上海市崇明县2015年中考一模(即期末)数学试题及答案
- 格式:doc
- 大小:2.41 MB
- 文档页数:13
2015年##市六区联考初三一模数学试卷〔满分150分,时间100分钟〕 2015.1一. 选择题〔本大题满分4×6=24分〕1. 如果把Rt ABC ∆的三边长度都扩大2倍,那么锐角A 的四个三角比的值〔 〕 A. 都扩大到原来的2倍; B. 都缩小到原来的12; C. 都没有变化; D. 都不能确定;2. 将抛物线2(1)y x =-向左平移2个单位,所得抛物线的表达式为〔 〕 A. 2(1)y x =+; B. 2(3)y x =-; C. 2(1)2y x =-+; D. 2(1)2y x =--;3. 一个小球被抛出后,如果距离地面的高度h 〔米〕和运行时间t 〔秒〕的函数解析式为25101h t t =-++,那么小球到达最高点时距离地面的高度是〔 〕A. 1米;B. 3米;C. 5米;D. 6米;4. 如图,已知AB ∥CD ∥EF ,:3:5AD AF =,12BE =,那么CE 的长等于〔 〕 A. 2; B. 4; C.245; D. 365; 5. 已知在△ABC 中,AB AC m ==,B α∠=,那么边BC 的长等于〔 〕A. 2sin m α⋅;B. 2cos m α⋅;C. 2tan m α⋅;D. 2cot m α⋅; 6. 如图,已知在梯形ABCD 中,AD ∥BC ,2BC AD =,如果对角线AC 与BD 相交于点O ,△AOB 、△BOC 、△COD 、△DOA 的面积分别记作1S 、2S 、3S 、4S ,那么下列结论中,不正确的是〔 〕A. 13S S =;B. 242S S =;C. 212S S =;D. 1324S S S S ⋅=⋅; 二. 填空题〔本大题满分4×12=48分〕 7. 已知34x y =,那么22x yx y-=+; 8. 计算:33()22a ab -+-=; 9. 已知线段4a cm =,9b cm =,那么线段a 、b 的比例中项等于cm 10. 二次函数2253y x x =--+的图像与y 轴的交点坐标为; 11. 在Rt ABC ∆中,90C ∠=︒,如果6AB =,2cos 3A =,那么AC =; 12. 如图,已知,D E 分别是△ABC 的边BC 和AC 上的点,2AE =,3CE =,要使DE ∥AB ,那么:BC CD 应等于;13. 如果抛物线2(3)5y a x =+-不经过第一象限,那么a 的取值X 围是; 14. 已知点G 是面积为227cm 的△ABC 的重心,那么△AGC 的面积等于;15. 如图,当小杰沿着坡度1:5i =的坡面由B 到A 直行走了26米时,小杰实际上升的高度AC =米〔结论可保留根号〕16. 已知二次函数的图像经过点(1,3),对称轴为直线1x =-,由此可知这个二次函数的图像一定经过除点(1,3)外的另一点,这点的坐标是;17. 已知不等臂跷跷板AB 长为3米,当AB 的一端点A 碰到地面时〔如图1〕,AB 与地面的夹角为30°;当AB 的另一端点B 碰到地面时〔如图2〕,AB 与地面的夹角的正弦值为13,那么跷跷板AB 的支撑点O 到地面的距离OH =米18. 把一个三角形绕其中一个顶点逆时针旋转并放大或缩小〔这个顶点不变〕,我们把这样的三角形运动称为三角形的T-变换,这个顶点称为T-变换中心,旋转角称为T-变换角,三角形与原三角形的对应边之比称为T-变换比;已知△ABC 在直角坐标平面内,点(0,1)A -,(3,2)B -,(0,2)C ,将△ABC 进行T-变换,T-变换中心为点A ,T-变换角为60°,T-变换比为23,那么经过T-变换后点C 所对应的点的坐标为;三. 解答题〔本大题满分10+10+10+10+12+12+14=78分〕19. 已知在直角坐标平面内,抛物线26y x bx =++经过x 轴上两点,A B ,点B 的坐标为(3,0),与y 轴相交于点C ;〔1〕求抛物线的表达式; 〔2〕求△ABC 的面积;20. 如图,已知在△ABC 中,AD 是边BC 上的中线,设BA a =,BC b =; 〔1〕求AD 〔用向量,a b 的式子表示〕〔2〕如果点E 在中线AD 上,求作BE 在,BA BC 方向上的分向量;〔不要求写作法,但要保留作图痕迹,并指出所作图中表示结论的分向量〕21. 如图,某幢大楼的外墙边上竖直安装着一根旗杆CD ,小明在离旗杆下方大楼底部E 点24米的点A 处放置一台测角仪,测角仪的高度AB 为1.5米,并在点B 处测得旗杆下端C 的仰角为40°,上端D的仰角为45°,求旗杆CD 的长度;〔结果精确到0.1米,参考数据:sin 400.64︒≈,cos400.77︒≈,tan 400.84︒≈〕22. 用含30°、45°、60°这三个特殊角的四个三角比与其组合可以表示某些实数,如:12可表示为1sin 30cos60tan 45sin 302=︒=︒=︒⋅︒=…;仿照上述材料,完成下列问题:〔1〕用含30°、45°、60°这三个特殊角的三角比或其组合表示32,即 填空:32====…; 〔2〕用含30°、45°、60°这三个特殊角的三角比,结合加、减、乘、除四种运算,设计一个等式,要求:等式中须含有这三个特殊角的三角比,上述四种运算都至少出现一次,且这个等式的结果等于1,即填空:1=23. 已知如图,D 是△ABC 的边AB 上一点,DE ∥BC ,交边AC 于点E ,延长DE 至点F ,使EF DE =,联结BF ,交边AC 于点G ,联结CF〔1〕求证:AE EGAC CG=; 〔2〕如果2CF FG FB =⋅,求证:CG CE BC DE ⋅=⋅24. 已知在平面直角坐标系xOy 中,二次函数2y ax bx =+的图像经过点(1,3)-和点(1,5)-; 〔1〕求这个二次函数的解析式;〔2〕将这个二次函数的图像向上平移,交y 轴于点C ,其纵坐标为m ,请用m 的代数式表示平移后函数图象顶点M 的坐标;〔3〕在第〔2〕小题的条件下,如果点P 的坐标为(2,3),CM 平分PCO ∠,求m 的值;25. 已知在矩形ABCD 中,P 是边AD 上的一动点,联结BP 、CP ,过点B 作射线交线段CP 的延长线于点E ,交边AD 于点M ,且使得ABE CBP ∠=∠,如果2AB =,5BC =,AP x =,PM y =; 〔1〕求y 关于x 的函数解析式,并写出它的定义域; 〔2〕当4AP =时,求EBP ∠的正切值;〔3〕如果△EBC 是以EBC ∠为底角的等腰三角形,求AP 的长;2015年##市六区联考初三一模数学试卷参考答案一. 选择题1. C2. A3. D4. C5. B6. B 二.填空题7.15 8. 1322a b -- 9. 6 10. (0,3) 11. 4 12. 5313. 3a <- 14. 9 15.26 16. (3,3)- 17.3518. (3,0)- 三. 解答题19.〔1〕256y x x =-+; 〔2〕(2,0)A ,(3,0)B ,(0,6)C ,3ABC S ∆=;20.〔1〕12b a -; 〔2〕略; 21. 3.84CD m ≈22.〔1〕sin 60︒,cos30︒,tan 45sin60︒⋅︒; 〔2〕(sin 30cos60)tan 45cot 45︒+︒⋅︒÷︒; 23. 略;24.〔1〕24y x x =-; 〔2〕(2,4)M m -; 〔3〕92m =;25.〔1〕4y x x =-〔25x <≤〕; 〔2〕3tan 4EBP ∠=; 〔3〕53+;崇明县2014学年第一学期教学质量调研测试卷九年级数学〔测试时间: 100分钟,满分:150分〕一、选择题〔本大题共6题,每题4分,满分24分〕1、已知52a b =,那么下列等式中,不一定正确的是………………………………〔 〕 <A>25a b = <B>52a b = <C>7a b += <D>72a b b += 2、在Rt ABC ∆中,90C ∠=︒,A ∠、B ∠、C ∠所对的边分别为a 、b 、c ,下列等式中不一定成立的是 ……………………………………………………………………〔 〕<A>tan b a B = <B>cos a c B = <C>sin ac A =<D>cos a b A =3、如果二次函数2y ax bx c =++的图像如图所示,那么下列判断中,不正确的是………〔 〕<A>0a ><B>0b ><C>0c <<D>240b ac ->4、将二次函数2x y =的图像向下平移1个单位,再向右平移1个单位后所得图像的函数表达式为…………………………………………………………………………〔 〕 <A>2(1)1y x =++<B>2(1)1y x =+-<C>2(1)1y x =-+<D>2(1)1y x =--5、下列说法正确的是……………………………………………………〔 〕<A> 相切两圆的连心线经过切点 <B> 长度相等的两条弧是等弧<C> 平分弦的直径垂直于弦<D> 相等的圆心角所对的弦相等6、如图,点D 、E 、F 、G 为ABC ∆两边上的点,且DE FG BC ∥∥,若DE 、FG 将ABC ∆的面积三等分,那么下列结论正确的是 ………………………………………〔 〕<A>14DE FG = <B>1DF EGFB GC== <C>ADFB<D>AD DB〔第3题图〕〔第6题图〕二、填空题〔本大题共12题,每题4分,满分48分〕7、已知点P 是线段AB 的黄金分割点()AP PB >,如果2AB =cm,那么线段AP =cm .8、如果两个相似三角形的面积比为1:4,那么它们的周长比为. 9、如果二次函数22(1)51y m x x m =-++-的图像经过原点,那么m =. 10、抛物线221y x =-在y 轴右侧的部分是〔填"上升〞或"下降〞〕.11、如果将抛物线23y x =平移,使平移后的抛物线顶点坐标为(2,2),那么平移后的抛物线的表达式为.12、已知抛物线2y x bx c =++经过点(0,5)A 、(4,5)B ,那么此抛物线的对称轴是.13、某飞机的飞行高度为1500m,从飞机上测得地面控制点的俯角为60°,此时飞机与这地面控制点的距离为m .14、已知正六边形的半径为2cm,那么这个正六边形的边心距为cm .15、如图,已知在ABC ∆中,90ACB ∠=︒,6AC =,点G 为重心,GH BC ⊥,垂足为点H ,那么GH =. 16、半径分别为8cm 与6cm 的1O 与2O 相交于A 、B 两点,圆心距O 1O 2的长为10cm,那么公共弦AB 的长为cm .17、如图,水库大坝的横截面是梯形,坝顶AD 宽5米,坝高10米,斜坡CD 的坡角为45︒,斜坡AB 的坡度1:1.5i =,那么坝底BC 的长度为米.18、如图,将边长为6cm 的正方形ABCD 折叠,使点D 落在AB 边的中点E 处,折痕为FH ,点C 落在Q处,EQ 与BC 交于点G ,那么EBG ∆的周长是cm .〔第15187题,19、〔本题满分10分〕计算:2014cos301(cot 45)sin 60︒-+-︒+︒20、〔本题满分10分,其中第<1>小题5分,第<2>小题5分〕已知:如图,□ABCD 中,E 是AD 中点,BE 交AC 于点F ,设BA a =、BC b =. 〔1〕用,a b 的线性组合表示FA ;〔2〕先化简,再直接在图中求作该向量:1151()()()2424a b a b a b -+-+++.21、〔本题满分10分,其中第<1>小题6分,第<2>小题4分〕ABC DEF G CFEDABC ABCDFGH QE如图,在Rt ABC ∆中,90C ∠=︒,点D 是BC 边上的一点,6CD =,3cos 5ADC ∠=,2tan 3B =.〔1〕求AC 和AB 的长;〔2〕求sin BAD ∠的值.22、〔本题满分10分,其中第<1>小题5分,第<2>小题5分〕 如图,轮船从港口A 出发,沿着南偏西15︒的方向航行了100海里到达B 处,再从B 处沿着北偏东75︒的方向航行200海里到达了C 处. 〔1〕求证:AC AB ⊥;〔2〕轮船沿着BC 方向继续航行去往港口D 处,已知港口D 位于港口A 的正东方向,求轮 船还需航行多少海里.23、〔本题满分12分,其中第<1>小题6分,第<2>小题6分〕如图,在梯形ABCD 中,AD BC ∥,AD AB =,2ABC C ∠=∠,E 与F 分别为边AD 与DC 上的两点,且有EBF C ∠=∠.(1)求证:::BE BF BD BC =;(2)当F 为DC 中点时,求:AE ED 的比值.24、〔本题满分12分,其中每小题各4分〕如图,已知抛物线258y x bx c =++经过直线112y x =-+与坐标轴的两个交点A 、B ,点C 为抛物线上的一点,且90ABC ∠=︒. 