第一章1-3节习题讲评 - 副本
- 格式:pptx
- 大小:1.61 MB
- 文档页数:19
第一章至第三章作业讲评同学们好:本学期中国政治制度史课程学习已经开始了,按照进度要求,同学们应该在开学后第一个月内完成第一次作业,现将作业情况做一讲评,以供大家在订正作业时参考。
作业应在电大在线——在线测试中完成。
本次作业涉及的内容是第一章和第三章的教材内容。
一、作业要求1、认真审题在做练习时一定要认真审题。
我们的作业题型为三种,单选题、多选题和判断题。
同学们一定要注意审题,养成看清题目要求再解题的习惯。
这样既能避免粗心做错题目,也能提高做题的效率。
2、作业需要在线完成请大家进入在线测试,再做作业。
每次作业为过程性测评的依据。
本作业相当于题库,在线测试时,题目的顺序会不同。
3、课程预习和复习同学们要在预习第一至第三章内容的基础上,来完成相应章节的作业。
在完成作业过程中,如果有问题,请同学们在课程论坛中及时地提问,并做好相应章节的复习。
二、完成作业需具备的知识及参考资料阅读教材第一章和第三章的内容。
第一章通过本章学习,了解国家的概念,以及判定国家产生的主要标准;了解摩尔根分析模式在解释中国国家起源问题上存在的局限性;掌握酋邦模式、氏族模式、征服模式、说服模式的理论原理,掌握不同的国家起源模式可能对早期国家心态造成的影响。
第二章通过本章学习,结合文献记载的三皇五帝的传说以及相关考古发现,对我国史前时期的原始族群、聚落分布有初步的了解。
掌握活跃于中原地区的华夏集团、东夷集团联合体的政治组织的基本情况,认识战争在推进我国早期国家形成中的作用,理解我国早期国家形态的独特性。
第三章通过本章学习,掌握夏商周王室的一般情况,以及文明的主要成果。
掌握西周政治制度的特点,井田制、封建制、宗法制的主要内容。
掌握西周封建制度在春秋时期解体的原因,了解战国时期政治制度创新的基本走向。
三、以往容易出现的问题1、单选题:中国国家起源问题的研究结论都带有()性质。
A、科学B、假说C、阶级D、客观分析:这是一道单选题。
中国国家和政治制度起源的研究,资料严重不足是所有研究者的共同感受。
课题:章节复习及练习讲评课本:三维创新化学山东地图出版社知识与能力:1.建立化学反应中能量变化的观点,了解吸热反应和放热反应,并会正确书写热化学方程式;2.学会利用题目中所提供的信息,对电解池、原电池等电解原理实际应用的电极材料和电极反应式判断和书写;3.解决好电子转移的关系来完成电解有关计算。
过程与方法:通过知识点的简单回顾,以及考点的归纳分析,进一步在练习上加深对知识点的认识,在讲评中强化一些概念和多增加一些注意点,以协助和补充对课本内容的理解和掌握。
然后通过抓主干去枝叶来拓展思维,在头脑这高层领域里对知识点的有新的认识。
情感态度与价值观:养成循序渐进的思维历程,在研究和探讨中激发起学习的兴趣。
课型:练习研讨课教学重难点:旨在让学生了解考点以及对练习的把握,如何能够将知识融会贯通,在解决问题的过程中能够积极开动脑筋。
课时安排:2课时教学过程:(第一课时)【考点归纳】本章教科书以“能量转化”为主线,首先学习了通过实验测定方法和理论方法来定量描述化学反应的热效应,然后学习了化学能与电能相互转化的两种具体形式:一是电能转化为化学能—电解;二是化学能转化为电能—电池。
(一起阅读P26--27)【考点一】化学反应的热效应1.建立化学反应中能量变化的观点,了解吸热反应和放热反应2.书写热化学方程式应注意的问题【考点二】电解原理极其应用1.电解池判断2.电极反应3.电解有关计算的方法规律【考点三】原电池工作原理极其应用1.原电池判断2.电极反应3.化学电源【题1】下列各项与反应热的大小无关的是(D)A.反应物的状态B.生成物的状态C.反应物的多少D.表示反应热的单位【解析】反应热指化学反应在一定的温度下进行时,反应所释放或吸收的热。
反应热与反应物的物质的量成正比。
与物质状态有关,与表示反应热的单位无关。
【题3】已知充分燃烧a g乙炔气体时生成1 mol二氧化碳气体和液态水,并放出热量b kJ,则乙炔燃烧的热化学方程式正确的是(A)A.2C2H2(g)+5O2(g)==4CO2(g)+2H2O(l) ΔH=-4b kJ•mol-1B.C2H2(g)+5/2O2(g)==2CO2(g)+H2O(l) ΔH=-2b kJ•mol-1C.2C2H2(g)+5O2(g)==4CO2(g)+2H2O(l) ΔH=-2b kJ•mol-1D.2C2H2(g)+5O2(g)==4CO2(g)+2H2O(l) ΔH=b kJ•mol-1【解析】放热反应中ΔH <0,所以B、D错误。
七年级数学下册第一章第1节同底数幂的乘法参考教案1 (新版)北师大版●教学目标(一)教学知识点1.经历探索同底数幂的乘法运算性质的过程,进一步体会幂的意义.2.了解同底数幂乘法的运算性质,并能解决一些实际问题.(二)能力训练要求1.在进一步体会幂的意义时,发展推理能力和有条理的表达能力.2.学习同底幂乘法的运算性质,提高解决问题的能力.(三)情感与价值观要求在发展推理能力和有条理的表达能力的同时,体会学习数学的兴趣,培养学习数学的信心.●教学重点同底数幂的乘法运算法则及其应用.●教学难点同底数幂的乘法运算法则的灵活运用.●教学方法引导启发法教师引导学生在回忆幂的意义的基础上,通过特例的推理,再到一般结论的推出,启发学生应用旧知识解决新问题,得出新结论,并能灵活运用.●教具准备投影片第一张:问题情景,记作(§1.1 A)第二张:做一做,记作(§1.1 B)第三张:议一议,记作(§1.1 C)第四张:例题,记作(§1.1 D)第五张:随堂练习,记作(§1.1 E)●教学过程Ⅰ.创设问题情景,引入新课[师]同学们还记得“a n”的意义吗?[生]a n 表示n 个a 相乘,我们把这种运算叫做乘方.乘方的结果叫幂,a 叫做底数,n 是指数.[师]我们回忆了幂的意义后,下面看这一章最开始提出的问题(出示投影片§1.3 A): 问题1:光的速度约为3×105千米/秒,太阳光照射到地球上大约需要5×102秒,地球距离太阳大约有多远?问题2:光在真空中的速度大约是3×108米/秒,太阳系以外距离地球最近的恒星是比邻星,它发出的光到达地球大约需4.22年.一年以3×107秒计算,比邻星与地球的距离约为多少千米?[生]根据距离=速度×时间,可得:地球距离太阳的距离为:3×108×5×102=3×5×(108×102)(米)比邻星与地球的距离约为:3×108×3×107×4.22=37.98×(108×107)(米)[师]108×102,108×107如何计算呢?[生]根据幂的意义:108×102=10(1010101010101010)⨯⨯⨯⨯⨯⨯⨯8个× 102)1010(个⨯ =1010101010⨯⨯⨯⋅⋅⋅⨯10个=1010108×107=10710(1010101010101010)(101010)⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⋅⋅⋅⨯8个个=15151010101010⨯⨯⋅⋅⋅⨯=个 [师]很棒!我们观察108×102可以发现108、102这两个因数是同底的幂的形式,所以108×102我们把这种运算叫做同底数幂的乘法,108×107也是同底数幂的乘法.