB =65.∴S △OAC =12S 菱形OABC =652,即12AO ·CG =652. ∵A(-13,0),∴OA =13. ∴CG =5.在Rt △OGC 中,∵OC =OA =13, ∴OG =12.∴C(-12,-5). ∵D 为AC 的中点, ∴D(-252,-52).∵点D 在反比例函数的图象上, ∴k =-252×(-52)=1254.∴反比例函数的表达式为y =1254x .(2)∵D 为OB 的中点,∴B(-25,-5). 当y =-5时,x =-254,∴E(-254,-5).∴CE =234.∴S △OCE =12CE ·CG =12×234×5=1158,S △AOB =12S 菱形OABC =652.∴S △AOB ∶S △OCE =52∶23.21、解:(1)在y =-12x 中,当y =2时,-12x =2,解得x =-4,则A(-4,2).把A(-4,2)代入y =k x,得 k =-4×2=-8,∴反比例函数的表达式为y =-8x. (2)-4<x <0或x >4.(3)设直线l 2交x 轴于点D ,连接AD ,BD.∵AB ∥CD ,∴S △ADB =S △ACB =30,即12×OD ×2+12×OD ×2=30,解得OD =15. ∴D(15,0).设直线l 2的表达式为y =-12x +b , 把D(15,0)代入,得-12×15+b =0,解得b =152, ∴直线l 2的表达式为y =-12x +152. 当x =0时,y =-12x +152=152, ∴平移后的直线l 2与y 轴的交点坐标为(0,152).22、(1)x ≠0 (2)m =103,n =103(3)如图(4)结合函数图象,请完成:①当y =-174时,x =-4或-14; ②写出该函数的一条性质答案不唯一,如:图象在第一、三象限且关于原点对称;当-1≤x<0或0<x ≤1时,y 随x 增大而减小;当x<-1或x>1时,y 随x 的增大而增大;③若方程x +x1=t 有两个不相等的实数根,则t 的取值范围是t>2或t<-2. 23、解:(1)∵反比例函数y =a x(x >0)的图象过点A(4,-8), ∴a =4×(-8)=-32.∴反比例函数的表达式为y =-32x. ∵双曲线y =-32x过点B(m ,-2), ∴-2m =-32.∴m =16.∴B(16,-2).∵直线y =kx +b 过点A ,B ,∴{4k +b =-8,16k +b =-2,解得⎩⎨⎧k =12,b =-10. ∴一次函数的表达式为y =12x -10. (2)观察图象可知,当0<x <4或x >16时,一次函数的值大于反比例函数的值.(3)在直线y =12x -10中,令y =0,则x =20, ∴C(20,0).∴OC =20,AC =(20-4)2+82=85,BC =(20-16)2+22=2 5.设P(n ,0),则PC =20-n.当△BCP ∽△ACO 时,则PC OC =BC AC ,即20-n 20=2585,∴n =15.此时P(15,0);当△BCP ∽△OCA 时,则PC AC =BCOC ,即20-n 85=2520,∴n =16.此时P(16,0).综上,点P 的坐标为(15,0)或(16,0).。
北师大版九年级数学上册《第六章反比例函数》单元测试卷及答案学校:___________班级:___________姓名:___________考号:___________考试时间:90分钟;总分:100第I 卷(选择题)一、单选题(每小题3分,共30分)1.下列y 关于x 的函数中,y 是x 的反比例函数的是( ) A .12y x=-B .xy k =C .11y x =+ D .21y x =2.若反比例函数2k y x-=的图象经过点()3,2-,则下列各点在该函数图象上的是( ) A .()2,3 B .()1,6- C .()6,1 D .()2,3--3.若反比例函数21k y x+=的图象经过第一、三象限,则k 的取值范围是( ) A .12k <-B .12k >-C .12k =-D .0k >4.已知反比例函数6y x=,则下列描述不正确的是( ) A .图象位于第一、三象限 B .图象必经过点3,42⎛⎫⎪⎝⎭C .图象不可能与坐标轴相交D .y 随x 的增大而减小5.在同一平面直角坐标系中,一次函数2y kx =-与反比例函数k y x=(其中0k ≠)的大致图象可能是( )A .B .C .D .6.如图,直线y ax b =+与x 轴相交于点A ()2,0,与函数k y x=的图象交于点B ,C ,点B 的横坐标是8,点C 的横坐标是6-,则不等式组0kax b x<+<的解集是( )A .62x -<<B .60x -<<C .68x -<<D .02x <<7.已知函数21k y x+=-的图象经过点()111P x y ,,()222P x y ,如果210x x <<,那么( ) A .210y y <<B .120y y >>C .210y y <<D .120y y <<8.如图,A 是反比例函数k y x= 图像上一点,过点A 作x 轴的平行线交反比例函数3y x=-的图像于点B ,点C 在x 轴上,且2ABCS=,则k 的值为( )A .7B .7-C .5-D .59.已知反比例函数52y x=-,直线24y x =-+交于(),P a m 、(),Q b n 两点,则代数式1010b a m n+--的值是( )A .5B .5-C .10D .10-10.在平面直角坐标系xOy 中,将一块含有45︒角的直角三角板如图放置,直角顶点C 的坐标为()1,0,顶点A 的坐标()0,2,顶点B 恰好落在第一象限的双曲线上,则该双曲线的解析式为( )A .3y x = B .3y x=-C .2y x=D .2y x=-二、填空题(每小题3分,共15分)11.反比例函数1k y x-=的图象分布情况如图所示,则k 的值可以是 .(写出一个符合条件的k 值即可)12.科技小组为了验证某电路的电压U (V )、电流I (A )、电阻()R Ω三者之间的关系:UI =,测得数据如下: ()R Ω 100 200 220 400()I A 2.2 1.11 0.55那么,当电阻55R =Ω时,电流I = A .13.在温度不变的条件下,通过一次又一次地对汽缸顶部的活塞加压,加压后气体对汽缸壁所产生的压强P (kPa )与汽缸内气体的体积V (mL )成反比例,P关于V 的函数图象如图所示.若压强由75kPa 加压到100kPa ,则气体体积压缩了mL .14.如图,在平面直角坐标中,菱形OABC 的顶点A 在y 轴的正半轴上,点B 在函数ky x=的图象上,若60ABC ∠=︒,且菱形OABC 的面积为6,则k 的值为 .15.已知函数1y x =与函数21y x =的部分图像如图所示,有以下结论:①当0x <时,12,y y 都随x 的增大而增大; ②当1x <-时 12y y >;③12,y y 的图像的两个交点之间的距离是2; ④函数12y y y =+的最小值为2; 则所有正确的结论是 .三、解答题16.(6分)反比例函数k y x=的图象经过点A (2,3). (1)求这个函数的解析式;(2)请判断点B (1,6)是否在这个反比例函数的图象上,并说明理由.17.(7分)如图,在平面直角坐标系中,一次函数1y mx n =+的图象与反比例函数2ky x=的图绳交于第二、四象限内的A 、B 两点,与y 轴交于点C ,过点A 作AM x ⊥轴,垂足为M ,AM=3,OM=1,点B 的纵坐标为1-.(1)求反比例函数表达式和一次函数的解析式; (2)直接写出当12y y >时,自变量的取值范围; (3)连接OA 、OB ,求AOB 的面积; (4)已知点P 为图中双曲线上的一点,而且ABPABOS S=,请直接写出点P 的坐标.18.(8分)小明新买了一盏亮度可调节的台灯(如图1所示),他发现调节的原理是当电压一定时,通过调节电阻控制电流的变化从而改变灯光的明暗,台灯的电流I (单位:A )与电阻R (单位:Ω)满足反比例函数关系,其图象如图2所示.图1 图2 (1)求I 关于R 的函数解析式; (2)当1375ΩR =时,求I 的值;(3)若该台灯工作的最小电流为0.1A ,最大电流为0.25A ,求该台灯的电阻R 的取值范围.19.(8分)如图,反比例函数()0k y x x=>和()60y x x=>的图象如图所示,点(),0C a 是x 轴正半轴上一动点,过点C 作x 轴的垂线,分别与()0ky x x=>和()60y x x=>的图象交于点A ,B .(1)当2a =时,线段92AB =,求A ,B 两点的坐标及k 值.(2)小明同学提出了一个猜想:“当k 值一定时,OAB △的面积随a 值的增大而减小.”你认为他的猜想对吗?请说明理由.20.