〔1〕求抛物线的解析式;〔2〕求点C 坐标; 〔3〕直线112y x =-+上是否存在点P ,使得BCP ∆与OAB ∆相似,若存在,请直接写出P 点的坐标;若不存在,请说明理由. 25、〔本题满分14分,其中第<1>小题5分,第<2>小题5分,已知在ABC ∆中,5AB AC ==,6BC =,O 为边AB 上一动点为半径的圆交BC 于点D ,设OB x =,DC y =. 〔1〕如图1,求y 关于x 的函数关系式与定义域;〔2〕当⊙O 与线段AC 有且只有一个交点时,求x 的取值X 〔3〕如图2,若⊙O 与边AC 交于点E 当DEC ∆与ABC ∆相似时,求x 的值.2014学年 DDABCEF北AB C东一. 选择题1. 将抛物线22y x =-向右平移一个单位,再向上平移2个单位后,抛物线的表达式为〔 〕 A. 22(1)2y x =--+;B. 22(1)2y x =---; C. 22(1)2y x =-++;D. 22(1)2y x =-+-;2. 如图,平行四边形ABCD 中,E 是边BC 上的点,AE 交BD 于点F ,如果:BE BC =2:3,那么下列各式错误的是〔 〕A.2BE EC =;B. 13EC AD =; C.23EF AE =;D. 23BF DF =; 3. 已知Rt △ABC 中,90C ∠=︒,CAB α∠=,7AC =,那么BC 为〔 〕 A. 7sin α;B. 7cos α;C. 7tan α;D. 7cot α;4. 如图,在四边形ABCD 中,AD ∥BC ,如果添加下列条件,不能使得△ABC ∽△DCA 成立的是〔 〕A. BAC ADC ∠=∠;B. B ACD ∠=∠;C. 2AC AD BC =⋅;D.DC ABAC BC=; 5. 已知二次函数222y ax x =-+〔0a >〕,那么它的图像一定不经过〔 〕 A. 第一象限;B. 第二象限;C. 第三象限;D. 第四象限;6. 如图,在△ABC 中,D 、E 分别是AB 、AC 上的点,且DE ∥BC ,如果:1:4AE EC =, 那么:ADE BEC S S ∆∆=〔 〕A. 1:24;B. 1:20;C. 1:18;D. 1:16; 二. 填空题 7. 如果53a b =,那么a ba b -+的值等于; 8. 抛物线2(1)2y x =-+的顶点坐标是;9. 二次函数245y x x =--的图像的对称轴是直线; 10. 计算:cot30sin60︒-︒=;11. 在某一时刻,测得一根高为1.8m 的竹竿的影长为3m ,同时测得一根旗杆的影长为25m ,那么这根旗杆的高度为m ;12. 若点1(3,)A y -、2(0,)B y 是二次函数22(1)1y x =--图像上的两点,那么1y 与2y 的 大小关系是〔填12y y >,12y y =或12y y <〕;13. 如图,若1l ∥2l ∥3l ,如果6DE =,2EF =, 1.5BC =,那么AC =;14. 如图是拦水坝的横断面,斜坡AB 的高度为6米,斜面的坡比为1:2,则斜坡AB 的长为米〔保留根号〕;15. 如图,正方形ABCD 被分割成9个全等的小正方形,P 、Q 是其中两个小正方形的顶 点,设AB a =,AD b =,则向量PQ =〔用向量a 、b 来表示〕;16. 如图,△ABC 中,90BAC ∠=︒,G 点是△ABC 的重心,如果4AG =,那么BC 的长为;17. 如图,已知4tan 3O =,点P 在边OA 上,5OP =,点M 、N 在边OB 上,PM PN =, 如果2MN =,那么PM =;18. 如图,在△ABC 中,90ABC ∠=︒,6AB =,8BC =,点M 、N 分别在边AB 、BC上,沿直线MN 将△ABC 折叠,点B 落在点P 处,如果AP ∥BC 且4AP =,那么BN =;三. 解答题19. 已知二次函数2y ax bx c =++〔a 、b 、c 为常数,且0a ≠〕经过A 、B 、C 、D 四个点,其中横坐标x 与纵坐标y 的对应值如下表:A B CDx1- 0 13 y1-353〔1〕求二次函数解析式; 〔2〕求△ABD 的面积;20. 如图,在等腰梯形ABCD 中,AD ∥BC ,AB DC =,AC 与BD 交于点O ,:1:2AD BC =; 〔1〕设BA a =,BC b =,试用a ,b 表示BO ; 〔2〕先化简,再求作:3(2)2()2a b a b +-+〔直接作在原图中〕 21. 如图,在电线杆上的C 处引拉线CE 、CF 固定电线杆,拉线CE 和地面成60°角,在离电线杆6米处安置测角仪AB ,在A 处测得电线杆上C 处的仰角为23°,已知测角仪AB 的高为1.5米,求拉线CE 的长;[已知5sin 2313︒≈,12cos 2313︒≈,5tan 2312︒≈,结果保留根号] 22. 如图,MN 经过△ABC 的顶点A ,MN ∥BC ,AM AN =,MC 交AB 于D ,NB 交AC 于E ; 〔1〕求证:DE ∥BC ;〔2〕联结DE ,如果1DE =,3BC =,求MN 的长;23. 已知菱形ABCD 中,8AB =,点G 是对角线BD 上一点,CG 交BA 的延长线于点F ;〔1〕求证:2AG GE GF =⋅; 〔2〕如果12DG GB =,且AG BF ⊥,求cos F ; 24. 已知如图,抛物线21:4C y ax ax c =++的图像开口向上,与x 轴交于点A 、B 〔A 在B 的左边〕,与y 轴交于点C ,顶点为P ,2AB =,且OA OC =; 〔1〕求抛物线1C 的对称轴和函数解析式;〔2〕把抛物线1C 的图像先向右平移3个单位,再向下平移m 个单位得到抛物线2C ,记顶点为M ,并与y 轴交于点(0,1)F -,求抛物线2C 的函数解析式;〔3〕在〔2〕的基础上,点G 是y 轴上一点,当△APF 与△FMG 相似时,求点G 的坐标; 25. 如图,梯形ABCD 中,AD ∥BC ,对角线AC BC ⊥,9AD =,12AC =,16BC =,点E 是边BC 上的一个动点,EAF BAC ∠=∠,AF 交CD 于点F ,交BC 延长线于点G ,设BE x =; 〔1〕试用x 的代数式表示FC ; 〔2〕设FGy EF=,求y 关于x 的函数关系式,并写出定义域; 〔3〕当△AEG 是等腰三角形时,直接写出BE 的长; 参考答案1、A2、C3、C4、D5、C6、B7、148、〔1,2〕 9、x =2 10、32 11、15 12、12y y > 13、6 14、6515、16、12 171718、19、 20、 21、 22、 23、 24、 25、所以,BE =72014学年##市宝山区初三一模数学试卷一. 选择题〔24分〕1. 如图,在直角△ABC 中,90C ∠=︒,1BC =,2AC =下列判断正确的是〔 〕A. 30A ∠=︒;B. 45A ∠=︒;C. cot 2A =; D. tan 2A =; 2. 如图,△ABC 中,D 、E 分别为边AB 、AC 上的点,且DE ∥BC ,下列判断错误 的是〔 〕A. AD AE DB EC =;B.AD DE DB BC =;C. AD AE AB AC =;D.AD DE AB BC=; 3. 如果在两个圆中有两条相等的弦,那么〔 〕A. 这两条弦所对的圆心角相等;B. 这两条线弦所对的弧相等;C. 这两条弦都被与它垂直的半径平分;D. 这两条弦所对的弦心距相等;4. 已知非零向量a 、b 、c ,下列命题中是假命题的是〔 〕A. 如果2a b =,那么a ∥b ;B. 如果2a b =-,那么a ∥b ;C. 如果||||a b =,那么a ∥b ;D. 如果2a b =,2b c =,那么a ∥c ;5. 已知O 半径为3,M 为直线AB 上一点,若3MO =,则直线AB 与O 的位置关系为〔 〕A. 相切;B. 相交;C. 相切或相离;D. 相切或相交;6. 如图边长为3的等边△ABC 中,D 为AB 的三等分点〔12AD BD =〕,三角形边上的 动点E 从点A 出发,沿A C B →→的方向运动,到达点B 时停止,设点E 运动的路程为x ,2DE y =,则y 关于x 的函数图像大致为〔 〕A. B. C. D. 二. 填空题〔48分〕7. 线段b 是线段a 和c 的比例中项,若1a =,2b =,则c =;8. 两个相似三角形的相似比为2:3,则它们的面积比为;9. 已知两圆半径分别为3和7,圆心距为d ,若两圆相离,则d 的取值X 围是;10. 已知△ABC 的三边之比为2:3:4,若△DEF 与△ABC 相似,且△DEF 的最大边长为20,则△DEF 的周长为;11. 在△ABC 中,cot A =cos B =那么C ∠=; 12. B 在A 北偏东30°方向〔距A 〕2千米处,C 在B 的正东方向〔距B 〕2千米处,则C 和A 之间的距离为千米;13. 抛物线2(3)4y x =--+的对称轴是;14. 不经过第二象限的抛物线2y ax bx c =++的开口方向向;15. 已知点11(,)A x y 、22(,)B x y 为函数22(1)3y x =--+的图像上的两点,若121x x >>,则1y 2y ; 16. 如图,D 为等边△ABC 边BC 上一点,60ADE ∠=︒,交AC 于E ,若2BD =,3CD =,则CE =;17. 如图,O 的直径AB 垂直弦CD 于M ,且M 是半径OB 的中点,CD =则直径AB 的长为;18. 如图直角梯形ABCD 中,AD ∥BC ,2CD =,AB BC =,1AD =,动点M 、N 分别在AB 边和BC 的延长线运动,而且AM CN =,联结AC 交MN 于E ,MH ⊥AC 于H ,则EH =;三. 解答题〔78分〕19. 计算:2sin 602cot 30cos 602cos 45tan 60︒+︒-︒︒+︒; 20. 如图,已知M 、N 分别是平行四边形ABCD 边DC 、BC 的中点,射线AM 和射线BC 相交于E ,设AB a =,AD b =,试用a 、b 表示AN ,AE ;〔直接写出结果〕21. 已知一个二次函数的图像经过点(1,0)A 和点(0,6)B ,(4,6)C ,求这个抛物线的表达式 以与该抛物线的顶点坐标;22. 如图,D 为等边△ABC 边BC 上一点,DE ⊥AB 于E ,若:2:1BD CD =,DE =求AE ;23. 如图,P 为O 的直径MN 上一点,过P 作弦AC 、BD 使APM BPM ∠=∠,求证: PA PB =;24. 如图,正方形ABCD 中,〔1〕E 为边BC 的中点,AE 的垂直平分线分别交AB 、AE 、CD 于G 、F 、H ,求GF FH ; 〔2〕E 的位置改动为边BC 上一点,且BE k EC =,其他条件不变,求GF FH的值; 25. 〔1〕数学小组的单思稿同学认为形如的抛物线2y ax bx c =++,系数a 、b 、c 一旦确定,抛物线的形状、大小、位置就不会变化,所以称数a 、b 、c 为抛物线2y ax bx c =++ 的特征数,记作{,,}a b c ;请求出与y 轴交于点(0,3)C -的抛物线22y x x k =-+在单同学 眼中的特征数;〔2〕同数学小组的尤恪星同学喜欢将抛物线设成2()y a x m k =++的顶点式,因此坚持称 a 、m 、k 为抛物线的特征数,记作{,,}a m k ;请求出上述抛物线在尤同学眼中的特征数; 〔3〕同一个问题在上述两位同学眼中的特征数各不相同,为了让两人的研究保持一致,同组的董和谐将上述抛物线表述成:特征数为{,,}u v w 的抛物线沿平行于某轴方向平移某单位 后的图像,即此时的特征数{,,}u v w 无论按单思稿同学还是按尤恪星同学的理解做出的结果 是一样的,请你根据数学推理将董和谐的表述完整地写出来;〔4〕在直角坐标系XOY 中,上述〔1〕中的抛物线与x 轴交于A 、B 两点〔A 在B 的左 边〕,请直接写出△ABC 的重心坐标;26. 如图在△ABC 中,10AB BC ==,AC =D 为边AB 上一动点〔D 和A 、B不重合〕,过D 作DE ∥BC 交AC 于E ,并以DE 为边向BC 一侧作正方形DEFG ,设AD =x ,〔1〕请用x 的代数式表示正方形DEFG 的面积,并求出当边FG 落在BC 边上时的x 的值; 〔2〕设正方形DEFG 与△ABC 重合部分的面积为y ,求y 关于x 的函数与其定义域;〔3〕点D 在运动过程中,是否存在D 、G 、B 三点中的两点落在以第三点为圆心的圆上 的情况?若存在,请直接写出此时AD 的值,若不存在,则请说明理由;2014学年第一学期长宁区学习能力诊断卷初三数学 试卷〔时间100分钟 满分150分〕一. 