由问题1和问题2不难看出,我们有必要研究和学习这样一种运算——同底数幂的乘法. Ⅱ.学生通过做一做、议一议,推导出同底数幂的乘法的运算性质1.做一做出示投影片(§1.1 B)计算下列各式:(1)102×103;(2)105×108;(3)10m ×10n (m,n 都是正整数)你发现了什么?注意观察计算前后底数和指数的关系,并能用自己的语言加以描述.(4)2m ×2n 等于什么?(71)m ×(71)n呢,(m,n 都是正整数).[师]根据幂的意义,同学们可以独立解决上述问题.[生](1)102×103=(10×10)×(10×10×10)=105=102+3因为102的意义表示两个10相乘;103的意义表示三个10相乘.根据乘方的意义5个10相乘就表示105同样道理,可求得:(2)105×108= 105101010个⨯⋅⋅⋅⨯⨯×108101010个⨯⋅⋅⋅⨯⨯ =1013=105+8(3)10m ×10n= 10101010个m ⨯⋅⋅⋅⨯⨯×10101010个n ⨯⋅⋅⋅⨯⨯ =10m+n从上面三个小题可以发现,底数都为10的幂相乘后的结果底数仍为10,指数为两个同底的幂的指数和.[师]很好!底数不同10的同底的幂相乘后的结果如何呢?接着我们来利用幂的意义分析第(4)小题.[生](4)2m ×2n= 2)222(个m ⨯⋅⋅⋅⨯⨯×2)222(个n ⨯⋅⋅⋅⨯⨯ =2m+n (71)m ×(71)n =个m )717171(⨯⋅⋅⋅⨯⨯× 个n )717171(⨯⋅⋅⋅⨯⨯ =(71)m+n我们可以发现底数相同的幂相乘的结果的底数和原来底数相同,指数是原来两个幂的指数的和.2.议一议出示投影片(§1.1 C)a m ·a n等于什么(m,n 都是正整数)?为什么?[师生共析]a m ·a n 表示同底的幂的乘法,根据幂的意义,可得a m ·a n = a m a a a 个)(•••⋅⋅⋅·a n a a a 个)(•••⋅⋅⋅ =a n m a a a 个)(+•••⋅⋅⋅=a m+n即有a m ·a n =a m+n (m,n 都是正整数)用语言来描述此性质,即为:同底数幂相乘,底数不变,指数相加.[师]同学们不妨再来深思,为什么同底数幂相乘,底数不变,指数相加呢?即为什么a m ·a n =a m+n 呢?[生]a m 表示m 个a 相乘,a n 表示n 个a 相乘,a m ·a n 表示m 个a 相乘再乘以n 个a 相乘,即有(m+n)个a 相乘,根据乘方的意义可得a m ·a n =a m+n .[师]也就是说同底数幂相乘,底数不变,指数要降低一级运算,变为相加.Ⅲ.例题讲解出示投影片(§1.1 D)[例1]计算:(1)(-3)7×(-3)6;(2)(101)3×(101); (3)-x 3·x 5;(4)b 2m ·b 2m+1.[例2]用同底数幂乘法的性质计算投影片(§1.3 A)中的问题1和问题2.[师]我们先来看例1中的四个小题,是不是都能用同底数幂的乘法的性质呢? [生](1)、(2)、(4)都能直接用同底数幂乘法的性质——底数不变,指数相加.[生](3)也能用同底数幂乘法的性质.因为-x 3·x 5中的-x 3相当于(-1)×x 3,也就是说-x 3的底数是x,x 5的底数也为x,只要利用乘法结合律即可得出.[师]下面我就叫四个同学板演.[生]解:(1)(-3)7×(-3)6=(-3)7+6=(-3)13; (2)(101)3×(101)=(101)3+1=(101)4; (3)-x 3·x 5=[(-1)×x 3]·x 5=(-1)[x 3·x 5]=-x 8;(4)b 2m ·b 2m+1=b 2m+2m+1=b 4m+1.[师]我们接下来看例2.[生]问题1中地球距离太阳大约为:3×105×5×102=15×107=1.5×108(千米)据测算,飞行这么远的距离,一架喷气式客机大约要20年.问题2中比邻星与地球的距离约为:3×105×3×107×4.22=37.98×1012=3.798×1013(千米)想一想:a m ·a n ·a p 等于什么?[生]a m ·a n ·a p =(a m ·a n )·a p =a m+n ·a p =a m+n+p ;[生]a m ·a n ·a p =a m ·(a n ·a p )=a m ·a n+p =a m+n+p ;[生]a m ·a n ·a p = a m a a a 个)(•••⋅⋅⋅· a n a a a 个)(•••⋅⋅⋅· ap a a a 个)(•••⋅⋅⋅=a m+n+p .Ⅳ.练习出示投影片(§1.1 E)1.随堂练习(课本P 3):计算(1)52×57;(2)7×73×72;(3)-x 2·x 3;(4)(-c)3·(-c)m .解:(1)52×57=59;(2)7×73×72=71+3+2=76;(3)-x 2·x 3=-(x 2·x 3)=-x 5;(4)(-c)3·(-c)m =(-c)3+m .2.补充练习:判断(正确的打“√”,错误的打“×”)(1)x 3·x 5=x 15 ( )(2)x ·x 3=x 3 ( )(3)x 3+x 5=x 8 ( )(4)x 2·x 2=2x 4 ( )(5)(-x)2·(-x)3=(-x)5=-x 5 ( )(6)a 3·a 2-a 2·a 3=0 ( )(7)a 3·b 5=(ab)8 ( )(8)y 7+y 7=y 14 ( )解:(1)×.因为x3·x5是同底数幂的乘法,运算性质应是底数不变,指数相加,即x3·x5=x8.(2)×.x·x3也是同底数幂的乘法,但切记x的指数是1,不是0,因此x·x3=x1+3=x4.(3)×.x3+x5不是同底数幂的乘法,因此不能用同底数幂乘法的性质进行运算,同时x3+x5是两个单项式相加,x3和x5不是同类项,因此x3+x5不能再进行运算.(4)×.x2·x2是同底数幂的乘法,直接用运算性质应为x2·x2=x2+2=x4.(5)√.(6)√.因为a3·a2-a2·a3=a5-a5=0.(7)×.a3·b5中a3与b5这两个幂的底数不相同.(8)×.y7+y7是整式的加法且y7与y7是同类项,因此应用合并同类项法则,得出y7+y7=2y7.Ⅴ.课时小结[师]这节课我们学习了同底数幂的乘法的运算性质,请同学们谈一下有何新的收获和体会呢?[生]在探索同底数幂乘法的性质时,进一步体会了幂的意义.了解了同底数幂乘法的运算性质.[生]同底数幂的乘法的运算性质是底数不变,指数相加.应用这个性质时,我觉得应注意两点:一是必须是同底数幂的乘法才能运用这个性质;二是运用这个性质计算时一定是底数不变,指数相加.即a m·a n=a m+n(m、n是正整数).Ⅵ.课后作业课本习题1.1 第1、2、3题Ⅶ.活动与探究计算:2-22-23-24-25-26-27-28-29+210.[过程]注意到210-29=29·2-29×1=29·(2-1)=29,同理,29-28=28,…23-22=22,即2n+1-2n=2·2n-2n=(2-1)·2n=2n.逆用同底数幂的乘法的运算性质将2n+1化为21·2n.[结果]解:原式=210-29-28-27-26-25-24-23-22+2=2·29-29-28-27-26-25-24-23-22+2=29-28-27-26-25-24-23-22+2=…=22+2=6●板书设计1.1 同底数幂的乘法一、提出问题:地球到太阳的距离为15×(105×102)千米,如何计算105×102.