(8分)喝茶前需要烧水和泡茶两个工序,电热水壶将水烧到100℃,然后继续加热1分钟后断电,烧水时水温y (℃)与时间()min x 成一次函数关系;断电后,水壶中水的温度(℃)与时间()min x 近似于反比例函数关系(如图).已知水壶中水的初始温度是20℃,降温过程中水温不低于20℃.(1)分别求出图中AB 段和CD 段所对应的函数关系式;(2)从水壶中的水烧开(100℃)降到80℃就可以进行泡茶,问从水烧开到泡茶需要等待多长时间?21.(8分)如图,点(,4)A m 在反比例函数(0)ky x x =>的图象上,点B 在y 轴上,OB=2,将线段AB 向右下方平移,得到线段CD ,此时点C 落在反比例函数的图象上,点D 落在x 轴正半轴上,且1OD =.(1)点B 的坐标为__________,点D 的坐标为__________,点C 的坐标为__________(用含m 的式子表示);(2)求k 的值和直线AC 的表达式.22.(10分)已知函数()()()31{31131x xy x x x x≤-=-≥<< (1)画出函数图象; 列表:x ... ... y ... ... 描点,连线得到函数图象:(2)该函数是否有最大或最小值?若有,求出其值,若没有,简述理由; (3)设1122(,),(,)x y x y 是函数图象上的点,若120x x +=,证明:120y y +=.参考答案题号 1 2 3 4 5 6 7 8 9 10 答案 ABBDA BDBCA1.A【分析】根据反比例函数的定义“(0)ky k x=≠”即可求解.【详解】解:A 12y x=-符合反比函数定义,是反比例函数,符合题意; B xy k =不符合反比函数定义,不是反比例函数,不符合题意;C 11y x =+不符合反比函数定义,不是反比例函数,不符合题意; D 21y x =不符合反比函数定义,不是反比例函数,不符合题意; 故选:A .【点睛】本题主要考查反比例函数定义的理解,掌握其定义,表达式的形式是解题的关键. 2.B【分析】将点代入反比例函数中,求出反比例函数,观察反比例函数的特征,排除法选出选项. 【详解】解:2k yx图像经过()3,2- ∴将点()3,2-代入反比例函数得:223k 4k ∴=-∴反比例函数为:6y x=-通过观察反比例函数可知反比例函数中x 和y 值为一正一负,排除选项A 、D 和C 故选B【点睛】本题考查的是通过待定系数求反比例函数.解题时需要观察x 和y 的正负性,排除法是解这道题的技巧. 3.B【分析】本题考查反比例函数的性质:反比例函数的图象在一、三象限,比例系数大于0.让反比例函数的比例系数大于0列式求解即可. 【详解】解:∵反比例函数21k y x+=的图象分布在第一、三象限 ∵210k +> 解得12k >-. 故选:B . 4.D【分析】本题考查了反比例函数的图象及性质,根据0k >可判断A ;当32x =时4y =,可判断B ;根据0x ≠可判断C ;当0x <或0x >时,y 随x 的增大而减小可判断D ,熟练掌握反比例函数的图象及性质是解题的关键.【详解】解:A 、0k > ∴图象位于第一、三象限,则正确,故不符合题意; B 、当32x =时6432y ==,∴图象必经过点3,42⎛⎫⎪⎝⎭,则正确,故不符合题意;C 、0x ≠ ∴图象不可能与坐标轴相交,则正确,故不符合题意;D 、当0x <或0x >时,y 随x 的增大而减小,则错误,故符合题意; 故选D . 5.A【分析】根据一次函数与反比例函数的性质,判断图象经过的象限即可得出结果. 【详解】解:0k >时,一次函数2y kx =-的图象经过第一、三、四象限,反比例函数k y x=的两个分支分别位于第一、三象限,无选项符合题意;0k <时,一次函数2y kx =-的图象经过第二、三、四象限,反比例函数ky x=的两个分支分别位于第二、四象限,选项A 符合题意. 故选:A .【点睛】题目主要考查一次函数与反比例函数的图象判断,熟练掌握一次函数与反比例函数的基本性质是解题关键. 6.B【分析】利用数形结合的思想,直接得出关于x 的不等式0kax b x<+<的解集. 【详解】解:观察图象可得当60x -<<时,直线y ax b =+位于x 轴的上方、函数ky x=图象的下方 ∴不等式组0kax b x<+<的解是60x -<<. 故选:B .【点睛】本题主要考查了一次函数与反比例函数的交点问题,利用数形结合思想解答是解题关键. 7.D【分析】先判断()210k -+<进而得到反比例函数21k y x+=-的图象经过第二、四象限,由此即可得到答案. 【详解】解:∵210k +>∵()210k -+<∵反比例函数21k y x+=-的图象经过第二、四象限∵210x x << ∵120y y << 故选D .【点睛】本题主要考查了比较反比例函数函数值的大小,正确判断出反比例函数图象经过的象限是解题的关键. 8.B【分析】本题考查反比例函数系数k 的几何意义,根据反比例函数系数k 的几何意义得出2AOMBOMABCSSS-==是正确解答的关键.根据反比例函数系数k 的几何意义可得13322BOMS =⨯-=,12AOMS k =根据平行线的性质和三角形的面积公式可得2OABCABSS==,根据2AOMBOMS S-=,求出k 的值即可.【详解】解:如图,连接OA 、OB ,延长AB 交y 轴于M ,则13322BOMS=⨯-= 12AOMS k =AB x ∥轴2OABCABSS∴== 即2AOMBOMS S-=13222k ∴-= 0k <7k ∴=-故选:B .9.C【分析】本题主要考查了反比例函数与一次函数的综合,联立两直线解析式求出交点坐标,然后代入式子即可得出答案. 【详解】解:联立反比例函数52y x=-与直线24y x =-+. 5224y x y x ⎧=-⎪⎨⎪=-+⎩①②把①代入②得:5242x x-=-+ 整理得:24850x x -++=()()2288445481448122382b b ac -±--⨯-±--±-±-±====-- 解得:1215,22x x =-=把1215,22x x =-=代入 ②式得125,1==-y y故12a =- 52b = 5m = 1n =-故()10105121022101022b a m n ⎛⎫+--=+----=-+= ⎪⎝⎭故选:C . 10.A【分析】过点B 作BD∵x 轴于点D ,易证∵ACO∵∵CBD (AAS ),从而可求出B 的坐标,进而可求出反比例函数的解析式.【详解】解:如图所示,过点B 做BD ⊥x 轴交x 轴于D ∵∠ACO+∠BCD=90°,∠ACO+∠CAO=90° ∴∠CAO=∠BCD 又∵AC=CB∴∵ACO∵∵CBD (AAS ) ∵AO=CD=2,OC=BD=1 ∵B 点坐标为(3,1)设反比例函数的解析式为:k y x= 将B (3,1)代入ky x=得:k=3 ∴双曲线的解析式为:3y x=. 故选: A .【点睛】本题考查反比例函数的综合问题,涉及全等三角形的性质与判定,反比例函数的解析式,综合程度较高. 11.0(答案不唯一)【分析】本题主要考查了反比例函数图象的性质,对于反比例函数()0ky k x=≠,当0k >时,图象在一、三象限;当0k <时,图象在二、四象限,据此可得10k -<,即1k <,由此可得答案.【详解】解:由反比例函数1k y x-=的图象位于第二,四象限可知10k -< 1k ∴<k ∴的值可以是0故答案为:0(答案不唯一). 12.4【分析】由表格数据得到定值220U =V ,代入电阻值即可求解; 【详解】解:∵100 2.2200 1.122014000.55220⨯=⨯=⨯=⨯= ∵220U =V∵当电阻55R =Ω时220455I ==A 故答案为:4.【点睛】本题主要考查变量间的关系,根据表格得到电压的值是解题的关键. 13.20【分析】由图象易得P 关于V 的函数解析式为6000P V=,然后问题可求解. 【详解】解:设P 关于V 的函数解析式为kP V=,由图象可把点()100,60代入得:6000k =∵P 关于V 的函数解析式为6000P V= ∵当75kPa P =时,则60008075V == 当100kPa P =时,则600060100V == ∵压强由75kPa 加压到100kPa ,则气体体积压缩了806020mL -=; 故答案为20.【点睛】本题主要考查反比例函数的应用,熟练掌握反比例函数的应用是解题的关键. 14.-9【详解】试题解析:作BC OA ⊥于D ,∵四边形OABC 是菱形,∵60AB ∠=︒ ∵30ABD ∠=︒ 设AD x =,则2AB x = 3BD x = 236S OA BD x x =⋅==菱 解得:23x = 因为点B 在k y x=()32x x x k ⋅+= 2339k x == ∵9k =-. 15.②③④【分析】先补充完整两个函数的图象,再根据函数图象的增减性、对称性、交点问题可判断结论①②③,然后根据完全平方公式、偶次方的非负性可判断结论④. 