选择题〔本大题共6题,每题4分,满分24分〕1.如果两个相似三角形的面积比是1:6,那么它们的相似比是〔 〕A .1:36 B.1:6 C . 1:3 D . 1: 6 2. 在Rt △ABC 中,已知∠C =90°,AC =3,BC =4,那么∠A 的余弦值等于〔 〕A .35B . 45C . 34D . 433. 如图,点A 、B 、C 、D 、E 、F 、G 、H 、K 都是7×8方格纸中的格点,为使△DE M ∽△ABC 〔点D 和点A 对应,点B 和E 对应〕,则点M 对应是F 、G 、H 、K 四点中的〔 〕A . FB . GC . KD . H第3题图4. 已知两圆半径分别是3和4,若两圆内切,则两圆的圆心距为〔 〕A . 1或7B . 1C . 7D . 25. 抛物线22212,2,2y x y x y x ==-=共有的性质是〔 〕 A . 开口向下; B . 对称轴是y 轴C . 都有最低点D . y 的值随x 的增大而减小6. 如图,动点P 从点A 出发,沿线段AB 运动至点B 后,立即按原路返回,点P 在运动的过程中速度不变,则以点B 为圆心,线段B P 长为半径的圆的面积S 与点P 的运动时间t 之间的函数图象大致为图中的< >A .B .C .D .二. 填空题〔本大题共12题,每题4分,满分48分〕7. 已知线段a =2c m,c =8c m,则线段a 、c 的比例中项是_________c m.8. 计算:3()3a b a --=_________.9. 已知⊙P 在直角坐标平面内,它的半径是5,圆心P 〔-3,4〕,则坐标原点O 与⊙P 的位置位置关系是_________.10. 如果圆心O 到直线l 的距离等于⊙O 的半径,那么直线l 和⊙O 的公共点有________个.11. 抛物线23(1)2y x =--+的顶点坐标是________.12.抛物线223y x =-向左移动3个单位后所得抛物线解析式是________.13. 已知二次函数227y x x =+-的一个函数值是8,那么对应自变量x 的值是_________.14. 已知二次函数2(1)2y ax a x =-+-,当x >1时,y 的值随x 的增大而增大,当x <1时,y 的值随x 的增大而减小,则实数a 的值为_________.15. 某企业今年第一月新产品的研发资金为100万元,以后每月新产品的研发资金与上月相比增长率都是x ,则该厂今年第三月新品研发资金y 〔元〕关于x 的函数关系式为y =_________.16. 如图所示,铁路的路基横断面都是等腰梯形,斜坡AB 的坡度为3,斜坡AB 的水平宽度BE =33m ,则斜坡AB =_________m.17. 如图,已知AD 是△ABC 的中线,G 是△ABC 的重心,联结BG 并延长交AC 于点E ,联结DE ,则S △ABC :S △GED 的值为_________.18. 如图,正方形ABCD 绕点A 逆时针旋转,得到正方形'''AB C D .当两个正方形重叠部分的面积是原正方形面积的14时,1sin '2B AD ∠ _________. 第16题图 第17题图 第18题图三. <本大题共7题,满分78分>19.〔本题满分10分〕计算:201(sin 30)(2015tan 45).sin 60cos60o o o o --+-- 20. 〔本题满分10分〕 如图,已知O 为△ABC 内的一点,点D 、E 分别在边AB 、AC 上,且11,.34AD AE DB AC ==设,,OB m OC n ==试用m 、n 表示DE .21. 〔本题满分10分〕如图,AB 是⊙O 的弦,点C 、D 在弦AB 上,且AD =BC ,联结OC 、OD .求证:△OCD 是等腰三角形.22. 〔本题满分10分〕如图,在△ABC 中,AD 是BC 上的高,点G 在AD 上,过点G 作BC 的平行线分别与AB 、AC 交于P 、Q 两点,过点P 作PE ⊥BC 于点E ,过点Q 作QF ⊥BC 于点F . 设AD =80,BC =120,当四边形PEFQ 为正方形时,试求正方形的边长.23. 〔本题满分12分〕如图,A 、B 两地之间有一座山,汽车原来从A 地到B 地须经C地沿折线A -C -B 行驶,现开通隧道后,汽车直接沿直线AB 行驶.已知AC =120千米,∠A =30°,∠B =135°,则隧道开通后,汽车从A地到B 地比原来少走多少千米?〔结果保留根号〕24. 〔本题满分12分〕如图,已知平面直角坐标平面上的△ABC ,AC =CB ,∠ACB =90°,且A 〔-1,0〕,B 〔m,n 〕C 〔3,0〕,若抛物线23y ax bx =+-经过A 、C 两点.(1) 求a 、b 的值(2) 将抛物线向上平移若干个单位得到的新抛物线恰好经过点B ,求新抛物线的解析式.(3) 设〔2〕中的新抛物线的顶点为P 点,Q 为新抛物线上P 点至B 点之间一点,以点Q 为圆心画圆,当⊙Q 与x 轴和直线BC 都相切时,联结PQ 、BQ ,求四边形ABQP 的面积.25. 〔本题满分14分〕如图,已知△ABC 是等边三角形,AB =4,D 是AC 边上一动点〔不与A 、C 重合〕,EF 垂直平分BD ,分别交AB 、BC 于点E 、F ,设CD =x ,AE =y .(1) 求证:△AED ∽△CDF ;(2) 求y 关于x 的函数关系式,并写出定义域;(3) 过点D 作DH ⊥AB ,垂足为点H ,当EH =1时,求线段CD 的长.F E D2014学年嘉定区九年级第一次质量调研数学试卷〔满分150分,考试时间100分钟〕考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:〔本大题共6题,每小题4分,满分24分〕[下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.]1.对于抛物线2)2(-=x y ,下列说法正确的是〔▲〕〔A 〕顶点坐标是)0,2(;〔B 〕顶点坐标是)2,0(;〔C 〕顶点坐标是)0,2(-;〔D 〕顶点坐标是)2,0(-.2.已知二次函数bx ax y +=2的图像如图1所示,那么a 、b 的符号为〔▲〕〔A 〕0>a ,0>b ;〔B 〕0<a ,0>b ;〔C 〕0>a ,0<b ;〔D 〕0<a ,0<b .3.在Rt △ABC 中,︒=∠90C ,a 、b 、c 分别是A ∠、B ∠、C ∠的对边,下列等式中正确的是〔▲〕〔A 〕c a A =cos ;〔B 〕b c B =sin ;〔C 〕b a B =tan ;〔D 〕a b A =cot . 4.如图2,已知AB ∥CD ,AD 与BC 相交于点O , 2:1:=DO AO ,那么下列式子正确的是〔▲〕 〔A 〕2:1:=BC BO ;〔B 〕1:2:=AB CD ;〔C 〕2:1:=BC CO ;〔D 〕1:3:=DO AD . 5.已知非零向量a 、b 和c ,下列条件中,不能判定a ∥b 的是〔▲〕〔A 〕a =b 2-;〔B 〕c a =,c b 3=;〔C 〕c b a =+2,c b a -=-;〔D=.6.在△ABC 中,︒=∠90C ,cm AC 3=,cm BC 4=.以点A 为圆心,图1 AB C DO图2半径为cm 3的圆记作圆A ,以点B 为圆心,半径为cm 4的圆记作圆B ,则圆A 与圆B 的位置关系是〔▲〕〔A 〕外离;〔B 〕外切;〔C 〕相交;〔D 〕内切.二、填空题:〔本大题共12题,每小题4分,满分48分〕7.如果函数2)1(x a y -=是二次函数,那么a 的取值X 围是 ▲ .8.在平面直角坐标系中,如果把抛物线22+=x y 向上平移2个单位,那么所得抛物线的表达式为 ▲ .9.已知抛物线122-+=x x y 的对称轴为l ,如果点)0,3(-M 与点N 关于这条对称轴l 对称,那么点N 的坐标是 ▲ .10.请写出一个经过点)1,0(,且在对称轴右侧部分是下降的抛物线的表达式,这条抛物线的表达式可以是 ▲ .11.已知线段b 是线段a 、c 的比例中项,且1=a ,4=c ,那么=b ▲ .12.如果两个相似三角形的周长比为2:1,那么它们的对应中线的比为 ▲ .13.如图3,已知在平行四边形ABCD 中,点E 在边BC 上,射线AE 交DC 的延长线于点F ,2=AB ,EC BE 3=,那么DF 的长为 ▲ . 14.在△ABC 中,︒=∠90C ,1312sin =A ,12=BC ,那么=AC ▲ . 15.小杰在楼上点A 处看到楼下点B 处的小丽的俯角是︒36,那么点B 处的小丽看点A 处的小杰的仰角是 ▲ 度.16.正九边形的中心角等于 ▲ 度.17.如图4,AB 、AC 都是圆O 的弦,AB OM ⊥,AC ON ⊥,垂足分别为点M 、N ,如果6=BC ,那么=MN ▲ .18.在△ABC 中,9=AB ,5=AC ,AD 是BAC ∠的平分线交BC 于点D 〔如图5〕,△ABD 沿直线AD翻折后,点B 落到点1B 处,如果BAC DC B ∠=∠211,那么=BD ▲ . 三、解答题:〔本大题共7题,满分78分〕19.〔本题满分10分〕 计算:︒-+︒⋅︒+︒-45cos 21260tan 30cot 2130sin 1. N M O C B A 图4D F A B C D 图520.〔本题满分10分〕已知二次函数)0(22≠+-=m n x mx y 的图像经过点)1,2(-和)2,1(-,求这个二次函数的解析式,并求出它的图像的顶点坐标和对称轴.21.〔本题满分10分,每小题各5分〕如图6,已知AB 是圆O 的直径,10=AB ,弦CD 与AB 相交于点N ,︒=∠30ANC ,3:2:=AN ON ,CD OM ⊥,垂足为点M . 〔1〕求OM 的长;〔2〕求弦CD 的长. 22.〔本题满分10分,每小题各5分〕 如图7,某地下车库的入口处有斜坡AB ,它的坡度为2:1=i ,斜坡AB度为AH 〔BC AH ⊥〕,为了让行车更安全,现将斜坡的坡角改造为︒14〔图中的︒=∠14ACB 〕. 〔1〕求车库的高度AH ;〔2〕求点B 与点C 之间的距离〔结果精确到1米〕. 〔参考数据:24.014sin =︒,97.014cos =︒,25.014tan =︒,01.414cot =︒〕 23.〔本题满分12分,每小题各6分〕已知:如图8,在△ABC 中,点D 在边BC 上,且DAG BAC ∠=∠,BAD CDG ∠=∠.〔1〕求证:AC AG AB AD =; 〔2〕当BC GC ⊥时,求证:︒=∠90BAC .24.〔本题满分12分,每小题各4分〕如图9,在平面直角坐标系xoy 中,点A 坐标为)0,8(,点B 在y 轴的正半轴上,且34cot =∠OAB ,抛物线c bx x y ++-=241经过A 、B 两点. 〔1〕求b 、c 的值;〔2〕过点B 作OB CB ⊥,交这个抛物线于点C ,以点C为圆心,CB 为半径长的圆记作圆C ,以点A 为圆心,r为半径长的圆记作圆A .若圆C 与圆A 外切,求r 的值;〔3〕若点D 在这个抛物线上,△AOB 的面积是△OBD 面积的8倍,求点D 的坐标. 25.〔本题满分14分,其中第〔1〕小题4分,第〔2〕小题5分,第〔3〕小题5分〕已知在△ABC 中,8==AC AB ,4=BC ,点P 是边AC 上的一个动点,ABC APD ∠=∠,AD ∥BC ,联结DC .图8 B 图6 A BC H图7〔1〕如图10,如果DC ∥AB ,求AP 的长;〔2〕如图11,如果直线DC 与边BA 的延长线交于点E ,设x AP =,y AE =,求y 关于x 的函数解析式,并写出它的定义域;〔3〕如图12,如果直线DC 与边BA 的反向延长线交于点F ,联结BP ,当△CPD 与△CBF 相似时,试判断线段BP 与线段CF 的数量关系,并说明你的理由.2014学年奉贤区调研测试 九年级数学2015.01 〔满分150分,考试时间100分钟〕 一、选择题:〔本大题共6题,每题4分,满分24分〕[每小题只有一个正确选项,在答题纸的相应题号的选项上用2 B 铅笔填涂] 1.已知y x 23=,那么下列等式一定成立的是〔▲〕 A .3,2==y x ;B .23=y x ;C .32=y x ;D .023=+y x . 2.在Rt △ABC 中,∠ACB =90°,BC =1,AC =2,则下列结论正确的是〔▲〕A .sin A =32;B .tan A =12; C .cos B =32; D .tan B =3. 3.抛物线221x y -=的图象向右平移2个单位长度后所得新的抛物线的顶点坐标为〔▲〕 A .