二、结合幂的运算性质,推出同底数幂乘法的运算性质.(1)105×102=(10×10×10×10×10)×(10×10)=107=105+2;(2)105×108= 1051010101010个⨯⨯⨯⨯×108101010个⨯⋅⋅⋅⨯⨯=1013=105+8; (3)10m ×10n = 10101010个m ⨯⋅⋅⋅⨯⨯×10101010个n ⨯⋅⋅⋅⨯⨯=10m+n ; (4)2m ×2n = 2222个m ⨯⋅⋅⋅⨯⨯×2222个n ⨯⋅⋅⋅⨯⨯=2m+n ; (5)(71)m ×(71)n = 71)717171(个m ⨯⋅⋅⋅⨯⨯× 71)717171(个n ⨯⋅⋅⋅⨯⨯=(71)m+n;综上所述,可得a m ·a n = a m a a a 个)(⨯⋅⋅⋅⨯⨯×a n a a a 个)(⨯⋅⋅⋅⨯⨯=a m+n(其中m 、n 为正整数)三、例题:(由学生板演,教师和学生共同讲评)四、练习:(分组完成)●迁移发散迁移 运用本节课所学知识,解答下列题目:a m ·a m-3+a 2m-4·a点拨:先利用公式进行乘法运算,若所得结果是同类项再进行合并.在运用公式时,a 的指数是1,不要漏掉.解:a m ·a m-3+a2m-4·a =am+m-3+a 2m-4+1 =a 2m-3+a2m-3 =2a 2m-3发散 本节课会用到的以前知识:1.幂的知识在a m 中,a 是底数,m 是指数,a m叫幂.2.同类项:所含字母相同,并且相同字母的指数也相同的项叫同类项.3.合并同类项法则:在合并同类项时,将同类项的系数相加,字母和字母的指数不变.4.乘法结合律a ·b ·c=a ·(b ·c)运用公式时,适当地利用乘法运算律,可简化运算.●备课资料一、参考例题[例1]计算:(1)(-a)2·(-a)3 (2)a5·a2·a分析:(1)中的两个幂的底数都是-a;(2)中三个幂的底数都是 a.根据同底数幂的乘法的运算性质:底数不变,指数相加.解:(1)(-a)2·(-a)3=(-a)2+3=(-a)5=-a5.(2)a5·a2·a=a5+2+1=a8评注:(2)中的“a”的指数为1,而不是0.[例2]计算:(1)a3·(-a)4(2)-b2·(-b)2·(-b)3分析:底数的符号不同,要把它们的底数化成同底的形式再运算,运算过程中要注意符号.解:(1)a3·(-a)4=a3·a4=a3+4=a7;(2)-b2·(-b)2·(-b)3=-b2·b2·(-b3)=b2·b2·b3=b7.评注:(1)中的(-a)4必须先化为a4,才可运用同底数幂的乘法性质计算;(2)中-b2和(-b)2不相同,-b2表示b2的相反数,底数为b,而不是-b,(-b)2表示-b的平方,它的底数是-b,且(-b)2=(+b)2,所以(-b)2=b2,而(-b)3=-b3.[例3]计算:(1)(2a+b)2n+1·(2a+b)3·(2a+b)m-1(2)(x-y)2(y-x)3分析:分别把(2a+b),(x-y)看成一个整体,(1)是三个同底数幂相乘;(2)中底不相同,可把(x-y)2化为(y-x)2或把(y-x)3化为-(x-y)3,使底相同后运算.解:(1)(2a+b)2n+1·(2a+b)3·(2a+b)m-1=(2a+b)2n+1+3+m-1=(2a+b)2n+m+3(2)解法一:(x-y)2·(y-x)3=(y-x)2·(y-x)3=(y-x)5解法二:(x-y)2·(y-x)3=-(x-y)2(x-y)3=-(x-y)5评注:(2)中的两个幂必须化为同底再运算,采用两种化同底的方法运算得到的结果是相同的.[例4]计算:(1)x3·x3 (2)a6+a6 (3)a·a4分析:运用幂的运算性质进行运算时,常会出现如下错误:a m·a n=a mn,a m+a n=a m+n.例如(1)易错解为x3·x3=x9;(2)易错解为a6+a6=a12;(3)易错解为a·a4=a4,而(1)中3和3应相加;(2)是合并同类项;(3)也是易忽略的地方,把a的指数1看成0.解:(1)x3·x3=x3+3=x6;(2)a6+a6=2a6;(3)a·a4=a1+4=a5二、在同底数幂的乘法常用的几种恒等变形.(a-b)=-(b-a)(a-b)2=(b-a)2(a-b)3=-(b-a)3(a-b)2n-1=-(b-a)2n-1(n为正整数)(a-b)2n=(b-a)2n(n为正整数)●方法点拨[例1]计算:(1)-a·(-a)3·(-a)2(2)-b3·b n(3)(x+y)n·(x+y)m+1点拨:应用同底数幂的乘法公式时,一定要保证底数相同.(1)中底数是-a,-a可看作(-a)1;(2)中-b3可看作(-1)·b3,这样b3与b n可利用公式进行计算;(3)中底数是x+y,将它看作一个整体.解:(1)-a·(-a)3·(-a)2(不要漏掉指数1)= (-a)1·(-a)3·(-a)2=(-a)6(2)-b3·b n=(-1)·(b3·b n)——乘法结合律=(-1)·b3+n=-b3+n(3)(x+y)n·(x+y)m+1=(x+y)n+(m+1)=(x+y)n+m+1[例2]计算:(1)a6·a6(2)a6+a6点拨:对于(1),可利用“同底数幂的乘法公式”计算,而第(2)题,是两个幂相加,需进行合并同类项,注意两者的区别.解:(1)a6·a6=a6+6=a12(2)a6+a6=2a6注意区分:同底数幂的乘法是乘法运算,且底数不变,指数相加...而合并同类项是加(减)法,且系数相加,字母与字母的指数不.变..[例3]计算:(1)8×2m×16(2)9×27-3×34点拨:这两道题的乘法中,底数都不相同,但可进行相应的调整,变为同底数幂,即可利用公式进行计算.而(2)中先进行乘法,再进行减法,注意运算顺序.解:(1)8×2m×16=23×2m×24=23+m+4=2m+7(2)9×27-3×34=32×33-3×34=35-35=0。
1.-第一章课后习题及答案第一章1.(Q1) What is the difference between a host and an end system? List the types of end systems. Is a Web server an end system?Answer: There is no difference. Throughout this text, the words “host” and “end system” are used interchangeably. End systems include PCs, workstations, Web servers, mail servers, Internet-connected PDAs, WebTVs, etc.2.