【详解】当0x >时1y x = 21=y x当0x <时1y x =- 21y x=-画出两个函数的图象如下所示:则当0x <时,1y 随x 的增大而减小;2y 随x 的增大而增大,结论①错误 当1x <-时,函数1y 的图象位于函数2y 的图象的上方,则12y y >,结论②正确 当1x =时121y y ==即12,y y 的图象位于第一象限的交点坐标为(1,1)由对称性可知,12,y y 的图象位于第二象限的交点坐标为(1,1)- 因此,12,y y 的图象的两个交点之间的距离是1(1)2--=,结论③正确 1210y y y x x=+=+> 22211()2y x x x x∴=+=++又22211()20x x x x -=+-≥,当且仅当10x x-=,即1x =±时,等号成立 2212x x ∴+≥ 2212222y x x ∴=+++= 即函数12y y y =+的最小值为2,结论④正确 综上,所有正确的结论是②③④ 故答案为:②③④.【点睛】本题考查了正比例函数与反比例函数的综合、完全平方公式、偶次方的非负性等知识点,熟练掌握正比例函数与反比例函数的图象与性质是解题关键. 16.(1)y=6x- (2)点B(1,6)在这个反比例函数的图象上【分析】(1)设反比例函数的解析式是y=kx,只需把已知点的坐标代入,即可求得函数解析式;(2)根据反比例函数图象上点的坐标特征进行判断. 【详解】()1设反比例函数的解析式是k y x= 则32k -=得6k =-.则这个函数的表达式是6y x=-;()2因为1666⨯=≠-所以B 点不在函数图象上.【点睛】本题考查了待定系数法求反比例函数解析式:设出含有待定系数的反比例函数解析式y=kx(k 为常数,k≠0);把已知条件(自变量与函数的对应值)代入解析式,得到待定系数的方程;解方程,求出待定系数;写出解析式.也考查了反比例函数图象上点的坐标特征. 17.(1)反比例函数的解析式为23y x-=;一次函数的解析式为12y x =-+ (2)当12y y >时,自变量的取值范围为1x <-或03x << (3)4(4)点P 的坐标为3,3或(3,3或()27,27或(27,27【分析】本题考查了反比例函数与一次函数的交点问题,熟练掌握以上知识点并灵活运用,采用数形结合的思想是解此题的关键.(1)运用待定系数法求出反比例函数解析式,即可得出点B 的坐标,再根据待定系数法求解即可得出一次函数的解析式; (2)根据函数图象即可得解;(3)先求出()0,2C 得到2OC =,再根据AOB AOC BOC S S S =+△△△计算即可得解;(4)分两种情况:过点O 作AB 的平行线交反比例函数于P ,则直线OP 的解析式为y x =-,联立3y xy x =-⎧⎪-⎨=⎪⎩,求解即可;②在y 轴上取点N ,使2CN CO ==,过N 作NH AB ⊥于H ,过点O 作OG AB ⊥于G ,过N 点作AB 的平行线交反比例函数于P 可求出直线NP 的解析式为4y x =-+,联立43y x y x =-+⎧⎪-⎨=⎪⎩,求解即可. 【详解】(1)解:∵AM x ⊥轴,垂足为M ,AM=3,OM=1 ∵()1,3A -把()1,3A -代入反比例函数2ky x =,可得31k =- 解得:3k =-∵反比例函数的解析式为23y x-=; 令1y =-,则3x = ∵()3,1B -把()1,3A -,()3,1B -代入一次函数1y mx n =+可得313k bk b =-+⎧⎨-=+⎩解得:12k b =-⎧⎨=⎩ ∵一次函数的解析式为12y x =-+;(2)解:由图象可得:当12y y >时,自变量的取值范围为1x <-或03x <<; (3)解:在12y x =-+中,令0x =,则12y =,即()0,2C ∵2OC = ∵11212313422AOBAOC BOCSSS=+=⨯⨯+⨯⨯=+=; (4)解:①如图,过点O 作AB 的平行线交反比例函数于P ,则ABPABOS S=,故直线OP 的解析式为y x =-联立3y xy x =-⎧⎪-⎨=⎪⎩解得:33x y ⎧=⎪⎨=⎪⎩33x y ⎧=-⎪⎨=⎪⎩∵点P 的坐标为(3,3-或(3,3-;②在y 轴上取点N ,使2CN CO ==,过N 作NH AB ⊥于H ,过点O 作OG AB ⊥于G ,过N 点作AB 的平行线交反比例函数于P则90NHC OGC ∠=∠=︒ 又HCN OCG ∠=∠ ∵HCN OCG ≌ ∵HN OG = ∵ABPABOSS=∵2CN CO == ∵4ON = ∵()0,4N∵直线NP 的解析式为4y x =-+ 联立43y x y x =-+⎧⎪-⎨=⎪⎩解得:2727x y ⎧=⎪⎨=⎪⎩2727x y ⎧=⎪⎨=⎪⎩∵点P 的坐标为(27,27或(27,27 综上,点P 的坐标为3,3或(3,3-或(27,27或(27,27.18.(1)220I R= (2)0.16A(3)8802200R Ω≤≤Ω【分析】本题考查反比例函数的实际应用. (1)待定系数法求出函数解析式;(2)将1375ΩR =,代入解析式,求出I 的值,即可;(3)求出最小电流和最大电流对应的电阻R 的阻值,根据增减性即可得出结果.正确的求出函数解析式,掌握反比例函数的性质,是解题的关键. 【详解】(1)解:设kI R=,由图象可知 当1100R =Ω时0.2A I = ∵0.21100220k =⨯= ∵220I R=; (2)当1375ΩR =时2200.16A 1375I ==; (3)当0.1A I = 22022000.1R ==Ω 当0.25A I = 2208800.25R ==Ω ∵该台灯的电阻R 的取值范围为8802200R Ω≤≤Ω. 19.(1)点A 为3(2,)2-,点B 为(2,3),k 的值为3-.(2)小明猜想不正确,理由见解析【分析】本题考查了反比例函数k 的几何意义,三角形面积,一次函数的性质等知识点,其中理解反比例函数k 的几何意义是解题的关键.(1)由过点C 作x 轴的垂线叫解析式为A 、B 两点可知:当点C 为(,0)a ,则点B 坐标为6(,)a a ,点A 坐标为(,)ka a -,再将2a =,92AB =代入计算即可求解.(2)根据题意列出AB 的关系式,再根据公式12OABSAB OC =⋅代入化简即可得出结论. 【详解】(1)由题意可知:点C 为(,0)a ,则点B 坐标为6(,)a a ,点A 坐标为(,)ka a -.当2a =时,则点A 为(2,)2k-,点B 为(2,3)3BC ∴=.92AB =. 32AC AB BC ∴=-=. 322k ∴-=. 3k ∴=-.∴点A 为3(2,)2-,点B 为(2,3),k 的值为3-.(2)由题意可知:66k k AB a a a-=-= OC a =. 11611(6)32222OABk SAB OC a k k a -∴=⋅=⋅⋅=-=-+. k 值一定OAB ∴△的面积一定 ∴小明猜想不正确.20.(1)y =100(8<x ≤9);y =900x(9<x ≤45); (2)134分钟 【分析】(1)将D 点的坐标代入反比例函数的一般形式,利用待定系数法确定反比例函数的解析式;再求得点C 和点B 的坐标,继而用待定系数法确定一次函数的解析式; (2)将y =80代入反比例函数的解析式,从而求得答案. 【详解】(1)解:停止加热时,设k y x= 由题意得:50=18k 解得:k =900 ∵y =900x当y =100时,解得:x =9 ∵C 点坐标为(9,100) ∵B 点坐标为(8,100) 当加热烧水时,设y =ax +20 由题意得:100=8a +20 解得:a =10∵当加热烧水,函数关系式为y =10x +20(0≤x ≤8);当停止加热,得y 与x 的函数关系式为y =100(8<x ≤9);y =900x(9<x ≤45); (2)把y =80代入y =900x ,得454x =因此从烧水开到泡茶需要等待9013884-=分钟. 【点睛】本题考查了求一次函数解析,求反比例函数的解析式,反比例函数的实际应用,解题的关键是从实际问题中整理出反比例函数和一次函数模型,解题时注意根据图象确定对应函数的取值范围.21.(1)(0,2),(1,0),(m +1,2)(2)4;y =-2x +6【分析】(1)根据OB =2可得点B 的坐标,根据OD =1可得点D 的坐标为(1,0),由平移规律可得点C 的坐标;(2)根据点C 和D 的坐标列方程可得m 的值,从而得k 的值,再利用待定系数法可得直线AC 的解析式.【详解】(1)∵点B 在y 轴上 2OB =∵B (0,2)∵点D 落在x 轴正半轴上,且1OD =∵D (1,0)∵线段AB 向下平移2个单位,再向右平移1个单位,得到线段CD∵点A (m ,4)∵C (m +1,2)故答案为:(0,2),(1,0),(m +1,2);(2)∵点A 和点C 在反比例函数(0)k y x x=>的图象上∵k =4m =2(m +1)∵m =1∵A (1,4),C (2,2)∵k =1×4=4设直线AC 的表达式为:y sx t =+ ∵422s t s t +=⎧⎨+=⎩解得26s t =-⎧⎨=⎩ ∵直线AC 的表达式为:y =-2x +6.