<0,-2> ;B . <0,2>;C .<-2,0>;D .<2,0>.4.在直角坐标平面中,M 〔2,0〕,圆M 的半径为4 ,那么点P 〔-2,3〕与圆M 的位置关系是〔▲〕A .点P 在圆内;B .点P 在圆上;C .点P 在圆外;D .不能确定.5.一斜坡长为10米,高度为1米,那么坡比为〔▲〕A .1:3;B .1:31;C .1:10;D .1:1010. 6.在同圆或等圆中,下列说法错误的是〔▲〕A .相等弦所对的弧相等;B .相等弦所对的圆心角相等;C .相等圆心角所对的弧相等;D .相等圆心角所对的弦相等.二、填空题:〔本大题共12题,每题4分,满分48分〕[请将结果直接填入答题纸的相应位置]7.若→a 与→e 方向相反且长度为3,那么→a =▲→e ;8.若α为锐角,已知cos α=21,那么tan α=▲; 9.△ABC 中,∠C =90°,G 为其重心,若CG =2,那么AB =▲; 10.一个矩形的周长为16,设其一边的长为x ,面积为S ,则S 关于x 的函数解析式是▲;A B C DP 图12 F AB C D P 图10 B A C D P图11 E <第15题图>11.如果抛物线12-+=mx x y 的顶点横坐标为1,那么m 的值为▲; 12.正n 边形的边长与半径的夹角为75°,那么n=▲; 13.相邻两边长的比值是黄金分割数的矩形,叫做黄金矩形,从外形上看,它最具美感,现在想要制作一X"黄金矩形〞的贺年卡,如果较长的一条边长等于20厘米,那么相邻一条边长等于▲厘米;14.已知抛物线经过点<5,-3>,其对称轴为直线x =4,则抛物线一定经过另一点的坐标是▲;15.如图,P 为平行四边形ABCD 边AD 上一点,E 、F 分别为PB 、PC 的中点,若△PEF 的面积为3,那么△PDC 与△PAB 的面积和等于▲;16.已知圆A 与圆B 内切,AB =10,圆A 半径为4,那么圆B 的半径为▲;17.已知抛物线2)1(2++=x a y 过〔0,y 1〕、〔3,y 2〕,若y 1> y 2,那么a 的取值X 围是▲;18.已知在△ABC 中,∠C=90o ,AC=3,BC=4.在平面内将△ABC 绕B 点旋转,点A 落到A ’,点C 落到C ’,若旋转后点C 的对应点C ’和点A 、点B 正好在同一直线上,那么∠A ’AC ’的正切值等于▲;三、解答题:〔本大题共7题,满分78分〕19.〔本题满分10分〕计算:︒-︒-︒︒60cot 2345tan 60sin 230sin 2 20.〔本题满分10分,第〔1〕小题满分7分,第〔2〕小题满分3分〕一个弓形桥洞截面示意图如图所示,圆心为O ,弦AB 是水底线,OC ⊥AB ,AB =24m ,sin ∠COB =1312,DE 是水位线,DE ∥AB . 〔1〕当水位线DE =304m 时,求此时的水深;〔2〕若水位线以一定的速度下降,当水深8m 时,求此时∠ACD 的余切值.21.〔本题满分10分,每小题满分各5分〕如图,在△ABC 中,AB=AC =12,DC =4,过点C 作CE ∥AB 交BD 的延长线于点E ,→→→→==b BC a AB ,,〔1〕求→BE 〔用向量a 、b 的式子表示〕;<2〕求作向量→→+AC BD 21〔不要求写作法,但要指出所 作图中表示结论的向量〕. 22.〔本题满分10分〕在某反潜演习中,我军舰A 测得潜艇C 的俯角为300,位于军舰A 正上方2000米的反潜直升机B 测得潜艇C 的俯角为680,试根据以上数据求出潜艇C 离开海平面的下潜深度.〔结果保留整数.参考数据:sin680≈0.9,cos680≈0.4,tan680≈2.5,3≈1.7>23.〔本题满分12分,每小题满分各6分〕 如图,在四边形ABCD 中,∠B =∠ACD ,过D 作AC ∥DE 交BC 的延长线于点E ,且2CD AC DE =⋅第20题图 B 第22题图B 第21题图 A D EC B A。
2015年上海市各区初三年级第⼀学期期末考试数学试题(全含答案)2015年上海市六区联考初三⼀模数学试卷(满分150分,时间100分钟) 2015.1⼀. 选择题(本⼤题满分4×6=24分)1. 如果把Rt ABC ?的三边长度都扩⼤2倍,那么锐⾓A 的四个三⾓⽐的值()A. 都扩⼤到原来的2倍;B. 都缩⼩到原来的12; C. 都没有变化; D. 都不能确定;2. 将抛物线2(1)y x =-向左平移2个单位,所得抛物线的表达式为()A. 2(1)y x =+;B. 2(3)y x =-;C. 2(1)2y x =-+;D. 2(1)2y x =--;3. ⼀个⼩球被抛出后,如果距离地⾯的⾼度h (⽶)和运⾏时间t (秒)的函数解析式为25101h t t =-++,那么⼩球到达最⾼点时距离地⾯的⾼度是()A. 1⽶;B. 3⽶;C. 5⽶;D. 6⽶;4. 如图,已知AB ∥CD ∥EF ,:3:5AD AF =,12BE =,那么CE 的长等于()A. 2;B. 4;C. 245;D. 365;5. 已知在△ABC 中,AB AC m ==,B α∠=,那么边BC 的长等于()A. 2sin m α?;B. 2cos m α?;C. 2tan m α?;D. 2cot m α?;6. 如图,已知在梯形ABCD 中,AD ∥BC ,2BC AD =,如果对⾓线AC 与BD 相交于点O ,△AOB 、△BOC 、△COD 、△DOA 的⾯积分别记作1S 、2S 、3S 、4S ,那么下列结论中,不正确的是()A. 13S S =;B. 242S S =;C. 212S S =;D. 1324S S S S ?=?;⼆. 填空题(本⼤题满分4×12=48分)7. 已知34x y =,那么22x y x y-=+ ;8. 计算:33()22a ab -+-= ; 9. 已知线段4a cm =,9b cm =,那么线段a 、b 的⽐例中项等于 cm10. ⼆次函数2253y x x =--+的图像与y 轴的交点坐标为;11. 在Rt ABC ?中,90C ∠=?,如果6AB =,2cos 3A =,那么AC = ; 12. 如图,已知,D E 分别是△ABC 的边BC 和AC 上的点,2AE =,3CE =,要使DE ∥AB ,那么:BC CD 应等于;13. 如果抛物线2(3)5y a x =+-不经过第⼀象限,那么a 的取值范围是;14. 已知点G 是⾯积为227cm 的△ABC 的重⼼,那么△AGC 的⾯积等于;15. 如图,当⼩杰沿着坡度1:5i =的坡⾯由B 到A 直⾏⾛了26⽶时,⼩杰实际上升的⾼度AC = ⽶(结论可保留根号)16. 已知⼆次函数的图像经过点(1,3),对称轴为直线1x =-,由此可知这个⼆次函数的图像⼀定经过除点(1,3)外的另⼀点,这点的坐标是;17. 已知不等臂跷跷板AB 长为3⽶,当AB 的⼀端点A 碰到地⾯时(如图1),AB 与地⾯的夹⾓为30°;当AB 的另⼀端点B 碰到地⾯时(如图2),AB 与地⾯的夹⾓的正弦值为13,那么跷跷板AB 的⽀撑点O 到地⾯的距离OH = ⽶18. 把⼀个三⾓形绕其中⼀个顶点逆时针旋转并放⼤或缩⼩(这个顶点不变),我们把这样的三⾓形运动称为三⾓形的T-变换,这个顶点称为T-变换中⼼,旋转⾓称为T-变换⾓,三⾓形与原三⾓形的对应边之⽐称为T-变换⽐;已知△ABC 在直⾓坐标平⾯内,点(0,1)A -,(B ,(0,2)C ,将△ABC 进⾏T-变换,T-变换中⼼为点A ,T-变换⾓为60°,T-变换⽐为23,那么经过T-变换后点C 所对应的点的坐标为;三. 解答题(本⼤题满分10+10+10+10+12+12+14=78分)19. 已知在直⾓坐标平⾯内,抛物线26y x bx =++经过x 轴上两点,A B ,点B 的坐标为(3,0),与y 轴相交于点C ;(1)求抛物线的表达式;(2)求△ABC 的⾯积;20. 如图,已知在△ABC 中,AD 是边BC 上的中线,设BA a =,BC b =;(1)求AD (⽤向量,a b 的式⼦表⽰)(2)如果点E 在中线AD 上,求作BE 在,BA BC ⽅向上的分向量;(不要求写作法,但要保留作图痕迹,并指出所作图中表⽰结论的分向量)21. 如图,某幢⼤楼的外墙边上竖直安装着⼀根旗杆CD ,⼩明在离旗杆下⽅⼤楼底部E 点24⽶的点A 处放置⼀台测⾓仪,测⾓仪的⾼度AB 为1.5⽶,并在点B 处测得旗杆下端C 的仰⾓为40°,上端D 的仰⾓为45°,求旗杆CD 的长度;(结果精确到0.1⽶,参考数据:sin 400.64?≈,cos 400.77?≈,tan 400.84?≈)22. ⽤含30°、45°、60°这三个特殊⾓的四个三⾓⽐及其组合可以表⽰某些实数,如:12 可表⽰为1sin 30cos 60tan 45sin 302=?=?==…;仿照上述材料,完成下列问题:(1)⽤含30°、45°、60填空:2= = = =…;(2)⽤含30°、45°、60°这三个特殊⾓的三⾓⽐,结合加、减、乘、除四种运算,设计⼀个等式,要求:等式中须含有这三个特殊⾓的三⾓⽐,上述四种运算都⾄少出现⼀次,且这个等式的结果等于1,即填空:1=23. 已知如图,D 是△ABC 的边AB 上⼀点,DE ∥BC ,交边AC 于点E ,延长DE ⾄点F ,使EF DE =,联结BF ,交边AC 于点G ,联结CF(1)求证:AE EG AC CG=;(2)如果2CF FG FB =?,求证:CG CE BC DE ?=?24. 已知在平⾯直⾓坐标系xOy 中,⼆次函数2y ax bx =+的图像经过点(1,3)-和点(1,5)-;(1)求这个⼆次函数的解析式;(2)将这个⼆次函数的图像向上平移,交y 轴于点C ,其纵坐标为m ,请⽤m 的代数式表⽰平移后函数图象顶点M 的坐标;(3)在第(2)⼩题的条件下,如果点P 的坐标为(2,3),CM 平分PCO ∠,求m 的值;25. 已知在矩形ABCD 中,P 是边AD 上的⼀动点,联结BP 、CP ,过点B 作射线交线段CP 的延长线于点E ,交边AD 于点M ,且使得ABE CBP ∠=∠,如果2AB =,5BC =,AP x =,PM y =;(1)求y 关于x 的函数解析式,并写出它的定义域;(2)当4AP =时,求EBP ∠的正切值;(3)如果△EBC 是以EBC ∠为底⾓的等腰三⾓形,求AP 的长;2015年上海市六区联考初三⼀模数学试卷参考答案⼀. 选择题1. C2. A3. D4. C5. B6. B⼆. 填空题 7.15 8. 1322a b -- 9. 6 10. (0,3) 11. 4 12.53 13. 3a <- 14. 915. 16. (3,3)- 17. 3518. ( 三. 解答题19.(1)256y x x =-+;(2)(2,0)A ,(3,0)B ,(0,6)C ,3ABC S ?=;20.(1)12b a -;(2)略; 21. 3.84CD m ≈22.(1)sin 60?,cos 30?,tan 45sin 60;(2)(sin 30cos60)tan 45cot 45?+÷?;23. 略;24.(1)24y x x =-;(2)(2,4)M m -;(3)92m =;25.(1)4y x x =-(25x <≤);(2)3tan 4EBP ∠=;(3;崇明县2014学年第⼀学期教学质量调研测试卷九年级数学(测试时间: 100分钟,满分:150分)⼀、选择题(本⼤题共6题,每题4分,满分24分)1、已知52a b =,那么下列等式中,不⼀定正确的是………………………………() (A)25a b = (B)52a b = (C)7a b += (D)72a b b += 2、在Rt ABC ?中,90C ∠=?,A ∠、B ∠、C ∠所对的边分别为a 、b 、c ,下列等式中不⼀定成⽴的是……………………………………………………………………()(A)tan b a B = (B)cos a c B = (C)sin a c A= (D)cos a b A = 3、如果⼆次函数2y ax bx c =++的图像如图所⽰,那么下列判断中,不正确的是………()(A)0a > (B)0b > (C)0c < (D)240b ac ->4、将⼆次函数2x y =的图像向下平移1个单位,再向右平移1个单位后所得图像的函数表达式为…………………………………………………………………………()(A)2(1)1y x =++(B)2(1)1y x =+- (C)2(1)1y x =-+ (D)2(1)1y x =-- 5、下列说法正确的是……………………………………………………()(A) 相切两圆的连⼼线经过切点 (B) 长度相等的两条弧是等弧 (C) 平分弦的直径垂直于弦 (D) 相等的圆⼼⾓所对的弦相等6、如图,点D 、E 、F 、G 为ABC ?