(Q2) The word protocol is often used to describe diplomatic relations. Give an example of a diplomatic protocol.Answer: Suppose Alice, an ambassador of country A wants to invite Bob, an ambassador of country B, over for dinner. Alice doesn’t simply just call Bob on the phone and say, come to our dinner table now”. Instead, she calls Bob and suggestsa date and time. Bob may respond by saying he’s not available that particular date, but he is available another date. Alice and Bob continue to send “messages” back and forth until they agree on a date and time. Bob then shows up at the embassy on the agreed date, hopefully not more than 15 minutes before or after the agreed time. Diplomatic protocols also allow for either Alice or Bob to politely cancel the engagement if they have reasonable excuses.3.(Q3) What is a client program? What is a server program? Does a server program request and receive services from a client program?Answer: A networking program usually has two programs, each running on a different host, communicating with each other. The program that initiates the communicationAnswer: Current possibilities include: dial-up (up to 56kbps); DSL (up to 1 Mbps upstream, up to 8 Mbps downstream); cable modem (up to 30Mbps downstream, 2 Mbps upstream.4.(Q7) What are some of the physical media that Ethernet can run over?Answer: Ethernet most commonly runs over twisted-pair copper wire and “thin” coaxial cable. It also can run over fibers optic links and thick coaxial cable.5.(Q8) Dial-up modems, HFC, and DSL are all used for residential access. For each of these access technologies, provide a range of transmission rates and comment on whether the transmission rate is shared or dedicated.Answer: Dial up modems: up to 56 Kbps, bandwidth is dedicated; ISDN: up to 128 kbps, bandwidth is dedicated; ADSL: downstream channel is .5-8 Mbps, upstream channel is up to 1 Mbps, bandwidth is dedicated; HFC, downstream channel is 10-30 Mbps and upstream channel is usually less than a few Mbps, bandwidth is shared.6.(Q13) Why is it said that packet switching employs statistical multiplexing? Contrast statistical multiplexing with the multiplexing that takes place in TDM.Answer: In a packet switched network, the packets from different sources flowing on a link do not follow any fixed, pre-defined pattern. In TDM circuit switching, each host gets the same slot in a revolving TDM frame.7.(Q14) Suppose users share a 2Mbps link. Also suppose each user requires 1Mbps when transmitting, but each user transmits only 20 percent of the time. (See the discussion of statistical multiplexing in Section 1.3.)a.When circuit switching is used, how many users can be supported?b.For the remainder of this problem, suppose packet switching is used. Why will there be essentially no queuing delay before the link if two or fewer users transmit at the same time? Why will there be a queuing delay if three users transmit at the same time?c.Find the probability that a given user is transmitting.d.Suppose now there are three users. Find the probability that at any given time, all three users are transmitting simultaneously. Find the fraction oftime during which the queue grows.Answer:a.2 users can be supported because each user requires half of the link