【点睛】此题主要考查了一次函数和反比例函数的综合应用以及平移的性质,根据OB 和OD 的长得出平移的规律是解题关键.22.(1)见解析;(2)有,当1x =时,最大值为3;当1x =-时,函数有最小值3-;(3)见解析【分析】(1)选取特殊值,代入函数解析式,求出y 值,列表,在图像中描点,画出图像即可;(2)观察图像可得函数的最大值;(3)根据120x x +=,得到1x 和2x 互为相反数,再分111x -<< 11x ≤- 11x ≥分别验证120y y +=.【详解】解:(1)列表如下: x ... -3 -2-1 0 1 2 3 4 ... y ... -1 32- -3 0 3 32 1 34... 函数图像如图所示:(2)根据图像可知:当x =1时,函数有最大值3;当1x =-时,函数有最小值3-;(3)∵1122(,),(,)x y x y 是函数图象上的点120x x +=∵1x 和2x 互为相反数当111x -<<时211x -<<∵113y x = 223y x =∵()1212123330y y x x x x +=+=+=;当11x ≤-时21x ≥则()121212123330x x y y x x x x ++=+==; 同理:当11x ≥时21x ≤-()121212123330x x y y x x x x ++=+== 综上:120y y +=.【点睛】本题主要考查正比例函数,反比例函数的图像和性质,描点法画函数图像,准确画出图像,理解120x x +=是解题的关键.。
第六单元反比例函数测试卷(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分,下列各小题均有四个答案,其中只有一个是正确的)1.下列函数中,y 是x 的反比例函数的是 ( )A. x(y-1)=1B.y =1x +1 C.y =1x2 D.y =13x 2.已知甲、乙两地相距s( km),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t(h)与行驶速度 v( km/h)的函数关系图象大致是 ( )3.已知反比例函数 y =kx(k ≠0)的图象经过点(2,3),若点(1,n)在反比例函数的图象上,则n 等于( )A.(-2,3)B.(-2,-3)C.(2,3)D.(3,2)5.已知反比例函数 y =−3x,则下列描述不正确的是 ( )A.图象位于第二、第四象限B.图象必经过点(-3,1)C.图象不可能与坐标轴相交D. y 随x 的增大而增大6.如果等腰三角形的面积为10,底边长为x ,底边上的高y ,则y 与x 的函数关系式为( )A.y =10xB.y =5xC.y =20xD.y =x 207.如图,在同一平面直角坐标系中,直线y =k ₁x (k ₁≠0)与双曲线y =k 2x(k 2≠0)相交于A ,B 两点,已知点 A 的坐标为(1,2),则点B 的坐标为 ( )A.(-1,-2) B.(-2,-1) C.(-1,-1) D.(-2,-2)8.如图所示,A ,B 是函数 y =1x的图象上关于原点O 的任意一对对称点,AC 平行于y 轴,BC平行于x 轴,△ABC 的面积为S ,则 ( )A. S=1 B. S=2 C.1<S<2 D. S>29.在同一直角坐标系中,函数y= kx-k 与 y =kx (k ≠0)的图象大致是 ( )10.如图,在第一象限内,A 是反比例函数y= k1x (k 1⟩0)图象上的任意一点,AB 平行于 y 轴交反比例函数 y =k 2x(k 2<0)的图象于点 B ,作以 AB 为边的平行四边形 ABCD,其顶点 C,D在 y 轴上,若 S ABCD =7,则这两个反比例函数可能是 ( )A.y =2x 和y =−3x B.y =3x 和y =−4x C.y =4x 和y =−5x D.y =5x和y =−6x 二、填空题(本大题共5小题,每小题3分,共15分)11.反比例函数 y =(m +2)x m 2−10的图象分布在第二、四象限内,则m 的值为 .12.若A(-2,y ₁),B(--1,y ₂),C(1,y ₃)三点都在函数 y =kx(k<0)的图象上,则 y ₁,y ₂,y ₃的大小关系是 (用“>”“<”或“=”连接)。
第6章反比例函数一.选择题(共10小题)1.下列函数中,是反比例函数的是()A.y=B.y=C.y=x﹣1D.y=2.今年,某公司推出一款新手机深受消费者推崇,但价格不菲.为此,某电子商城推出分期付款购买手机的活动,一部售价为9688元的新手机,前期付款3000元,后期每个月分别付相同的数额,则每个月付款额y(元)与付款月数x(x为正整数)之间的函数关系式是()A.B.C.D.3.函数y=﹣ax+a与y=(a≠0)在同一坐标系中的图象可能是()A.B.C.D.4.对于反比例函数y=,下列说法错误的是()A.函数图象位于第一、三象限B.函数值y随x的增大而减小C.若A(﹣1,y1)、B(1,y2)、C(2,y3)是图象上三个点,则y1<y3<y2D.P为图象上任意一点,过P作PQ⊥y轴于Q,则△OPQ的面积是定值5.如图,菱形ABCD的两个顶点B,D在反比例函数y=的图象上,对角线AC与BD的交点恰好是坐标原点O,已知点A(﹣2,2),∠ABC=60°,则k的值是()A.4 B.6 C.4D.126.如图,正方形ABCD的边长为5,点A的坐标为(0,3),点D在x轴的正半轴上.若反比例函数y=(k≠0)的图象经过点B,则k的值是()A.3 B.4 C.5 D.67.如图,在平面直角坐标系中,Rt△ABC的顶点A,B分别在y轴、x轴上,OA=2,OB=1,斜边AC∥x轴.若反比例函数y=(k>0,x>0)的图象经过AC的中点D,则k的值为()A.4 B.5 C.6 D.88.如图,在正方形ABCD中,点C(8,5),AB边不动,将正方形向左下方推动变形,使点D落在y轴的点D′处,点C落在点C′处,则经过点C′的反比例函数解析式是()A.y=B.y=C.y=D.y=9.设双曲线y=(k>0)与直线y=x交于A\B两点(点A在第三象限),将双曲线在第一象限的一支沿射线BA的方向平移,使其经过点A,将双曲线在第三象限的一支沿射线AB的方向平移,使其经过点B,平移后的两条曲线相交于P、Q两点,此时我们称平移后的两条曲线所围部分(如图中阴影部分)为双曲线的“眸”,PQ为双曲线的“眸径“,当双曲线y=(k>0)的眸径为6时,k的值为()A.B.2 C.D.310.如图,为某公园“水上滑梯”的侧面图,其中BC段可看成是一段双曲线,建立如图的坐标系后,其中,矩形AOEB为向上攀爬的梯子,OA=5米,进口AB∥OD,且AB=2米,出口C点距水面的距离CD为1米,则B、C之间的水平距离DE的长度为()A.5米B.6米C.7米D.8米二.填空题(共7小题)11.已知反比例函数y=(k﹣1)x,那么k的值是.12.如图,矩形OABC的边OA,OC分别在x轴、y轴上,点B在第一象限,点B的坐标为(3,6),反比例函数y=(k>0)的图象分别交边BC、AB于点D、F,连结DF,△DEF与△DBF关于直线DF对称,当点E正好落在边OC上时,则k的值为.13.如图,点A为函数y=(x>0)图象上一点,连结OA,交函数y=(x>0)的图象于点B,点C是x轴上一点,且AO=AC,则△ABC的面积为.14.若反比例函数y=﹣,当y≤,且y≠0时自变量x的取值范围.15.如图,是反比例函数y=和y=(k1>k2)在第一象限的图象,直线AB∥x轴,并分别交两条曲线于A、B两点,若S△AOB=4,则k1﹣k2的值是.16.如图,△ABC在第一象限内,∠C=90°,BC∥x轴,点C(2,2),AB所在直线的函数关系式是y=x+6.当反比例函数y=﹣的图象与△ABC有交点时,k的取值范围是.17.如图,Rt△AOB中,∠OAB=90°,∠OBA=30°,顶点A在反比例函数y=图象上,若Rt△AOB的面积恰好被y轴平分,则进过点B的反比例函数的解析式为.三.解答题(共5小题)18.如图,直线y=2x﹣4分别交坐标轴于A、B两点,交双曲线y=(x>0)于C点,且sin∠COB=;(1)求双曲线的解析式;(2)若过点B的直线y=ax+b(a>0)交y轴于D点,交双曲线于点E,且OD:AD=1:2,求E点横坐标.19.如图,一次函数y=x+b与反比例函数y=的图象交于A(m,3),B(﹣3,n)两点.过点B作BC⊥x轴,垂足为点C,且S△ABC=5.(1)求一次函数与反比例函数的表达式;(2)根据所给条件,请直接写出不等式x+b的解集;(3)若P(p,y1),Q(﹣2,y2)是反比例函数y=图象上的两点,且y1≥y2,求实数P的取值范围.20.