两边上的点,且DE FG BC ∥∥,若DE 、FG 将ABC ?的⾯积三等分,那么下列结论正确的是 ………………………………………()(A)14DE FG = (B)1DF EG FB GC ==(C)AD FB =(D)AD DB =(第3题图)(第6题图)⼆、填空题(本⼤题共12题,每题4分,满分48分)7、已知点P 是线段AB 的黄⾦分割点()AP PB >,如果2AB =cm ,那么线段AP = cm .8、如果两个相似三⾓形的⾯积⽐为1:4,那么它们的周长⽐为.9、如果⼆次函数22(1)51y m x x m =-++-的图像经过原点,那么m = .A B CD E F G10、抛物线221y x =-在y 轴右侧的部分是(填“上升”或“下降”).11、如果将抛物线23y x =平移,使平移后的抛物线顶点坐标为(2,2),那么平移后的抛物线的表达式为.12、已知抛物线2y x bx c =++经过点(0,5)A 、(4,5)B ,那么此抛物线的对称轴是.13、某飞机的飞⾏⾼度为1500m ,从飞机上测得地⾯控制点的俯⾓为60°,此时飞机与这地⾯控制点的距离为 m .14、已知正六边形的半径为2cm ,那么这个正六边形的边⼼距为 cm .15、如图,已知在ABC ?中,90ACB ∠=?,6AC =,点G 为重⼼,GH BC ⊥,垂⾜为点H ,那么GH = .16、半径分别为8cm 与6cm 的1O 与2O 相交于A 、B 两点,圆⼼距O 1O 2的长为10cm ,那么公共弦AB 的长为 cm .17、如图,⽔库⼤坝的横截⾯是梯形,坝顶AD 宽5⽶,坝⾼10⽶,斜坡CD 的坡⾓为45?,斜坡AB 的坡度1:1.5i =,那么坝底BC 的长度为⽶.18、如图,将边长为6cm 的正⽅形ABCD 折叠,使点D 落在AB 边的中点E 处,折痕为FH ,点C 落在Q 处,EQ 与BC 交于点G ,那么EBG ?的周长是 cm .(第15题图)(第17题图)(第18题图)三、解答题(本⼤题共7题,满分78分)19、(本题满分10分)计算:2014cos301(cot 45)sin60?-+-?+?20、(本题满分10分,其中第(1)⼩题5分,第(2)⼩题5分)已知:如图,□ABCD 中,E 是AD 中点,BE 交AC 于点F ,设BA a =、BC b =.(1)⽤,a b 的线性组合表⽰FA ;(2)先化简,再直接在图中求作该向量:1151()()()2424a b a b a b -+-+++.C F E DAB C A B CD F G H QE21、(本题满分10分,其中第(1)⼩题6分,第(2)⼩题4分)如图,在Rt ABC ?中,90C ∠=?,点D 是BC 边上的⼀点,6CD =,3cos 5ADC ∠=, 2tan 3B =.(1)求AC 和AB 的长;(2)求sin BAD ∠的值.22、(本题满分10分,其中第(1)⼩题5分,第(2)⼩题5分)如图,轮船从港⼝A 出发,沿着南偏西15?的⽅向航⾏了100海⾥到达B 处,再从B 处沿着北偏东75?的⽅向航⾏200海⾥到达了C 处.(1)求证:AC AB ⊥;(2)轮船沿着BC ⽅向继续航⾏去往港⼝D 处,已知港⼝D 位于港⼝A 的正东⽅向,求轮船还需航⾏多少海⾥.23、(本题满分12分,其中第(1)⼩题6分,第(2)⼩题6分)如图,在梯形ABCD 中,AD BC ∥,AD AB =,2ABC C ∠=∠,E 与F 分别为边AD 与DC 上的两点,且有EBF C ∠=∠.(1)求证:::BE BF BD BC =;(2)当F 为DC 中点时,求:AE ED 的⽐值.DD A B CEF 北 A B C 东24、(本题满分12分,其中每⼩题各4分)如图,已知抛物线258y x bx c =++经过直线112y x =-+与坐标轴的两个交点A 、B ,点C 为抛物线上的⼀点,且90ABC ∠=?.(1)求抛物线的解析式;(2)求点C 坐标;(3)直线112y x =-+上是否存在点P ,使得BCP ?与OAB ?相似,若存在,请直接写出P 点的坐标;若不存在,请说明理由.25、(本题满分14分,其中第(1)⼩题5分,第(2)⼩题5分,第(3)⼩题4分)已知在ABC ?中,5AB AC ==,6BC =,O 为边AB 上⼀动点(不与A 、B 重合),以O 为圆⼼OB 为半径的圆交BC 于点D ,设OB x =,DC y =.(1)如图1,求y 关于x 的函数关系式及定义域;(2)当⊙O 与线段AC 有且只有⼀个交点时,求x 的取值范围;(3)如图2,若⊙O 与边AC 交于点E (有两个交点时取靠近C 的交点),联结DE ,当DEC ?与ABC ?相似时,求x 的值.C AD O B · · · (图1) B C A (备⽤图1)E C A D O B · · · · (图2) B CA (备⽤图2)2014学年徐汇区数学⼀模⼀. 选择题1. 将抛物线22y x =-向右平移⼀个单位,再向上平移2个单位后,抛物线的表达式为()A. 22(1)2y x =--+;B. 22(1)2y x =---;C. 22(1)2y x =-++;D. 22(1)2y x =-+-; 2. 如图,平⾏四边形ABCD 中,E 是边BC 上的点,AE 交BD 于点F ,如果:BE BC = 2:3,那么下列各式错误的是()A. 2BE EC =;B. 13EC AD =; C.23EF AE =; D. 23BF DF =;3. 已知Rt △ABC 中,90C ∠=?,CAB α∠=,7AC =,那么BC 为() A. 7sin α; B. 7cos α; C. 7tan α; D. 7cot α;4. 如图,在四边形ABCD 中,AD ∥BC ,如果添加下列条件,不能使得△ABC ∽△D C A 成⽴的是()A. BAC ADC ∠=∠;B. B ACD ∠=∠;C. 2AC AD BC =?;D. DC AB AC BC=; 5. 已知⼆次函数222y ax x =-+(0a >),那么它的图像⼀定不经过()A. 第⼀象限;B. 第⼆象限;C. 第三象限;D. 第四象限;6. 如图,在△ABC 中,D 、E 分别是AB 、AC 上的点,且DE ∥BC ,如果:1:4AE EC =,那么:ADE BEC S S ??=()A. 1:24;B. 1:20;C. 1:18;D. 1:16;⼆. 填空题 7. 如果53a b =,那么a b a b-+的值等于; 8. 抛物线2(1)2y x =-+的顶点坐标是;。
九年级数学 共5页 第1页2015学年第二学期初三数学复习卷1一、选择题(本大题共6题,每题4分,满分24分)1.下列运算中,正确的是 ……………………………………………………………………( )(A)1293=± (B)3273-= (C)030-=()(D)2139-= 2.轨道交通给人们的出行提供了便捷的服务,据悉,上海轨道交通19号线即将开建,一期规划为自川桥路站至长兴岛,设6站,全长约为20600米.二期、远期将延伸到崇明岛、横沙岛,届时崇明县三岛将全通地铁.将20600用科学记数法表示应为 ………………………( )(A)52.0610⨯(B)320.610⨯(C)42.0610⨯(D)50.20610⨯3.从下列不等式中选择一个与12x +≥组成不等式组,如果要使该不等式组的解集为1x ≥,那么可以选择的不等式可以是 ………………………………………………………………( ) (A)1x >-(B)2x >(C)1x <-(D)2x <4.已知点11(,)A x y 和点22(,)B x y 是直线23y x =+上的两个点,如果12x x <,那么1y 与2y 的大小关系正确的是 ……………………………………………………………………………( )(A)12y y >(B)12y y <(C)12y y =(D)无法判断5.窗花是我国的传统艺术,下列四个窗花图案中,不是..轴对称图形的是…………………( )(A) (B) (C) (D)6.已知在四边形ABCD 中,AC 与BD 相交于点O ,那么下列条件中能判定这个四边形是正方形的是 ………………………………………………………………………………………( ) (A)AC BD =, AB CD ∥, AB CD =(B)AD BC ∥, A C ∠=∠(C)AO BO CO DO ===, AC BD ⊥ (D)AO CO =, BO DO =, AB BC = 二、填空题(本大题共12题,每题4分,满分48分) 7.因式分解:34x x -= ▲ .8. 已知32x +=,那么x = ▲ .9.如果分式242x x -+的值为0,那么x 的值为 ▲ .10.已知关于x 的一元二次方程2610x x m -+-=有两个相等的实数根,那么m 的值为 ▲ .11.已知在方程222232x x x x++=+中,如果设22y x x =+,那么原方程可化为关于y 的整式方程是 ▲ . 12.布袋中有2个红球和3个黑球,它们除颜色外其他都相同,那么从布袋中取出1个球恰好是红球的概率为 ▲ .九年级数学 共5页 第2页13.某学校在开展“节约每一滴水”的活动中,从初三年级的360名同学中随机选出20名同学汇报了各自家庭一个月的节水情况,将有关数据整理如下表:用所学的统计知识估计这360名同学的家庭一个月节约用水的总量大约是 ▲ 吨. 14.如图,在ABC ∆中,AD 是边BC 上的中线,设向量AB a =,AD b =,如果用向量,a b 表示向量BC ,那么BC = ▲ .15.如图,已知ABC ∆和ADE ∆均为等边三角形,点D 在BC 边上,DE 与AC 相交于点F ,如果9AB =,3BD =,那么CF 的长度为 ▲ .16. 如图,已知在O 中,弦CD 垂直于直径AB ,垂足为点E ,如果30BAD ∠=︒,2OE =,那么CD = ▲ .17.如果一个二次函数的二次项系数为1,那么这个函数可以表示为2y x px q =++,我们将[],p q 称为这个函数的特征数.例如二次函数242y x x =-+的特征数是[]4,2-.请根据以上的信息探究下面的问题:如果一个二次函数的特征数是[]2,3,将这个函数的图像先向左平移2个单位,再向下平移3个单位,那么此时得到的图像所对应的函数的特征数为 ▲ .18.如图,在ABC ∆中,CA CB =,90C ∠=︒,点D 是BC的中点,将ABC ∆沿着直线EF 折叠,使点A 与点D 重合, 折痕交AB 于点E ,交AC 于点F ,那么sin BED ∠的值 为 ▲ .三、解答题(本大题共7题,满分78分)19.(本题满分10分) 先化简,再求值:2122121x x x x x x +-÷+--+,其中6tan302x =︒-. 20.(本题满分10分)解方程组:222230x y x xy y -=⎧⎨--=⎩BACFD(第18题图)(第14题图)ABCD(第15题图)ABCEFD(第16题图)B九年级数学 共5页 第3页21.(本题满分10分,第(1)小题5分、第(2)小题5分) 在Rt ABC ∆中,90BAC ∠=︒,点E 是BC 的中点,AD BC ⊥,垂足为点D .已知9AC =,3cos 5C =.(1)求线段AE 的长;(2)求sin DAE ∠的值.22.(本题满分10分,第(1)小题4分,第(2)小题6分)周末,小明骑电动自行车从家里出发到野外郊游.从家出发0.5小时后到达甲地,游玩一段时间后按原速前往乙地.小明离家1小时20分钟后,妈妈驾车沿相同路线前往乙地.如图是他们离家的路程y (km)与小明离家时间x (h)的函数图像.已知妈妈驾车的速度是小明骑电动自行车速度的3倍. (1)小明骑电动自行车的速度为 千米/小时,在甲地游玩的时间为 小时; (2)小明从家出发多少小时的时候被妈妈追上?此时离家多远?23.(本题满分12分,每小题各6分)如图,ABC ∆中,2BC AB =,点D 、E 分别是BC 、AC 的中点,过点A 作AF BC ∥交线段DE 的延长线于点F ,取AF 的中点G ,联结DG ,GD 与AE 交于点H .(1)求证:四边形ABDF 是菱形; (2)求证:2DH HE HC =⋅.(第21题图)C AB E D(第22题图))A BHG FEC(第23题图)九年级数学 共5页 第4页24.(本题满分12分,每小题各6分)如图,已知抛物线2y ax bx c =++经过点(0,4)A -,点(2,0)B -,点(4,0)C . (1)求这个抛物线的解析式,并写出顶点坐标;(2)已知点M 在y 轴上,OMB OAB ACB ∠+∠=∠,求点M 的坐标.25.(本题满分14分,第(1)小题5分,第(2)小题5分,第(3)小题4分)如图,在Rt ABC ∆中,90ACB ∠=︒,8AC =,4tan 3B =,点P 是线段AB 上的一个动点,以点P 为圆心,PA 为半径的P 与射线AC 的另一个交点为点D ,射线PD 交射线BC 于点E , 点Q 是线段BE 的中点.(1)当点E 在BC 的延长线上时,设PA x =,CE y =,求y 关于x 的函数关系式,并写出定义域; (2)以点Q 为圆心,QB 为半径的Q 和P 相切时,求P 的半径;(3)射线PQ 与P 相交于点M ,联结PC 、MC ,当PMC ∆是等腰三角形时,求AP 的长.(第25题图) (第24题图) (备用图) (备用图1) B A C (备用图2) B A C。