bandwidth.b.Since each user requires 1Mbps when transmitting, if two or fewer users transmit simultaneously, a maximum of 2Mbps will be required. Since the available bandwidth of the shared link is 2Mbps, there will be no queuing delay before the link. Whereas, if three users transmit simultaneously, the bandwidth required will be 3Mbps which is more than the available bandwidth of the shared link. In this case, there will be queuing delay before the link.c.Probability that a given user is transmitting = 0.2d.Probability that all three users are transmitting simultaneously=(3)p3(1−p)0=0.23=0.008. Since the 3queue grows when all the users are transmitting, the fraction of time during which the queue grows (which is equal to the probability that all three users are transmitting simultaneously) is 0.008.8.(Q16) Consider sending a packet froma source host to a destination host over a fixed route. List the delay components in the end-to-end delay. Which of these delays are constant and which are variable?Answer: The delay components are processing delays, transmission delays, propagation delays, and queuing delays. All of these delays are fixed, except for the queuing delays, which are variable.9.(Q19) Suppose Host A wants to send a large file to Host B. The path from Host A to Host B has three links, of rates R1= 250 kbps, R2 = 500 kbps, and R3= 1 Mbps.a.Assuming no other traffic in the network, what is the throughput for the file transfer.b.Suppose the file is 2 million bytes. Roughly, how long will it take to transfer the file to Host B?c.Repeat (a) and (b), but now with R2 reduced to 200 kbps.Answer:a.250 kbpsb.64 secondsc.200 kbps; 80 seconds10.(P2) Consider the circuit-switched network in Figure 1.8. Recall that there are n circuits on each link.a.W hat is the maximum number ofsimultaneous connections that can be in progress at any one time in this network?b.S uppose that all connections arebetween the switch in the upper-left-hand corner and the switch in the lower-right-hand corner. What is the maximum number of simultaneous connections that can be in progress?Answer:a.We can n connections between eachof the four pairs of adjacent switches.This gives a maximum of 4n connections.b.We can n connections passingthrough the switch in the upper-right-hand corner and another n connections passing through the switch in the lower-left-hand corner, giving a total of 2n connections.11.(P4) Review the car-caravan analogy in Section 1.4. Assume a propagation speed of 50 km/hour.a.S uppose the caravan travels 150 km,beginning in front of one tollbooth, passing through a second tollbooth, and finishing just before a third tollbooth.What is the end-to-end delay?b.R epeat (a), now assuming that thereare five cars in the caravan instead of ten.Answer: Tollbooths are 150 km apart, and the cars propagate at 50 km/hr, A tollbooth services a car at a rate of one car every 12 seconds.a.There are ten cars. It takes 120seconds, or two minutes, for the first tollbooth to service the 10 cars. Each of these cars has a propagation delay of 180 minutes before arriving at the second tollbooth. Thus, all the cars arelined up before the second tollbooth after 182 minutes. The whole process repeats itself for traveling between the second and third tollbooths. Thus the total delay is 364 minutes.b.Delay between tollbooths is 5*12seconds plus 180 minutes, i.e., 181minutes. The total delay is twice this amount, i.e., 362 minutes.12.