如图,在所给的直角坐标系(O是坐标原点)中,每个小方格都是边长为1的正方形,直线y=mx+n与反比例函数y=的图象的交点A,B均在格点上.(1)请直接写出点A,B的坐标为:;当mx+n≥时,x的取值范围是;(2)将直线AB向右平移3个单位,再向上平移5个单位,在图中画出平移后的直线A′B′,并求出直线A′B′的解析式;(3)若点C在函数y=的图象上,且△ABC是以AB为底的等腰三角形,请直接写出点C的坐标.21.如图,在平面直角坐标系中,Rt△OAB的直角顶点A在x轴上,OB=5,OA=4,动点M 从点A出发,以每秒1个单位长度的速度,沿AO向终点O运动,同时点N从点O出发,以每秒2个单位长度的速度,沿OB向终点B移动,当两个动点运动了x(0<x<2.5)秒时,解答下列问题:(1)若点B在反比例函数y=(x>0)的图象上,求出该函数的解析式;(2)在两个动点运动过程中,当x为何值时,使得以O,M,N为顶点的三角形与△OAB 相似?22.冬天即将到来,龙泉某中学的初三学生到某蔬菜生产基地作数学实验.在气温较低时,蔬菜生产基地用装有恒温系统的大棚栽培蔬菜,经收集数据,该班同学将大棚内温度和时间的关系拟合为一个分段函数,如图是某天恒温系统从开启到关闭后,大棚内的温度y(℃)与时间x(h)之间的函数关系,其中线段AB,BC表示恒温系统开启阶段,双曲线的一部分CD表示恒温系统关闭阶段.请根据图中信息解答下列问题:(1)求这天的温度y与时间x(0≤x≤24)的函数关系式;(2)若大棚栽种某种蔬菜,温度低于10℃时会受到伤害.问若栽种这种蔬菜,恒温系统最多可以关闭多少小时就必须再次启动,才能使蔬菜避免受到伤害?参考答案与试题解析一.选择题(共10小题)1.下列函数中,是反比例函数的是()A.y=B.y=C.y=x﹣1D.y=【分析】根据反比例函数的一般形式即可作出判断.【解答】解:A、该函数是常函数,故本选项不符合题意.B、该函数是y与(1﹣x)成反比例函数关系,故本选项不符合题意.C、该函数是反比例函数,故本选项符合题意.D、该函数不是反比例函数,故本选项不符合题意.故选:C.2.今年,某公司推出一款新手机深受消费者推崇,但价格不菲.为此,某电子商城推出分期付款购买手机的活动,一部售价为9688元的新手机,前期付款3000元,后期每个月分别付相同的数额,则每个月付款额y(元)与付款月数x(x为正整数)之间的函数关系式是()A.B.C.D.【分析】直接利用后期每个月分别付相同的数额,进而得出y与x的函数关系式.【解答】解:由题意得y=,即y=,故选:D.3.函数y=﹣ax+a与y=(a≠0)在同一坐标系中的图象可能是()A.B.C.D.【分析】根据反比例函数与一次函数的图象特点解答即可.【解答】解:a>0时,﹣a<0,y=﹣ax+a在一、二、四象限,y=在一、三象限,无选项符合.a<0时,﹣a>0,y=﹣ax+a在一、三、四象限,y=(a≠0)在二、四象限,只有D 符合;故选:D.4.对于反比例函数y=,下列说法错误的是()A.函数图象位于第一、三象限B.函数值y随x的增大而减小C.若A(﹣1,y1)、B(1,y2)、C(2,y3)是图象上三个点,则y1<y3<y2D.P为图象上任意一点,过P作PQ⊥y轴于Q,则△OPQ的面积是定值【分析】先判断出k2+1的符号,再根据反比例函数的性质即可得出结论.【解答】解:A、∵k2+1>0,∴它的图象分布在第一、三象限,故本选项正确;B、∵它的图象分布在第一、三象限,∴在每一象限内y随x的增大而减小,故本选项错误;C、∵它的图象分布在第一、三象限,在每一象限内y随x的增大而减小,∵x1=﹣1<0,∴y1<0,∵x2=1>0,x3=2>0,∴y2>y3,∴y1<y3<y2故本选项正确;D、∵P为图象上任意一点,过P作PQ⊥y轴于Q,∴△OPQ的面积=(k2+1)是定值,故本选项正确.故选:B.5.如图,菱形ABCD的两个顶点B,D在反比例函数y=的图象上,对角线AC与BD的交点恰好是坐标原点O,已知点A(﹣2,2),∠ABC=60°,则k的值是()A.4 B.6 C.4D.12【分析】根据题意可以求得点B的坐标,从而可以求得k的值.【解答】解:∵四边形ABCD是菱形,∴BA=BC,AC⊥BD,∵∠ABC=60°,∴△ABC是等边三角形,∵点A(﹣2,2),∴OA=2,∴BO==,∵直线AC的解析式为y=﹣x,∴直线BD的解析式为y=x,∴点B的坐标为(2,2),∵点B在反比例函数y=的图象上,∴,解得,k=12,故选:D.6.如图,正方形ABCD的边长为5,点A的坐标为(0,3),点D在x轴的正半轴上.若反比例函数y=(k≠0)的图象经过点B,则k的值是()A.3 B.4 C.5 D.6【分析】作BE⊥y轴于E,根据勾股定理求得OD=4,然后证明△ABE≌△DAO,可得BE =AO=3,AE=OD=4,所以点B坐标为(﹣3,﹣1),把点B代入双曲线y=可得k的值.【解答】解:作BE⊥y轴于E,∵正方形ABCD的边长为5,点A的坐标为(0,3),∴AD=5,OA=3,∴OD===4,∵四边形ABCD为正方形,∴∠BAD=90°,AB=AD,∴∠BAE=90°﹣∠DAO=∠ADO,∵∠AEB=∠AOD=90°,∴△ABE≌△DAO(AAS),∴BE=AO=3,AE=OD=4,∴OE=AE﹣OA=1,∴B(﹣3,﹣1),∵反比例函数y=(k≠0)的图象经过点B,∴k=﹣3×(﹣1)=3,故选:A.7.如图,在平面直角坐标系中,Rt△ABC的顶点A,B分别在y轴、x轴上,OA=2,OB=1,斜边AC∥x轴.若反比例函数y=(k>0,x>0)的图象经过AC的中点D,则k的值为()A.4 B.5 C.6 D.8【分析】根据平行于x轴的直线上任意两点纵坐标相同,可设C(x,2).则D(x,4),由勾股定理得出AB2+BC2=AC2,列出方程22+12+(x﹣1)2+22=x2,求出x,得到D点坐标,代入y=,利用待定系数法求出k.【解答】解:∵AC∥x轴,OA=2,OB=1,∴A(0,2),∴C、A两点纵坐标相同,都为2,∴可设C(x,2).∵D为AC中点.∴D(x,2).∵∠ABC=90°,∴AB2+BC2=AC2,∴12+22+(x﹣1)2+22=x2,解得x=5,∴D(,2).∵反比例函数y=(k>0,x>0)的图象经过点D,∴k=×2=5.故选:B.8.如图,在正方形ABCD中,点C(8,5),AB边不动,将正方形向左下方推动变形,使点D落在y轴的点D′处,点C落在点C′处,则经过点C′的反比例函数解析式是()A.y=B.y=C.y=D.y=【分析】由点C(8,5)可知A(3,0),OD'=4,过点C'作C'M⊥OB,可证△AOD'≌△BMC'(HL),可求C'(5,4),即可求反比例函数解析式;【解答】解:∵正方形ABCD中,点C(8,5),∴A(3,0),AB=5,∵AD'=5,∴OD'=4,过点C'作C'M⊥OB,∵BC'=AD',C'M=OD',∴△AOD'≌△BMC'(HL),∴MB=OA=3,∴C'(5,4),∴y=;故选:A.9.设双曲线y=(k>0)与直线y=x交于A\B两点(点A在第三象限),将双曲线在第一象限的一支沿射线BA的方向平移,使其经过点A,将双曲线在第三象限的一支沿射线AB的方向平移,使其经过点B,平移后的两条曲线相交于P、Q两点,此时我们称平移后的两条曲线所围部分(如图中阴影部分)为双曲线的“眸”,PQ为双曲线的“眸径“,当双曲线y=(k>0)的眸径为6时,k的值为()A.B.2 C.D.3【分析】以PQ为边,作矩形PQQ′P′交双曲线于点P′、Q′,联立直线AB及双曲线解析式成方程组,通过解方程组可求出点A、B的坐标,由PQ的长度可得出点P的坐标(点P在直线y=﹣x上找出点P的坐标),由图形的对称性结合点A、B和P的坐标可得出点P′的坐标,再利用反比例函数图象上点的坐标特征即可得出关于k的一元一次方程,解之即可得出结论.【解答】解:以PQ为边,作矩形PQQ′P′交双曲线于点P′、Q′,如图所示.联立直线AB及双曲线解析式成方程组,,解得:,,∴点A的坐标为(﹣,﹣),点B的坐标为(,).∵PQ=6,∴OP=3,点P的坐标为(﹣,).根据图形的对称性可知:PP′=AB=QQ′,∴点P′的坐标为(﹣+2,+2).又∵点P′在双曲线y=上,∴(﹣+2)•(+2)=k,解得:k=.故选:A.10.如图,为某公园“水上滑梯”的侧面图,其中BC段可看成是一段双曲线,建立如图的坐标系后,其中,矩形AOEB为向上攀爬的梯子,OA=5米,进口AB∥OD,且AB=2米,出口C点距水面的距离CD为1米,则B、C之间的水平距离DE的长度为()A.5米B.6米C.7米D.8米【分析】根据矩形的性质得到BE=OA=5,AB=2,求得B(2,5),设双曲线BC的解析式为y=,得到k=10,于是得到结论.【解答】解:∵四边形AOEB是矩形,∴BE=OA=5,AB=2,∴B(2,5),设双曲线BC的解析式为y=,∴k=10,∴y=,∵CD为1∴当y=1时,x=10,∴DE的长=10﹣2=8m,故选:D.