崇明县2014学年第一学期教学质量调研测试卷九年级数学(测试时间:100分钟,满分:150分)一、选择题(本大题共6题,每题4分,满分24分)1、已知a 5,那么下列等式中,不一定正确的是 ................................ ( )b 2(A) b a ta nB (B) a ccosB(C) c — sin A(D) a bcosA8、如果两个相似三角形的面积比为 1:4,那么它们的周长比为5ba 22、在 Rt ABC 中, C 是 ...............C 所对的边分别为b 、c ,下列等式中不一定成立的 )3、 如果二次函数 2ax bx c 的图像如图所示,那么下列判断中,不正确的是 4、 (A) a 0 将二次函数y x 为 ........ (B) b 0 (C) c 0 2的图像向下平移 1个单位,再向右平移 1 2(D) b 4ac 0 个单位后所得图像的函数表达式 ( )5、2 (A) y (x 1) 1 F 列说法正确的是 2 (B) y (x 1) 1 2 (C) y (x 1) 2 (D) y (x 1) 1 6、 (A)相切两圆的连心线经过切点 (C)平分弦的直径垂直于弦 如图,点D 、E 、F 、G 为 ABC 两边上的点,且 DE II FG II BC , 等分,那么下列结论正确的是 .................................. ........... ( ) (B)长度相等的两条弧是等弧 (D)相等的圆心角所对的弦相等 DE 、FG 将ABC 的面积三(第3题图)(A)EG GC(C)AD 3 2FB(D)如 DB22、填空题 C(本大题共12题,每题4分,7、已知点P 是线段AB 的黄金分割点(APPB),如果AB 2 cm ,那么线段 AP cm.9、 如果二次函数 y (m 1)x 2 5x m 2 1的图像经过原点,那么 m ________________ . 10、 抛物线y 2x 2 1在y 轴右侧的部分是 ______________ (填 上升”或 下降”). 11、 如果将抛物线 y 3x 2平移,使平移后的抛物线顶点坐标为(2,2),那么平移后的抛物线的表达式为 __________ .212、 已知抛物线y x bx c 经过点A (0,5) > B (4, 5),那么此抛物线的对称轴是 ________________ . 13、 某飞机的飞行高度为 1500 m ,从飞机上测得地面控制点的俯角为60 °此时飞机与这地面控制点的距离为 ____________ m .14、 已知正六边形的半径为 2 cm ,那么这个正六边形的边心距为 ______________ cm . 15、 如图,已知在 ABC 中, ACB 90 , AC 6,点G 为重心,GH BC ,垂足为点 H ,那么GH __________ .16、 半径分别为8cm 与6 cm 的e 0丄与e O ?相交于A 、B 两点,圆心距 O 1O 2的长为10cm ,那么公共弦AB 的长为 __________ c m .17、 如图,水库大坝的横截面是梯形,坝顶AD 宽5米,坝高10米,斜坡CD 的坡角为45,斜坡AB 的坡度i 1:1.5,那么坝底BC 的长度为 _______________ 米.18、 如图,将边长为 6 cm 的正方形ABCD 折叠,使点D 落在AB 边的中点E 处,折痕为FH ,点C 落在Q处,EQ 与BC 交于点G ,那么 EBG 的周长是 _______________________ cm .19、(本题满分10分)计算:cos30 1( cot 45 )2014 sin60解答题(本大题共(第15题图)CQ(第18题图)20、(本题满分10分,其中第(1)小题5分,第(2)小题5分)uur r uuur r 已知:如图,D ABCD中,E是AD中点,BE交AC于点F,设BA a、BC b .(1 )用a,b的线性组合表示FA ;(2)先化简,再直接在图中求作该向量:(-a b) (a -b) (- a -b).2 4 2 421、(本题满分10分,其中第(1)小题6分,第(2)小题4分)如图,在Rt ABC中,C 90,点D是BC边上的一点,2tan B —.3(1 )求AC和AB的长;(2 )求$山BAD的值.22、(本题满分10分,其中第(1)小题5分,第(2)小题5 分) 如图,轮船从港口A出发,沿着南偏西15的方向航行了偏东75的方向航行200海里到达了C处.(1)求证:AC AB ;(2 )轮船沿着BC方向继续航行去往港口D处, 已知港口D位于港口A的正东方向,求轮船还需航行多少海里.23、(本题满分12分,其中第(1)小题6分,第(2)小题6 分)如图,在梯形ABCD中,AD II BC , AD AB , 的两点,且有EBF C .(1)求证:BE: BF BD: BC ;(2)当F为DC中点时,求AE: ED的比值.100海里到达B处,再从B处沿着北ABC 2 C , E与F分别为边AD与DC上24、(本题满分12分,其中每小题各 4 分)(1) 求抛物线的解析式; (2) 求点C 坐标;1(3)直线y 1上是否存在点P ,使得 BCP 与 OAB 相似,若存在,2请直接写出P 点的坐标;若不存在,请说明理由.如图,已知抛物线 y 点C 为抛物线上的一点,且5X 2 bx c经过直线yABC 90 .1-x 1与坐标轴的两个交点 2A 、B ,25、(本题满分14分,其中第 ⑴小题5分,第(2)小题5分,第(3)小题4分)已知在 ABC 中,AB AC 5 , BC 6 , O 为边AB 上一动点(不与 A 、B 重合),以 0为 圆心OB 为半径的圆交 BC 于点D ,设OB x ,DC y .(1) 如图1,求y 关于x 的函数关系式及定义域;(2) 当0 O 与线段AC 有且只有一个交点时,求 x 的取值范围;(3) 如图2,若O O 与边AC 交于点E (有两个交点时取靠近 C 的交点),联结 DE ,当 DEC 与 ABC 相似时,求x 的值.(图1)(备用图1)(备用图2)C(图2)崇明县初三数学第一学期期末质量抽查试卷-参考答案选掙馭3:玄疇共压眄毎厲』分祸分24分)L C 2, D 3, B 4r b 5r A 6- C二*填空题{本犬息曲口题・每甌褂井,講分制分)乳岳—1曲】;2 9. -1 10.上升IL y=3(r-3)f+ 2 忆克找严2 11 100075阿再15. 2 16, - 17. 30 讴12b=.解誓IS【本大n扶7越,腐井朋井}19, M:«-:A= y- 1 +C-D m* + 百廿20. (1)擀:寫1也边形人故⑴是平行四边怅^AD//HC RAD=IK' “X / E是AD的中点抑三救学一横卷(201仍参考暮至和评分标准第19页:^AE=寺AD=~^BC\ AD//H(:r FC =tiC~~2i分AF^yAC1分• M =丽-就Z分F^ = ~ -yfi1筛(_ 寺$ + 6 ) -(a * -^b } * (号亦 + ~a^b2分2分结it1分儿琳心》生RrAAd中心吐加旳'.AC- 7A£^ -<7> - K■-■ tantt = y t AC-携'-CB- 12-.a 二/密+C7F 二 4 皿(23 DH丄A儿交AB于点灵.则F HHD=/厂=沖在△HHD牡昭屮ZH=/BBC4.DH BD nn DH _ (6)AC冲H卸呂4 /H-Jt RU .ALfH中■巾J俏二揺尹22+ K:(l) MS*^^A£ = 100 *里,BC=30O 海星・Z4HT'-75*-l5*-603方法l金AH丄BC交BC TJ*H.在RiMBH中gA器r'n - cosfiO* - -z-/io £/KB.ZACX = -| ・m」D= 101甘1分1分1;}口叽1 XBC' 2(JU 2 ・些=壓 ■ HA'ST在乙HH4 'J A^C 中[ZB = ZB:B方法也取BT 中点M •联结AM-仙二 HM= 100文 TN/\BC=6O* ■•■Z MBM 是零边三曲形 丄AW “琨札乂/⑷刃=6卻■ ■ZACB^ZCW^ - ZAWB = 30'h'Z^C£l + zCAJSOZBAC 二 ISO*-^ZZ3HA = ^AC=9Q* A AC 丄冲B方法3朋山H 丄fiT 花班 于点乩;<BH = 50.\AH=50y5 ・ 在RWHC 中.[分AC= /冲厅1■丹广=lflO J3I 分几個Ugg「.WHA 「=SMTT 井.\AC±AB怕卜如图.'* ZI + Z2 = 90\ZCJ1EJ*Z2 = 90*汕■臺-*-ZC^P=Zl=15*1分 匚埒匸- *■ 一在 RtZMMC 中 *ZABC= 60* F,TZA0G^ZACB=9C fl—-ZACiJ = 30flo'; l 分■/ ZACH = NCAlz "初三疑学一摸卷(曲15)参靑尊秦那讦分糅准 第2】贡=c^s6&*™■•./DF.\^CAD-^DACA-CD 1在RtAABC申*sinB=^/.AC-BCsi nB = 200X^ = 100^ 1.分..rD=M»75答上轮絶还需航行WO祷海里. 1分23. (1) ffU t VAD»AB二厶WB 二厶• AD# PC二“DEYDBCAZAiJD=ZBf«: 1 ib=乙八斥• = ZZC^ERF = ZC/.ZDBC'=ZEB^ = ZC=Z^DB 2 井V/EB/J + ZDBF - ZEBF.ZDiJF +ZFaC'=ZDBC/■Z^D-ZF^C 1 分在AEWJ与心FBC中./EDB-ZC(也丽"NFBCJ △曲SXFBC 1 幷・*HE:J3F=BD;HC L 分(2) # t■■ ZA + ZAJ3£» + ^AD5= ISO冷乙耳DC+WDBOW匚二1典°V ■: ZABD= ZADH = Z^ = Z(-/.^A-ZBDC 1 井VZABE+ ZABD,ZDBF^Z£B© - ZEBF丄i 井rZA = ZFDB[厶UiE 立DHF/.上:丸賊sMHF+釀「理"DF_Br■•△EBM也FM初匚敎学•-攪椒(如15)歩考蓉案和评分标准第脱西.*. fj = 4j f = 2(^1 y M⑶(041.(-S4\(4t-l )X10^4)巫帕⑴如團】闿绪"Dv AB= AC>OB = r©初三飯学一龍枳20⑸葬矛曙秦和评甘标准 第裁頁TF 为DC 宁点24.m 优人尸-長+l 斂严1 AA(Q,1J.■- B(2,0)把Agl 山⑵®代心吨宀虹%得】分1分1为1 /1分⑵ 作CH 丄工轴,直工捨F 点圧设玮,护-*+】)・t\ 7则 DH 二/・「H :W 严一十 L IJiH = f 2V ZOBC=ZOBA + Z ABC ,ZQBC= ZBCH ■+ 2 BHC X ;ZAB<'=ZBHC=9&* AZOBA = ZBCH 1 井4:ACH/J 与(詁 中 JC|zBHC=ZAOB=9(r.CH■ JifJ Af?”...^ZH-ZC.Z«-ZODB^QD//AC+翌二連…丽一丽.j BDr'T~~e-二尸-事啊CKr<mJ2>如圈氐晋OO与线段AC有且月勇一牛克点时①®O与ACffi切时ft Qfi±AC. BK1A「AAf亠扯蛊足分别为HJtM 虧得OH^HK.AM=A…BK-一7;一Q '2K哼\ CiJZ BK-AO_Qtf11AB BE・ 5~J_ JF (5)~ 24③山在®门内•「不茁①c内时叮丄柱◎住内/.OB>OA*;H A5-JC•">寺1分「亡来桎©0内P.OB<ABJ^<5「煜W茲^ [分嫌上』l器^^<*5时©O与熾段M 有且貝両一牛丈点I 5> C3> ^^DEC i5AA0CWto时.①当时,)惟t:如图3”作皿丄0C.EF丄BC.E屮亠fJ&垂址井别为G、F』a須三蝕学一楔卷畑015)參肴蓉案舸讦分椽准第24页】分1分即>A(图2,Dft RtAOPF iff = OG-£F =XJEVf 沪十FF■'39^-32^ + 525-0Jn沮票・g二只舍卜,方1£ 2血圈右疆壊得團边琶AWE为乎打四边惬4更肯MJ 二作F 1 DEQLLAH垂足井期为几几/.DJ^ yDK.Or=PJ(i. RtAHJDi|i.K;-/*J-t>/=^②如图3■当ZrJX' = ZA时.-\ZD£C=Zfi yU"AC^ZDEC = ZOb£:."DE=S,UI> DEAH EC。