(P5) This elementary problem begins to explore propagation delay and transmission delay, two central concepts in data networking. Consider two hosts, A and B, connected by a single link of rate R bps. Suppose that the two hosts are separated by m meters, and suppose the propagation speed along the link is s meters/sec. Host A is to send a packet of size L bits to Host B.a.E xpress the propagation delay, d prop ,in terms of m and s.b.D etermine the transmission time ofthe packet, d trans , in terms of L and R.c.I gnoring processing and queuingdelays, obtain an expression for the end-to-end delay.d.S uppose Host A begins to transmitthe packet at time t = 0. At time t =d trans , where is the last bit of the packet?e.S uppose d prop is greater than d trans . Attime t = d trans , where is the first bit of the packet?f.S uppose d prop is less than d trans . At timet = d trans , where is the first bit of the packet?g.S uppose s = 2.5*108, L = 100bits, and R= 28kbps. Find the distance m so thatd prop equals d trans .Answer:a.d prop = m/s seconds.b.d trans = L/R seconds.c.d end-to-end = (m/s + L/R) seconds.d.T he bit is just leaving Host A.e.T he first bit is in the link and has notreached Host B.f.T he first bit has reached Host B.g.W antm=LS=1003(2.5∗108) =893 km.13.(P6) In this problem we consider sending real-time voice from Host A to Host B over a packet-switched network (VoIP). Host A converts analog voice to a digital 64 kbps bit stream on the fly. Host A then groups the bits into 56-Byte packets. There is one link between Host A and B; its transmission rate is 500 kbps and its propagation delay is 2 msec. As soon as Host A gathers a packet, it sends it to Host B. As soon as Host B receivesan entire packet, it converts the packet’s bits to an analog signal. How much time elapses from the time a bit is created (from the original analog signal at Host A) until the bit is decoded (as part of the analog signal at Host B)?Answer: Consider the first bit in a packet. Before this bit can be transmitted, all of the bits in the packet must be generated. This requires56∗8sec=7 msec3The time required to transmit the packet is56∗8sec=896 μsec3Propagation delay = 2 msec.The delay until decoding is7msec + 896μsec + 2msec = 9.896 msecA similar analysis shows that all bits experience a delay of 9.896 msec.14.