二.填空题(共7小题)11.已知反比例函数y=(k﹣1)x,那么k的值是±2 .【分析】根据反比例函数的定义解答.【解答】解:依题意得:k2﹣5=﹣1且k﹣1≠0.解得k=±2.故答案是:±2.12.如图,矩形OABC的边OA,OC分别在x轴、y轴上,点B在第一象限,点B的坐标为(3,6),反比例函数y=(k>0)的图象分别交边BC、AB于点D、F,连结DF,△DEF与△DBF关于直线DF对称,当点E正好落在边OC上时,则k的值为.【分析】过点F作FG⊥OC,垂足为G.由于四边形OABC是矩形,△DEF与△DBF关于直线DF对称,当点E正好落在边OC上,可得△DGF∽△FAE,然后把D、F两点的坐标用含k的代数式表示出来,再由相似三角形对应边成比例求出CE的长,然后利用勾股定理求出k.【解答】解:过点F作FG⊥OC,垂足为G,如图所示.由题意知D(,6),F(3,),FG=3.又∵△DEF与△DBF关于直线DF对称,点E在边OC上,∴DE=DB,∠B=∠DEF=90°,∴∠DEC+∠GEF=90°,∵∠EGF=∠DCE=90°,∠GEF+∠EFG=90°,∴∠DEC=∠EFG,∴△EGF∽△DCE,∴=,即=,解得:CE=,∵DE2=DC2+CE2,即(3﹣)2=()2+()2,解得:k=.故答案为:.13.如图,点A为函数y=(x>0)图象上一点,连结OA,交函数y=(x>0)的图象于点B,点C是x轴上一点,且AO=AC,则△ABC的面积为 6 .【分析】根据题意可以分别设出点A、点B的坐标,根据点O、A、B在同一条直线上可以得到A、B的坐标之间的关系,由AO=AC可知点C的横坐标是点A的横坐标的2倍,从而可以得到△ABC的面积.【解答】解:方法一:设点A的坐标为(a,),点B的坐标为(b,),∵点C是x轴上一点,且AO=AC,∴点C的坐标是(2a,0),设过点O(0,0),A(a,)的直线的解析式为:y=kx,∴,解得,k=,又∵点B(b,)在y=上,∴,解得,或(舍去),∴S△ABC=S△AOC﹣S△OBC==,故答案为:6.方法二:作BD⊥x轴于点D,作AE⊥x轴于点E,∵点A在为函数y=(x>0)图象上一点,AO=AC,∴△AOC的面积是9,∵点A为函数y=(x>0)图象上一点,连结OA,交函数y=(x>0)的图象于点B,∴=,∴,∴,∴S△ABC=6,故答案为:6.14.若反比例函数y=﹣,当y≤,且y≠0时自变量x的取值范围x≤﹣9或x>0 .【分析】首先画出图形,进而利用函数图象得出x的取值范围.【解答】解:如图所示:∵反比例函数y=﹣,当y≤,∴y=时,则x=﹣9,故y≤时,x≤﹣9或x>0.故答案为:x≤﹣9或x>0.15.如图,是反比例函数y=和y=(k1>k2)在第一象限的图象,直线AB∥x轴,并分别交两条曲线于A、B两点,若S△AOB=4,则k1﹣k2的值是8 .【分析】设A(a,b),B(c,d),代入双曲线得到k1=ab,k2=cd,根据三角形的面积公式求出ab﹣cd=8,即可得出答案.【解答】解:设A(a,b),B(c,d),代入得:k1=ab,k2=cd,∵S△AOB=4,∴ab﹣cd=4,∴ab﹣cd=8,∴k1﹣k2=8,故答案为:8.16.如图,△ABC在第一象限内,∠C=90°,BC∥x轴,点C(2,2),AB所在直线的函数关系式是y=x+6.当反比例函数y=﹣的图象与△ABC有交点时,k的取值范围是4≤k≤.【分析】先求出点A、B的坐标,根据反比例函数图象上点的坐标特征可知,当反比例函数图象与△ABC相交于点C时k的取值最小,当与线段AB相交时,k能取到最大值,根据直线y=x+6,设交点为(x,﹣x+6)时k值最大,然后列式利用二次函数的最值问题解答即可得解.【解答】解:∵△ABC在第一象限内,∠C=90°,BC∥x轴,点C(2,2),∴把x=2代入y=x+6得,y=﹣×2+6=,把y=2代入y=x+6得,﹣x+6=2,解得x=6,∴点A、B的坐标分别为A(2,),B(6,2),根据反比例函数系数的几何意义,当反比例函数与点C相交时,k=2×2=4最小,设反比例函数与线段AB相交于点(x,﹣x+6)时k值最大,则k=x(﹣x+6)=﹣x2+6x=﹣(x﹣)2+,∵2≤x≤6,∴当x=时,k值最大,此时交点坐标为(,3),因此,k的取值范围是4≤k≤.故答案为:4≤k≤.17.如图,Rt△AOB中,∠OAB=90°,∠OBA=30°,顶点A在反比例函数y=图象上,若Rt△AOB的面积恰好被y轴平分,则进过点B的反比例函数的解析式为10 .【分析】分别过A、B作AE⊥x轴于E,BD⊥y轴交AE于F.设A(a,b),则ab=﹣4.根据两角对应相等的两三角形相似,得出△OAE∽△ABF,由相似三角形的对应边成比例,则BD、OD都可用含a、b的代数式表示,从而求出B的坐标,进而得出结果.【解答】解:分别过A、B作AE⊥x轴于E,BD⊥y轴交AE于F.设A(a,b).∵顶点A在反比例函数y=图象上,∴ab=﹣4.∵∠OAB=90°,∠OAE=90°﹣∠BAF=∠ABF,∠OEA=∠BFA=90°,∴△OAE∽△ABF,∴OA:AB=OE:AF=AE:BF,在Rt△AOB中,∠AOAB=90°,∠OBA=30°,∴OA:AB=1:,∴﹣a:AF=b:BF=1:,∴AF=﹣,BF=b,∵Rt△AOB的面积恰好被y轴平分,∴AC=BC,∴BD=DF=BF=﹣a,OD=AE+AF=b﹣a,∴b=﹣a,∴A(﹣b,b),B(b,b﹣)∴﹣b•b=﹣4,∴b2=,∴k=b(b﹣)=b2﹣ab=10,故答案为:10.三.解答题(共5小题)18.如图,直线y=2x﹣4分别交坐标轴于A、B两点,交双曲线y=(x>0)于C点,且sin∠COB=;(1)求双曲线的解析式;(2)若过点B的直线y=ax+b(a>0)交y轴于D点,交双曲线于点E,且OD:AD=1:2,求E点横坐标.【分析】(1)根据题意设出点C的坐标,由sin∠COB=可以求得点C的坐标,进而可以求得双曲线的解析式;(2)根据y=2x﹣4求得A、B的坐标,OD:AD=1:2,可知D的坐标,根据待定系数法求得BD的解析式,联立解析式即可求出E横坐标.【解答】解:(1)设点C的坐标是(a,2a﹣4),∵sin∠COB=,∴tan∠COB==,解得,a=6,∴点C为(6,8),∵点C在双曲线y=(x>0)上,∴k=6×8=48,即双曲线的解析式为:y=;(2)∵直线y=ax+b(a>0)交y轴于D点,∴点D的坐标是(0,b),∵直线y=2x﹣4分别交坐标轴于A、B两点,∴点A的坐标是(0,﹣4),B(2,0),∵OD:AD=1:2,∴OD=,∴D(0,﹣),把B(2,0),D(0,﹣)代入y=ax+b得,解得,∴y=x﹣,解x﹣=得x=1+,x=1﹣(舍去),∴E的横坐标为1+.19.如图,一次函数y=x+b与反比例函数y=的图象交于A(m,3),B(﹣3,n)两点.过点B作BC⊥x轴,垂足为点C,且S△ABC=5.(1)求一次函数与反比例函数的表达式;(2)根据所给条件,请直接写出不等式x+b的解集;(3)若P(p,y1),Q(﹣2,y2)是反比例函数y=图象上的两点,且y1≥y2,求实数P的取值范围.【分析】(1)把A、B的坐标代入反比例函数解析式求出m=﹣n,即可得出A(m,3),B (﹣3,﹣m),根据三角形面积求得m、n的值,得到A、B的坐标,代入反比例函数和一次函数的解析式,即可求出答案;(2)根据A、B的横坐标,结合图象即可得出答案;(3)分为两种情况:当点P在第一象限时和当点P在第三象限时,根据坐标和图象即可得出答案.【解答】解:(1)把A(m,3),B(﹣3,n)代入反比例函数y=得:k=3m=﹣3n,即m=﹣n,则B(﹣3,﹣m),∵A(m,3),B(﹣3,﹣m),S△ABC=•BC•(x A﹣x B)∴×m×(m+3)=5,解得:m=2或m=﹣5(舍去),∴n=﹣2,即A(2,3),B(﹣3,﹣2),把A(2,3)代入y=得:k=6,即反比例函数的解析式是y=;把A(2,3)代入y=x+b得:3=2+b,解得:b=1,即一次函数的解析式是y=x+1;(2)∵A(2,3),B(﹣3,﹣2),∴不等式x+b的解集是x≤﹣3或0<x≤2;(3)∵P(p,y1),Q(﹣2,y2)是反比例函数y=图象上,则点Q(﹣2,y2)在第三象限,∴当点P在第一象限时,总有y1>y2,此时p>0;当点P在第三象限时,要使y1≥y2,实数p的取值范围是P≤﹣2,即P的取值范围是p≤﹣2或p>0.20.如图,在所给的直角坐标系(O是坐标原点)中,每个小方格都是边长为1的正方形,直线y=mx+n与反比例函数y=的图象的交点A,B均在格点上.(1)请直接写出点A,B的坐标为:点A(﹣1,﹣4),点B(﹣4,﹣1);当mx+n ≥时,x的取值范围是x>﹣4或﹣1<x<0 ;(2)将直线AB向右平移3个单位,再向上平移5个单位,在图中画出平移后的直线A′B′,并求出直线A′B′的解析式;(3)若点C在函数y=的图象上,且△ABC是以AB为底的等腰三角形,请直接写出点C的坐标.