2014-2015学年上海市崇明县七年级(下)期末数学试卷一、选择题(本大题共6题,每题3分,满分18分)1.(3分)如果平面直角坐标系中点A的坐标为(﹣2,3),那么点A关于y轴对称的坐标是()A.(﹣2,﹣3)B.(2,3)C.(2,﹣3)D.(﹣2,3)2.(3分)在实数中π,,0,,﹣3.14,无理数有()A.1个B.2个C.3个D.4个3.(3分)的平方根是()A.5B.C.±5D.±4.(3分)如图,∠A的同位角是()A.∠1B.∠2C.∠3D.∠45.(3分)如果三角形的两条边长分别为3和5,那么第三边的长不可能是()A.5B.6C.7D.86.(3分)下列说法中,正确的是()A.如果两条直线被第三条直线所截,那么所得同位角相等B.联结直线外一点到直线上各点的所有连线中,垂线最短C.经过平面上一点,有且只有一条直线与已知直线平行D.经过平面上一点,有且只有一条直线与已知直线垂直二、填空题(本大题12题每题2分,满分24分)7.(2分)(3+)(3﹣)=.8.(2分)根据崇明县2010年第六次全国人口普查公报,崇明县常住人口约为703000人,数字703000可用科学记数法表示为.9.(2分)点A(1﹣a,5)和点B(3,b)关于y轴对称,则a+b=.10.(2分)经过点Q(﹣1,3)且垂直于x轴的直线可以表示为.11.(2分)已知平面直角坐标系中点A(﹣3,2),那么点A到x轴的距离是.12.(2分)将点(1,2)先向左平移2个单位,再向下平移4个单位,所得到的点的坐标是.13.(2分)如图,AM∥BN,AC⊥BC,如果∠A﹣∠B=10°,那么∠A的度数是.14.(2分)如图,l1∥l2,点A、E在直线l1上,点B、C、D在直线l2上,如果BD:CD =2:1,△ABC的面积为30,那么△BDE的面积是.15.(2分)如图,在一次夏令营活动中,某同学从营地A点出发,先沿北偏东70°方向到达B地,再沿北偏西15°方向去目的地C,则∠ABC的度数是.16.(2分)如图,平面直角坐标系中直线x=5与x=﹣2,已知点A(4,0),点B、P分别在直线x=5与x=﹣2上,且均在x轴下方,如果△ABP是以AB为底边的等腰直角三角形,那么点B的坐标为.17.(2分)如图,在△ABC中,AB=BC,BO、CO分别平分∠ABC和∠ACB,过点O作DE∥BC,分别交边AB、AC于点D和点E,如果△ABC的周长等于14,△ADE的周长等于9,那么AC=.18.(2分)已知△ABC中,AB=AC,将△ABC绕点C旋转得△CDE,使点B恰好落在边AB上点D处,边DE交边AC于点F(如图),如果△CDF为等腰三角形,则∠A的度数为.三、解答题(本大题共5题,每题5分,满分25分)19.(5分)计算:++20150.20.(5分)计算(写出计算过程,并用计算器验证):.21.(5分)计算:2×6÷3.22.(5分)如图,在△ABC中,∠ACB=90°,M、N、E是△ABC边上的点,且∠1+∠2=90°,试说明MN∥CE.23.(5分)阅读并填空:如图,已知在△ABC中,AB=AC,点D、E在边BC上,且AD =AE,试说明BD=CE的理由.解:因为AB=AC,所以(等边对等角).因为,所以∠AED=∠ADE(等边对等角).在△ABE与△ACD中,,∠AED=∠ADE,AB=AC所以△ABE≌△ACD()所以(全等三角形对应边相等),所以BD=CE(等式性质).即BD=CE.四、解答题(本大题共2题,每题8分,共16分)24.(8分)如图,在△ABC中,点D、E分别在边AB、AC上,且满足BE=CD,∠1=∠2,试说明△ABC是等腰三角形的理由.25.(8分)在直角坐标平面内,点A的坐标为(3,2),点B与点A关于原点对称;点C 的坐标为(3,4),点D与点C关于x轴对称(1)分别写出点B,点D的坐标,在图中的直角坐标平面内画出△ABD,并求其面积;(2)如果点P(0,﹣6),试求△ABP的面积.五、解答题(本大题2题,第26题8分,第27题9分,共17分)26.(8分)如图,在四边形ABCD中,AB=CD,AB∥CD,DE⊥BC,BF⊥CD,线段DE 与BF交于点H.(1)说明△ABD≌△CDB;(2)当∠BDE=45°时,说明△BEH≌△DEC.27.(9分)如图(1),已知△ABC是等边三角形,点D、E、F分别在边AB、BC、CA上,且∠1=∠2=∠3.(1)试说明△DEF是等边三角形的理由;(2)分别联结BF、DC、BF与DC相交于O点(图2),求∠BOD的大小.2014-2015学年上海市崇明县七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共6题,每题3分,满分18分)1.(3分)如果平面直角坐标系中点A的坐标为(﹣2,3),那么点A关于y轴对称的坐标是()A.(﹣2,﹣3)B.(2,3)C.(2,﹣3)D.(﹣2,3)【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答.【解答】解:点A(﹣2,3)关于y轴对称的坐标是(2,3).故选:B.2.(3分)在实数中π,,0,,﹣3.14,无理数有()A.1个B.2个C.3个D.4个【分析】先把化为2的形式,再根据无理数的定义进行解答即可.【解答】解:∵=2,2是有理数,∴这一组数中的无理数有:π,共2个.故选:B.3.(3分)的平方根是()A.5B.C.±5D.±【分析】根据算术平方根和平方根的定义计算可得.【解答】解:∵=5,则的平方根是±,故选:D.4.(3分)如图,∠A的同位角是()A.∠1B.∠2C.∠3D.∠4【分析】两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角.【解答】解:如图,直线AB,CD被直线AE所截而成的角中,∠A与∠3在两直线的同侧,并且在截线的同旁,即∠A的同位角是∠3,故选:C.5.(3分)如果三角形的两条边长分别为3和5,那么第三边的长不可能是()A.5B.6C.7D.8【分析】根据三角形的三边关系:任意两边之和大于第三边,两边之差小于第三边,即可得出第三边的范围.【解答】解:设第三边为a,根据三角形的三边关系可得:5﹣3<a<3+5,解得:2<a<8.故第三边不可能是8,故选:D.6.(3分)下列说法中,正确的是()A.如果两条直线被第三条直线所截,那么所得同位角相等B.联结直线外一点到直线上各点的所有连线中,垂线最短C.经过平面上一点,有且只有一条直线与已知直线平行D.经过平面上一点,有且只有一条直线与已知直线垂直【分析】根据平行线的性质,垂线段的性质,平行公理以及垂线的性质进行判断即可.【解答】解:A.如果两条平行直线被第三条直线所截,那么所得同位角相等,故本选项错误;B.联结直线外一点到直线上各点的所有连线中,垂线段最短,故本选项错误;C.经过直线外一点,有且只有一条直线与已知直线平行,故本选项错误;D.经过平面上一点,有且只有一条直线与已知直线垂直,故本选项正确;故选:D.二、填空题(本大题12题每题2分,满分24分)7.(2分)(3+)(3﹣)=7.【分析】利用平方差公式计算.【解答】解:原式=32﹣()2=9﹣2=7.故答案为7.8.(2分)根据崇明县2010年第六次全国人口普查公报,崇明县常住人口约为703000人,数字703000可用科学记数法表示为7.03×105.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将703000用科学记数法表示为:7.03×105.故答案为:7.03×105.9.(2分)点A(1﹣a,5)和点B(3,b)关于y轴对称,则a+b=9.【分析】本题比较容易,考查平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点:关于y轴对称的点,纵坐标相同,横坐标互为相反数.【解答】解:∵点A(1﹣a,5)与B(3,b)关于y轴对称∴a=4,b=5∴a+b=4+5=9.10.(2分)经过点Q(﹣1,3)且垂直于x轴的直线可以表示为x=﹣1.【分析】根据垂直于x轴的直线上点的横坐标相等解答.【解答】解:经过点Q(﹣1,3)且垂直于x轴的直线可以表示为x=﹣1.故答案为:x=﹣1.11.(2分)已知平面直角坐标系中点A(﹣3,2),那么点A到x轴的距离是2.【分析】根据点到x轴的距离等于纵坐标的绝对值解答.【解答】解:点A(﹣3,2)到x轴的距离是2.故答案为:2.12.(2分)将点(1,2)先向左平移2个单位,再向下平移4个单位,所得到的点的坐标是(﹣1,﹣2).【分析】利用点平移的坐标规律,把点(1,2)的横坐标减2,把纵坐标减4即可得到对应点的坐标.【解答】解:将点(1,2)先向左平移2个单位,再向下平移4个单位,所得到的点的坐标是(﹣1,﹣2).故答案为(﹣1,﹣2).13.(2分)如图,AM∥BN,AC⊥BC,如果∠A﹣∠B=10°,那么∠A的度数是50°.【分析】先过C作CD∥AM,根据CD∥AM∥BN,可得∠A=∠ACD,∠B=∠BCD,再根据AC⊥BC,即可得到∠A+∠B=∠ACD+∠BCD=90°,结合∠A﹣∠B=10°,即可得出∠A的度数.【解答】解:如图,过C作CD∥AM,∵AM∥BN,∴CD∥AM∥BN,∴∠A=∠ACD,∠B=∠BCD,∵AC⊥BC,∴∠ACB=90°,∴∠A+∠B=∠ACD+∠BCD=90°,又∵∠A﹣∠B=10°,∴2∠A=100°,∴∠A=50°,故答案为:50°.14.(2分)如图,l1∥l2,点A、E在直线l1上,点B、C、D在直线l2上,如果BD:CD=2:1,△ABC的面积为30,那么△BDE的面积是20.【分析】根据两平行线间的距离处处相等,结合三角形的面积公式,知△BDE和△ABC 的面积比等于BD:BC,从而进行计算.【解答】解:∵l1∥l2,∴△BDE的面积:△ABC的面积=BD:BC=2:3,∴△BDE的面积=30×=20.故答案为:20.15.(2分)如图,在一次夏令营活动中,某同学从营地A点出发,先沿北偏东70°方向到达B地,再沿北偏西15°方向去目的地C,则∠ABC的度数是95°.【分析】直接利用方向角的定义得出∠ABD的度数,进而得出答案.【解答】解:如图所示:由题意可得,∠EAB=70°,∠CBD=15°,又因为:∠ABD=180°﹣70°=110°,则∠ABC=110°﹣15°=95°.故答案为:95°.16.(2分)如图,平面直角坐标系中直线x=5与x=﹣2,已知点A(4,0),点B、P分别在直线x=5与x=﹣2上,且均在x轴下方,如果△ABP是以AB为底边的等腰直角三角形,那么点B的坐标为(5,﹣13).【分析】如图,P A=PB,∠APB=90°,作BF⊥直线x=﹣2于F.直线x=﹣2交x轴于E,直线x=5交x轴于G,则四边形EFBG是矩形,只要证明△P AE≌△BPF,推出PE=BF=7,PF=AE=6,即可解决问题.【解答】解:如图,P A=PB,∠APB=90°,作BF⊥直线x=﹣2于F.直线x=﹣2交x轴于E,直线x=5交x轴于G,则四边形EFBG是矩形,∵∠EP A+∠BPF=90°,∠EP A+∠EAP=90°,∴∠BPF=∠EAP,∵∠PEA=∠PFB=90°,∴△P AE≌△BPF,∴PE=BF=7,PF=AE=6,∴EF=BG=13,∴B(5,﹣13),故答案为(5,﹣13)17.(2分)如图,在△ABC中,AB=BC,BO、CO分别平分∠ABC和∠ACB,过点O作DE∥BC,分别交边AB、AC于点D和点E,如果△ABC的周长等于14,△ADE的周长等于9,那么AC=4.【分析】由BO平分∠ABC,CO平分∠ACB,过点O作DE∥BC,易得△BOD与△COE 是等腰三角形,又由△ADE的周长为9,可得AB+AC=9,又由△ABC的周长是14,即可求得答案.【解答】解:∵BO平分∠ABC,CO平分∠ACB,∴∠ABO=∠OBC,∠ACO=∠OCB,∵DE∥BC,∴∠BOD=∠OBC,∠COE=∠OCB,∴∠ABO=∠BOD,∠ACO=∠COE,∴BD=OD,CE=OE,∵△ADE的周长为9,∴AD+DE+AE=AD+OD+OE+AE=AD+BD+CE+AE=AB+AC=9,∵△ABC的周长是14,∴AB+AC+BC=14,∵AB=BC,∴2AB+AC=14,∴AC=4.