(P9) Consider a packet of length Lwhich begins at end system A, travels overone link to a packet switch, and travelsfrom the packet switch over a second linkto a destination end system. Let d i, s i, and Rdenote the length, propagation speed, iand the transmission rate of link i, for i = 1, 2. The packet switch delays each packet by d proc. Assuming no queuing delays, in terms of d i, s i, R i, (i = 1, 2), and L, what is the total end-to-end delay for the packet? Suppose now the packet Length is 1,000 bytes, the propagation speed on both links is 2.5 * 108 m/s, the transmission rates of both links is 1 Mbps, the packet switch processing delay is 2 msec, the length of the first link is 6,000 km, and the length of the last link is 3,000 km. For these values, what is the end-to-end delay?Answer: The first end system requires L/R1to transmit the packet onto the first link; the packet propagates over the first link in d1/s1; the packet switch adds a processing delay of d proc; after receiving the entire packet, the packet switch requires L/R2to transmit the packet onto the second link; the packet propagates over the second link in d2/s2. Adding these five delays givesdend-end = L/R1+ L/R2+ d1/s1+ d2/s2+ dprocTo answer the second question, we simply plug the values into the equation to get 8 + 8 + 24 + 12 + 2 = 54 msec.15.(P10) In the above problem, supposeR 1= R2= R and dproc= 0. Further suppose thepacket switch does not store-and-forward packets but instead immediately transmits each bit it receivers before waiting for the packet to arrive. What is the end-to-end delay?Answer: Because bits are immediately transmitted, the packet switch does not introduce any delay; in particular, it does not introduce a transmission delay. Thus,dend-end = L/R + d1/s1+ d2/s2For the values in Problem 9, we get 8 + 24 + 12 = 44 msec.16.(P11) Suppose N packets arrive simultaneously to a link at which no packets are currently being transmitted or queued. Each packet is of length L and the link has transmission rate R. What is the average queuing delay for the N packets?Answer: The queuing delay is 0 for the first transmitted packet, L/R for the second transmitted packet, and generally,(n-1)L/R for the nth transmitted packet. Thus, the average delay for the N packets is(L/R + 2L/R + ....... + (N-1)L/R)/N = L/RN(1 + 2 + ..... + (N-1)) = LN(N-1)/(2RN) = (N-1)L/(2R)Note that here we used the well-known fact that1 +2 + ....... + N = N(N+1)/217.(P14) Consider the queuing delay ina router buffer. Let I denote traffic intensity; that is, I = La/R. Suppose that the queuing delay takes the form IL/R (1-I) for I<1.a.Provide a formula for the total delay, that is, the queuing delay plus the transmission delay.b.Plot the total delay as a function of L/R.Answer:a.The transmission delay is L / R .The total delay isIL+ L=L/Rb.Let x = L / R.Total delay=x18.(P16) Perform a Traceroute between source and destination on the same continent at three different hours of the day.a.Find the average and standard deviation of the round-trip delays at each of the three hours.b.Find the number of routers in the path at each of the three hours. Did the paths change during any of the hours?c.Try to identify the number of ISP networks that the Traceroute packetspass through from source to destination. Routers with similar names and/or similar IP addresses should be considered as part of the same ISP. In your experiments, do the largest delays occur at the peering interfaces between adjacent ISPs?d.Repeat the above for a source and destination on different continents. Compare the intra-continent and inter-continent results.Answer: Experiments.19.