【分析】(1)观察图象,可求解;(2)由题意画出图象,由待定系数法可求直线解析式;(3)由待定系数法可求反比例函数解析式,设点C(a,),由等腰三角形的性质和两点距离公式可求a的值,即可求点C坐标.【解答】解:(1)由图象可知:点A(﹣1,﹣4),点B(﹣4,﹣1),当mx+n≥时,x的取值范围是x>﹣4或﹣1<x<0,故答案为:点A(﹣1,﹣4),点B(﹣4,﹣1),x>﹣4或﹣1<x<0;(2)图象如图:∵点A(﹣1,﹣4),点B(﹣4,﹣1),且直线AB向右平移3个单位,再向上平移5个单位,∴点A'(2,1),点B'(﹣1,4)设直线A'B'解析式为:y=kx+b,∴解得:∴直线A′B′的解析式为:y=﹣x+3;(3)∵反比例函数y=的图象过点A(﹣1,﹣4),∴k=﹣1×(﹣4)=4,∴反比例函数的解析式为:y=,设点C(a,),∵△ABC是以AB为底的等腰三角形,∴CA=CB,∴(a+1)2+(+4)2=(a+4)2+(+1)2,∴a=±2,∴点C(﹣2,﹣2)或(2,2)21.如图,在平面直角坐标系中,Rt△OAB的直角顶点A在x轴上,OB=5,OA=4,动点M 从点A出发,以每秒1个单位长度的速度,沿AO向终点O运动,同时点N从点O出发,以每秒2个单位长度的速度,沿OB向终点B移动,当两个动点运动了x(0<x<2.5)秒时,解答下列问题:(1)若点B在反比例函数y=(x>0)的图象上,求出该函数的解析式;(2)在两个动点运动过程中,当x为何值时,使得以O,M,N为顶点的三角形与△OAB 相似?【分析】(1)由勾股定理可求点B坐标(4,3),代入解析式可求k的值,即可求函数的解析式;(2)分两种情况讨论,由相似三角形的性质可求解.【解答】解:(1)∵△ABC是直角三角形,且BA⊥x轴于A,OA=4,OB=5,∴∴B(4,3),∴将B(4,3)代入得k=12,∴函数的解析式为:;(2)在两个动点运动过程中,分两种情况:①若∠OMN=90°,如图1所示,则MN∥AB,此时OM=4﹣x,ON=2x,∵∠OMN=∠OAB,∠NOM=∠BOA,∴△MON∽△AOB,∴,即:∴;②若∠ONM=90°,如图2所示,则∠ONM=∠OAB,此时OM=4﹣x,ON=2x,∵∠ONM=∠OAB,∠MON=∠BOA,∴△OMN~△OBA,∴即:,∴,综上所述,当或秒时,使得以O,M,N为顶点的三角形与△OAB相似.22.冬天即将到来,龙泉某中学的初三学生到某蔬菜生产基地作数学实验.在气温较低时,蔬菜生产基地用装有恒温系统的大棚栽培蔬菜,经收集数据,该班同学将大棚内温度和时间的关系拟合为一个分段函数,如图是某天恒温系统从开启到关闭后,大棚内的温度y(℃)与时间x(h)之间的函数关系,其中线段AB,BC表示恒温系统开启阶段,双曲线的一部分CD表示恒温系统关闭阶段.请根据图中信息解答下列问题:(1)求这天的温度y与时间x(0≤x≤24)的函数关系式;(2)若大棚栽种某种蔬菜,温度低于10℃时会受到伤害.问若栽种这种蔬菜,恒温系统最多可以关闭多少小时就必须再次启动,才能使蔬菜避免受到伤害?【分析】(1)应用待定系数法分段求函数解析式;(2)代入临界值y=10即可.【解答】解:(1)设线段AB解析式为y=k1x+b(k≠0)∵线段AB过点(0,10),(2,14)代入得,得,AB解析式为:y=2x+10(0≤x<5)∵B在线段AB上当x=5时,y=20∴B坐标为(5,20)∴线段BC的解析式为:y=20(5≤x<10)设双曲线CD解析式为:y=(k2≠0)∵C(10,20)∴k2=200∴双曲线CD解析式为:y=(10≤x≤24)∴y关于x的函数解析式为:y=(2)把y=10代入y=中,解得,x=20∴20﹣10=10答:恒温系统最多关闭10小时,蔬菜才能避免受到伤害.。
北师大版九年级数学第六章《反比例函数》单元复习练习题(含答案)一、单选题 1.反比例函数()30y x x=-<的图象如图所示,则△ABC 的面积为( )A .12B .32C .3D .62.反比例函数6y x=-的图像大致是( )A .B .C .D .3.列车从甲地驶往乙地,行完全程所需的时间()h t 与行驶的平均速度()km/h v 之间的反比例函数关系如图所示.若列车要在2.5h 内到达,则速度至少需要提高到( )km/h .A .180B .240C .280D .3004.如图,在平面直角坐标系中,点M 为x 轴正半轴上一点,过点M 的直线l ∥y 轴,且直线l 分别与反比例函数8y x =和ky x=的图象交于P 、Q 两点.若S △POQ =15,则k 的值为( )A .38B .22C .﹣7D .﹣225.关于函数2y x=-,下列说法中正确的是( )A .图像位于第一、三象限B .图像与坐标轴没有交点C .图像是一条直线D .y 的值随x 的值增大而减小6.某城市市区人口x 万人,市区绿地面积50万平方米,平均每人拥有绿地y 平方米,则y 与x 之间的函数表达式为( ) A .50y x =+B .50y x =C .50y x=D .50=x y 7.如图,一次函数(y kx b k =+、b 为常数,0)k ≠与反比例函数4y x=的图象交于A (1,m ),B (n ,2)两点,与坐标轴分别交于M ,N 两点.则△AOB 的面积为( )A .3B .6C .8D .128.已知反比例函数y =kx(k ≠0),且在各自象限内,y 随x 的增大而增大,则下列点可能在这个函数图象上的为( ) A .(2,3)B .(-2,3)C .(3,0)D .(-3,0)9.对于反比例函数y =﹣5x,下列说法错误的是( )A .图象经过点(1,﹣5)B .图象位于第二、第四象限C .当x <0时,y 随x 的增大而减小D .当x >0时,y 随x 的增大而增大 10.若反比例函数(0)ky k x=≠的图象经过点(2,3)-,则它的图象也一定经过的点是( ) A .(2,3)--B .(3,2)--C .(1,6)-D .(6,1)11.某市举行中学生党史知识竞赛,如图用四个点分别描述甲、乙、丙、丁四所学校竞赛成绩的优秀率(该校优秀人数与该校参加竞赛人数的比值)y 与该校参加竞赛人数x 的情况,其中描述乙、丁两所学校情况的点恰好在同一个反比例函数的图像上,则这四所学校在这次党史知识竞赛中成绩优秀人数最多的是( )A .甲B .乙C .丙D .丁12.如图,在平面直角坐标系中,直线y =x 与反比例函数y =4x (x >0)的图象交于点A ,将直线y =x 沿y 轴向上平移b 个单位长度,交y 轴于点B ,交反比例函数图象于点C .若OA =2BC ,则b 的值为( )A .1B .2C .3D .4二、填空题13.若1(1,)M y -、21(,)2N y -两点都在函数ky x=的图像上,且1y <2y ,则k 的取值范围是______.14.已知点(),A m n 在双曲线k y x =上,点(),B m n -在直线23y x k =-上,则21n m+的值为______.15.如图所示,矩形ABCD 顶点A 、D 在y 轴上,顶点C 在第一象限,x 轴为该矩形的一条对称轴,且矩形ABCD 的面积为6.若反比例函数ky x=的图象经过点C ,则k 的值为_________.16.如图,点A 是反比例函数3y x=图象上任意一点,过点A 分别作x 轴,y 轴的垂线,垂足为B ,C ,则四边形OBAC 的面积为____.17.如图,边长为4的正方形ABCD 的对称中心是坐标原点O ,//AB x 轴,//BC y 轴,反比例函数2y x =与2y x=-的图像均与正方形ABCD 的边相交,则图中阴影部分的面积之和是________.18.如图,若反比例函数1ky x=与一次函数2y ax b =+交于A 、B 两点,当12y y <时,则x 的取值范围是_________.19.如图,点A 在反比例函数y =xk(x >0)的图象上,过点A 作AB ⊥x 轴于点B ,若△OAB的面积为3,则k =_______.20.如图,在平面直角坐标系中,正方形ABCD 的顶点A ,B 分别在x 轴、y 轴上,对角线交于点E ,反比例函数(0,0)ky x k x=>>的图像经过点C ,E .若点(3,0)A ,则k 的值是_________.三、解答题21.如图,在平面直角坐标系中,反比例函数y kx=(x >0)的图象经过点A (2,6),将点A 向右平移2个单位,再向下平移a 个单位得到点B ,点B 恰好落在反比例函数y kx=(x >0)的图象上,过A ,B 两点的直线与y 轴交于点C .(1)求k的值及点C的坐标;(2)在y轴上有一点D(0,5),连接AD,BD,求△ABD的面积.22.如图,在平面直角坐标系中,O为坐标原点,Rt△OAB的直角边OB在x轴的正半轴上,点A的坐标为(6,4),斜边OA的中点D在反比例函数ykx=(x>0)的图象上,AB交该图象于点C,连接OC.