(P18) Suppose two hosts, A and B, are separated by 10,000 kilometers and are connected by a direct link of R = 2 Mbps. Suppose the propagation speed over the link is 2.5•108 meters/sec.a.Calculate the bandwidth-delay product, R •d prop.b.Consider sending a file of 400,000 bits from Host A to Host B. Suppose the file is sent continuously as one large message. What is the maximum number of bits that will be in the link at any given time?c.Provide an interpretation of the bandwidth-delay product.d.What is the width (in meters) of a bit in the link? Is it longer than a football field?e.Derive a general expression for the width of a bit in terms of the propagation speed s, the transmission rate R, and the length of the link m.Answer:a.d prop = 107 / 2.5•108 = 0.04 sec; so R •d prop = 80,000bitsb.80,000bitsc.The bandwidth-delay product of alink is the maximum number of bits thatcan be in the link.d.1 bit is 125 meters long, which islonger than a football field) = m / (R * m / s) =e.m / (R • dprops/R20.(P20) Consider problem P18 but now with a link of R = 1 Gbps.a.C alculate the bandwidth-delayproduct, R·d prop .b.C onsider sending a file of 400,000bits from Host A to Host B. Suppose the file is sent continuously as one big message. What is the maximum number of bits that will be in the link at any given time?c.W hat is the width (in meters) of abit in the link?Answer:a.40,000,000 bits.b.400,000 bits.c.0.25 meters.21.(P21) Refer again to problem P18.a.H ow long does it take to send the file,assuming it is sent continuously?b.S uppose now the file is broken up into10 packet is acknowledged by thereceiver and the transmission time of an acknowledgment packet is negligible.Finally, assume that the sender cannot send a packet until the preceding one is acknowledged. How long does it take to send the file?c.C ompare the results from (a) and (b).Answer:a.d trans + d prop = 200 msec + 40 msec = 240msecb.10 * (t trans + 2 t prop ) = 10 * (20 msec +80 msec) = 1.0 sec。
一、模型、符号的建立与作用1、符号: 用符号能简单明了地表示事物,可避免由于事物外形不同和表达地文字语言不同而引起地混乱。
2、水在三态变化中,分子没有发生变化;水在三态变化中,分子间的距离发生了变化。
3、建立模型的意义:可以帮助人们认识和理解一些不能直接观察到的事物。
模型可以是一幅图、一张表格、或一个公式。
【疑难辨析】例题:仔细观察下列四幅图片,属于符号的正确选项是()答案:A分析:B、C属于依照实物的形状和结构按比例制成的物品,属于具体模型。
D是由符号S(路程)、V(速度)、t(时间)三个符号构建起来的抽象模型,是用来描述事物的运动规律的数学表达式。
【基础练习】1.请你写出图中的符号所表示的意义:2.下列不属于模型的是……………()A.一张《中国政区图》B.一张科学成绩统计表C.一只活着的熊猫D.U=IR3标志性符号往往是一些简洁、醒目的图形,你认为下列符号中表示乒乓球馆的是……………………………………()4.下列不属于模型的是……………()5.(2006年,温州)下列标志表示“严禁烟火”的是…………………………()二、物质与微观粒子模型1、分子和原子的区别:在化学变化中,分子可分,原子不可再分。
2、化学变化的实质:分子分割成原子,原子重新组合成新的分子。
3、化学变化和物理变化的本质区别:在变化中,物质的分子变成了其它物质的分子,就是化学变化。
在变化中,物质的分子还是原来的分子,只是分子间的距离发生了变化,就是物理变化。
4、分子是由原子构成的。
一些气体、液体主要由分子构成5、原子直接构成的物质:金属和固体非金属及稀有气体6、刚石和石墨物理性质不同是由于原子排列不同。
7、粒子的大小与质量(1)分子和原子都有一定的质量和体积。
原子的体积很小,半径的数量级在10-10米。
原子的质量也非常小,数量级在10-26千克。
(2)不同质量的原子质量不同,体积也不同【疑难辨析】例题1:下列关于分子、原子的叙述中,正确的是()A.分子是保持物质物理性质的微粒B.物质都是由分子构成的C.物质的化学性质都是由分子保持的D.分子是由原子构成的,在化学反应中分子可以再分而原子不能再分答案:D分析:分子是保持物质化学性质的微粒,物质的物理性质是通过大量分子的聚集体体现出来的。