(1)求k的值;(2)求△OAC的面积.23.如图是反比例函数y=52mx-的图象的一支.根据图象解决下列问题:(1)求m的取值范围;(2)若点A(m-3,b1)和点B(m-4,b2)是该反比例函数图象上的两点,请你判断b1与b2的大小关系,并说明理由.24.教师办公室有一种可以自动加热的饮水机,该饮水机的工作程序是:放满水后接通电源,则自动开始加热,每分钟水温上升10℃,待加热到100℃,饮水机自动停止加热,水温开始下降.水温y(℃)和通电时间x(min)成反比例函数关系,直至水温降至室温,饮水机再次自动加热,重复上述过程.设某天水温和室温均为20℃,接通电源后,水温y(℃)和通电时间x(min)之间的关系如图所示,回答下列问题:(1)分别求出当0≤x≤8和8<x≤a时,y和x之间的函数关系式;(2)求出图中a的值;(3)李老师这天早上7:30将饮水机电源打开,若他想在8:10上课前喝到不低于40℃的开水,则他需要在什么时间段内接水?25.如图,A(4,3)是反比例函数y=kx在第一象限图象上一点,连接OA,过A作AB∥x轴,截取AB=OA(B在A右侧),连接OB,交反比例函数y=kx的图象于点P.(1)求反比例函数y=kx的表达式;(2)求点B的坐标;(3)求△OAP的面积.26.如图,一次函数1y k x b =+与反比例函数2(0)k y x x=>的图象交于(1,6)A ,(3,)B n 两点. (1)求反比例函数的解析式和n 的值; (2)根据图象直接写出不等式21k k x b x+<的x 的取值范围; (3)求AOB 的面积.27.如图,已知一次函数1y kx b =+与反比例函数2my x=的图象在第一、三象限分别交于(6,1)A ,(,3)B a -两点,连接OA ,OB .(1)求一次函数和反比例函数的解析式; (2)AOB 的面积为______;(3)直接写出12y y >时x 的取值范围.28.如图,一次函数5y x =+的图象与反比例函数ky x=(k 为常数且0k ≠)的图象相交于(1,)A m -,B 两点.(1)求反比例函数的表达式;(2)将一次函数5y x =+的图象沿y 轴向下平移b 个单位(0)b >,使平移后的图象与反比例函数ky x=的图象有且只有一个交点,求b 的值.29.如图,一次函数1522y x =-+的图像与反比例函数k y x=(k >0)的图像交于A ,B 两点,过点A 做x 轴的垂线,垂足为M ,△AOM 面积为1. (1)求反比例函数的解析式;(2)在y 轴上求一点P,使PA+PB 的值最小,并求出其最小值和P 点坐标.参考答案1.B2.C3.B4.D5.B6.C7.A8.B9.C10.C11.C12.C 13.k <0 14.-3 15.3 16.3 17.818.10,2x x <<>-19.6 20.421.解:(1)把点(2,6)A 代入ky x =,2612k =⨯=,∴反比例函数的解析式为12y x=,将点A 向右平移2个单位,4x ∴=, 当4x =时,1234y ==, (4,3)B ∴,设直线AB 的解析式为y mx n =+,由题意可得6234m nm n =+⎧⎨=+⎩,解得329m n ⎧=-⎪⎨⎪=⎩, 392y x ∴=-+,当0x =时,9y =,(0,9)C ∴;(2)由(1)知954CD =-=,1111||||444242222ABD BCD ACD B A S S S CD x CD x ∆∆∆∴=-=⋅-⋅=⨯⨯-⨯⨯=.22.(1)解:点A 的坐标为(6,4),点D 为OA 的中点, ∴点D 的坐标为(3,2),点D 在反比例函数ky x=的图象上, 326k ∴=⨯=;(2)解:由题意得,点C 的横坐标为6, ∴点C 的纵坐标为:616=, 413AC ∴=-=,OAC ∴∆的面积16392=⨯⨯=.23.(1)解:由图象可知,520k m =->, 解得52m <,∴m 的取值范围为52m <. (2)解:12<b b .理由如下:∵52m <,∴430m m -<-<,由反比例函数的图象与性质可知,当0x <时,y 随着x 的增大而减小,∴12<b b .24.(1)当0≤x ≤8时,设y =k 1x +b , 将(0,20),(8,100)的坐标分别代入y =k 1x +b 得,1208100b k b =⎧⎨+=⎩ 解得k 1=10,b =20.∴当0≤x ≤8时,y =10x +20.当8<x ≤a 时,设y =2k x, 将(8,100)的坐标代入y =2k x , 得k 2=800∴当8<x ≤a 时,y =800x. 综上,当0≤x ≤8时,y =10x +20;当8<x ≤a 时,y =800x. (2)将y =20代入y =800x , 解得x =40,即a =40;(3)当y =40时,x =80040=20. ∴要想喝到不低于40℃的开水,x 需满足8≤x ≤20,即李老师要在7:38到7:50之间接水.25.(1)将点A (4,3)代入y =k x,得:k =12, 则反比例函数解析式为y =12x; (2)如图,过点A 作AC ⊥x 轴于点C ,则OC =4、AC =3,∴OA 2243+,∵AB ∥x 轴,且AB =OA =5, ∴点B 的坐标为(9,3);(3)∵点B 坐标为(9,3),∴OB 所在直线解析式为y =13x , 由1312y x y x ⎧=⎪⎪⎨⎪=⎪⎩可得点P 坐标为(6,2),(负值舍去), 过点P 作PD ⊥x 轴,延长DP 交AB 于点E ,则点E 坐标为(6,3),∴AE =2、PE =1、PD =2,则△OAP 的面积=12×(2+6)×3﹣12×6×2﹣12×2×1=5.26.解:(1)(1,6)A 在2k y x=的图象上, 26k ∴=, ∴反比例函数的解析式是6y x=. 又∵(3,)B n 在2k y x=的图象上,623n ∴==; (2)由图像可知:当01x <<或3x >时,21k k x b x +<; (3)(1,6)A ,(3,2)B 在函数1y k x b =+的图象上,∴11632k b k b +=⎧⎨+=⎩, 解得:128k b =-⎧⎨=⎩, 则一次函数的解析式是28y x =-+,设直线28y x =-+与x 轴相交于点C ,则C 的坐标是(4,0).∴AOB AOC BOC S S S =-△△△1122A B OC y OC y =⋅-⋅ 11464222=⨯⨯-⨯⨯ 8=.27.解:(1)把(6,1)A 代入反比例函数2m y x =得: m=6,∴反比例函数的解析式为26y x=, ∵(,3)B a -点在反比例函数2m y x =图像上, ∴-3a=6,解得a=-2,∴B (-2,-3),∵一次函数y 1=kx+b 的图象经过A 和B ,∴1632k b k b =+⎧⎨-=-+⎩,解得:122k b ⎧=⎪⎨⎪=-⎩, ∴一次函数的解析式为1122y x =-; (2)∵(6,1)A ,(2,3)B --,一次函数的解析式为1122y x =-, 令y=0,解得:x=4,即一次函数图像与x 轴交点为(4,0),∴S △AOB =()141382⨯⨯+=, 故答案为:8;(3)由图象可知:12y y >时,即一次函数图像在反比例函数图像上方,x 的取值范围是:-2<x <0或x >6.28.(1)由题意,将点(1,)A m -代入一次函数5y x =+得:154m =-+=(1,4)A -∴将点(1,4)A -代入k y x=得:41k =-,解得4k =- 则反比例函数的表达式为4y x=-; (2)将一次函数5y x =+的图象沿y 轴向下平移b 个单位得到的一次函数的解析式为5y x b =+- 联立54y x b y x =+-⎧⎪⎨=-⎪⎩整理得:2(5)40x b x +-+=一次函数5y x b =+-的图象与反比例函数4y x=-的图象有且只有一个交点 ∴关于x 的一元二次方程2(5)40x b x +-+=只有一个实数根∴此方程的根的判别式2(5)440b ∆=--⨯=解得121,9b b ==则b 的值为1或9.29.(1)反比例函数(0)k y k x=>的图象过点A ,过A 点作x 轴的垂线,垂足为M ,AOM ∆面积为1,∴11 2k=,k >,2k∴=,故反比例函数的解析式为:2yx =;(2)作点A关于y轴的对称点'A,连接'A B,交y轴于点P,则PA PB+最小.由15222y xyx⎧=-+⎪⎪⎨⎪=⎪⎩,解得12xy=⎧⎨=⎩,或412xy=⎧⎪⎨=⎪⎩,()1,2A∴,14,2B⎛⎫ ⎪⎝⎭,()'1,2A∴-,最小值'A B=设直线'A B的解析式为y mx n=+,则2142m nm n-+=⎧⎪⎨+=⎪⎩,解得3101710mn⎧=-⎪⎪⎨⎪=⎪⎩,∴直线'A B的解析式为3171010y x=-+,x∴=时,1710y=,P∴点坐标为17 0,10⎛⎫ ⎪⎝⎭.。