故答案为:4.18.(2分)已知△ABC中,AB=AC,将△ABC绕点C旋转得△CDE,使点B恰好落在边AB上点D处,边DE交边AC于点F(如图),如果△CDF为等腰三角形,则∠A的度数为36°或.【分析】如图,设∠B=x,利用等腰三角形的性质和三角形内角和定理得到∠A=180°﹣2x,再利用旋转的性质得CB=CD,∠2=∠B=x,则∠1=∠B=x,利用平角定理得∠5=180°﹣2x,利用三角形外角性质得∠3=360°﹣4x,讨论:当CD=CF时,∠2=∠3=x,则x=360°﹣4x;当CD=DF时,∠4=∠3,利用∠2+∠3+∠4=180°得到x+2(360°﹣4x)=180°;当CF=DF时,∠2=∠4=x,利用∠2+∠3+∠4=180°得到x+x+360°﹣2x=180°,然后分别解关于x的方程,然后计算180°﹣2x即可得到∠A 的度数.【解答】解:如图,设∠B=x,∵AB=AC,∴∠ACB=∠B=x∴∠A=180°﹣2x,∵△ABC绕点C旋转得△CDE,使点B恰好落在边AB上点D处,∴CB=CD,∠2=∠B=x,∴∠1=∠B=x,∴∠5=180°﹣2x,∠3=∠A+∠5=360°﹣4x,当CD=CF时,△CDF为等腰三角形,即∠2=∠3=x,则x=360°﹣4x,解得x=72°,此时∠A=180°﹣2x=36°;当CD=DF时,△CDF为等腰三角形,即∠4=∠3,而∠2+∠3+∠4=180°,则x+2(360°﹣4x)=180°,解得x=,此时∠A=180°﹣2x=;当CF=DF时,△CDF为等腰三角形,即∠2=∠4=x,而∠2+∠3+∠4=180°,则x+x+360°﹣2x=180°,无解,故舍去.综上所述,△CDF为等腰三角形时∠A的度数为36°或.故答案为36°或.三、解答题(本大题共5题,每题5分,满分25分)19.(5分)计算:++20150.【分析】首先计算乘方、开方,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:++20150=﹣10+10﹣2+1=1﹣220.(5分)计算(写出计算过程,并用计算器验证):.【分析】利用二次根式乘法法则首先将括号里面进行计算,再去括号,利用二次根式的除法法则,除以一个数等于乘以一个数的倒数,整理后再通分即可得出答案,再利用计算器验证计算结果即可.【解答】解:原式=,=,=.∵≈1.414…,∴原式=≈0.195,用计算器求出原式≈(2.236…×2.449…﹣2×3.872…)÷3×3.872…≈0.195.故以上计算正确.21.(5分)计算:2×6÷3.【分析】原式变形后,利用分数指数幂法则计算即可得到结果.【解答】解:原式=2×2×3÷3=2=22=4.22.(5分)如图,在△ABC中,∠ACB=90°,M、N、E是△ABC边上的点,且∠1+∠2=90°,试说明MN∥CE.【分析】首先根据同角的余角相等可得∠2=∠ACE,再根据同位角相等、两直线平行可得MN∥CE.【解答】证明:∵∠ACB=90°,∴∠1+∠ACE=90°,∵∠1+∠2=90°,∴∠2=∠ACE,∴NM∥CE.23.(5分)阅读并填空:如图,已知在△ABC中,AB=AC,点D、E在边BC上,且AD =AE,试说明BD=CE的理由.解:因为AB=AC,所以∠B=∠C(等边对等角).因为AD=AE,所以∠AED=∠ADE(等边对等角).在△ABE与△ACD中,∠B=∠C,∠AED=∠ADE,AB=AC所以△ABE≌△ACD(AAS)所以BE=CD(全等三角形对应边相等),所以BD=CE(等式性质).即BD=CE.【分析】根据等腰三角形的性质、以及全等三角形的判定方法AAS即可解决问题.【解答】解:因为AB=AC,所以∠B=∠C(等边对等角).因为AD=AE,所以∠AED=∠ADE(等边对等角).在△ABE与△ACD中,所以△ABE≌△ACD(AAS),所以(全等三角形对应边相等),所以BD=CE(等式性质).即BD=CE.故答案为∠B=∠C,AD=AE,∠B=∠C,AAS,BE=CD.四、解答题(本大题共2题,每题8分,共16分)24.(8分)如图,在△ABC中,点D、E分别在边AB、AC上,且满足BE=CD,∠1=∠2,试说明△ABC是等腰三角形的理由.【分析】易证∠ACD=∠ABE,即可证明△ABE≌△ACD,可得AB=AC,从而得结论.【解答】解:∵∠1=∠2,∴∠ACD=∠ABE,在△ABE和△ACD中,∴△ABE≌△ACD(AAS),∴AB=AC,∴△ABC是等腰三角形.25.(8分)在直角坐标平面内,点A的坐标为(3,2),点B与点A关于原点对称;点C 的坐标为(3,4),点D与点C关于x轴对称(1)分别写出点B,点D的坐标,在图中的直角坐标平面内画出△ABD,并求其面积;(2)如果点P(0,﹣6),试求△ABP的面积.【分析】(1)由关于原点、x轴对称点的坐标特点得出点B、点D的坐标,即可得出答案;(2)由S△ABP=S△APO+S△BPO可得答案.【解答】解:(1)如图所示,△ABD即为所求,点B(﹣3,﹣2)、D(3,﹣4),由图可知,AD=6,AD边上的高为6,则△ABD的面积为×6×6=18;(2)S△ABP=S△APO+S△BPO=×6×3+×6×3=18.五、解答题(本大题2题,第26题8分,第27题9分,共17分)26.(8分)如图,在四边形ABCD中,AB=CD,AB∥CD,DE⊥BC,BF⊥CD,线段DE 与BF交于点H.(1)说明△ABD≌△CDB;(2)当∠BDE=45°时,说明△BEH≌△DEC.【分析】(1)根据SAS即可证明;(2)首先证明△BDE是等腰直角三角形,推出BE=DE,由DE⊥BC,BF⊥CD,∠EHB =∠FHD,推出∠CBF=∠CDE,根据ASA即可证明;【解答】解:(1)∵AB∥CD,∴∠ABD=∠CDB,△ABD和△CDB中,,∴△ABD≌△CDB.(2)∵∠BDE=45°,DE⊥BC,∴△BDE是等腰直角三角形,∴BE=DE,∵DE⊥BC,BF⊥CD,∠EHB=∠FHD,∴∠CBF=∠CDE,在△CDE和△HBE中,,∴△CDE≌△HBE.27.(9分)如图(1),已知△ABC是等边三角形,点D、E、F分别在边AB、BC、CA上,且∠1=∠2=∠3.(1)试说明△DEF是等边三角形的理由;(2)分别联结BF、DC、BF与DC相交于O点(图2),求∠BOD的大小.【分析】(1)根据等边三角形的性质得出∠B=60°,求出∠B=∠DEF=60°,∠EFD =∠FDE=60°,根据等边三角形的判定得出即可;(2)根据等边三角形的性质得出DF=EF,∠A=∠C=60°,求出△ADC≌△CFE,△BCF≌△CAD,根据全等得出∠FBC=∠ACD,根据三角形外角性质得出即可.【解答】解:(1)∵△ABC是等边三角形,∴∠B=60°,∵∠1+∠B=∠DEC=∠DEF+∠3,∴∠B=∠DEF=60°,同理∠EFD=∠FDE=60°,∴△DEF是等边三角形;(2)∵△DEF、△ABC是等边三角形,∴DF=EF,∠A=∠C=60°,在△ADC和△CFE中∴△ADC≌△CFE(AAS),∴AD=CF,在△BCF和△CAD中∴△BCF≌△CAD(SAS),∴∠FBC=∠ACD,∵∠FBC+∠BCF=∠AFB=∠DCA+∠COF,∴∠BCF=∠COF=60°,即∠BOD=∠COF=60°.。
K 満分H分*茎中第(1)小・4拳・0时・55分)(1)矩形AJ3CD 中.ZABCF90Sm = io.\ AF±(T.且点F恳线敕CE的申点kAAE = AC-10.Rl^CBE 中・taiWECB -豆亡=寺./K 口TJJ? - 2710.R T ACBE中,GF«CF• lanZBCB* 寸岂(2)■/ ZABC = ZC*BE = 90a, ^LAGH二Z仇沪.fJG HE AH HC中形ABCD 中*AD HC,(1分》(1分)(1分〉(1分〉(1廿)<1知(I炉2015年上海一模25题集锦1、(2015年一模黄浦25题)25.在矩形ABCD中,= BC = 6.对谢线AC.交于点O,点疋在AB延长线上,联结CE, AF丄CE t分别交线段CE、边BC、对角线*D于点F、G. H(点F不与点C\ E重合};(D当点F是线段CE的中点时.求GF的长;(2〉设BE = x, OH = y.求y关于兀的函数解析式,并写出它的定义域;(3) f flH=BG时山丹=人0昇・5+了 = 6*即;二丫 "斛縛工二3.2' gGH=HG 时MD=AH・过点A作从f丄DH・垂足为H.5 * yRtACBE中^cosZADK = 2•二—j— =3 6 5将"粧晋代入⑴解密忑=£3* ^GH = BHBt.DH-AH- A点H ftAD ®fi平分线上. 此时点F与点C 3tf二書(舍)嫌上所迷BE的K<3或#.2、(2015年一模徐汇25题).如图,梯形ABCD中,AD // BC ,对角线AC _ BC , AD =9 ,AC =12, BC =16,点E是边BC上的一个动点,-EAF - BAC , AF交CD于点F ,交BC 延长线于点G,设BE = x ;(1)试用x的代数式表示FC ;(2)设FGEF-y,求y关于x的函数关系式,并写出定义域;BE的长;[来源学科网]25 (1分) (2分)(1分)BGE3^\DFco\GAl :7当A是等農三角形若,&\DF 也为等腰三角形动点(D 和A 、B所以,BE = 7二不重合),过 D 作DE // BC 交AC 于E ,并以DE 为边向BC 一侧作正方形 DEFG ,设AD = x3( 2015年一模宝山26题).如图在△ ABC 中,AB=BC=10,AC =牛、5,D 为边AB 上一(3) = = t ZG = Zl AD当AF = DF 时,点F 为CD 中点3 Cl = DI0 <16林理得、V100作AH £ DF 于",易得DH m"丸 EEAiUM':.^CAr = ^tiAE* AB UL … 20 A-■ ■—r J » 1■AC - r e 12 ~ rcf C- -A5由弘I HEs 川Ci'得,搜1 £卜'5山报:,^Ai'E二90AF AC 123LI ~ H< ~16~ 斗3 15 25 CF -A =—、 -V -——5 22 当 Al )二w 时, CF =3/. Cl = —A = 6 ? A 5=10(1) 请用X的代数式表示正方形DEFG的面积,并求出当边FG落在BC边上时的x的值;(2) 设正方形DEFG与厶ABC重合部分的面积为y,求y关于x的函数及其定义域;(3) 点D在运动过程中,是否存在D、G、B三点中的两点落在以第三点为圆心的圆上的情况?若存在,请直接写出此时AD的值,若不存在,则请说明理由;4、( 2015年一模崇明25题)(本题满分14分,其中第(1)小题5分,第(2)小题5分,第(3)小题4 分)已知在ABC中,AB =AC =5,BC =6,O为边AB上一动点(不与A、B重合),以0为圆心0B为半径的圆交BC于点D,设OB =x,DC =y .(1)如图1,求y关于x的函数关系式及定义域;(2)当O 0与线段AC有且只有一个交点时,求x的取值范围;(3)如图2,若O O与边AC交于点E (有两个交点时取靠近当DEC与ABC相似时,求x的值.25, Hfd)如图1联站「AB 亚片GGB H QD代= XODB:.or>//A.c* BO_Bp.王-些'' 5 ' 6「* BD- gjr-"I■工+ 6((KX5)(2)如團氛肖与线段A匚有且只育一亍交点时①®0与播2梱切时作OH_LAC.HK丄AGAM丄BC垂圧井劃为H^K y M,JS^OH#BK.AM=4— -BC・AM-A「FK' - —1g-_'r.BK■習3也-0H…丽-賦C的交点),联结DE ,C(备用图ir C1分1分B(备用图•(图£}(2> A ftGO 内,〔不SQO 内时内:.OB>OA”"”*>■5 一 x•">4•rc 不在£50内 /-OB<AB1分,\y<X<5炀匕当工二器或号VY5时◎。
2015年##市崇明县中考数学二模试卷一、选择题〔本大题共6题,每题4分,满分24分〕[下列各题的四个选项中,有且只有一个选项是正确的,请选择正确选项的代号并填涂在答题纸的相应位置上] 1.〔4分〕下列运算中,正确的是〔〕A.=±3 B.=3 C.〔﹣3〕n=0 D.3﹣2=2.〔4分〕轨道交通给人们的出行提供了便捷的服务,据悉,##轨道交通19号线即将开建,一期规划为自川桥路站至长兴岛,设6站,全长约为20600米.二期、远期将延伸到崇明岛、横沙岛,届时崇明县三岛将全通地铁.将20600用科学记数法表示应为〔〕A.2.06×105B.20.6×103C.2.06×104D.0.206×1053.〔4分〕从下列不等式中选择一个与x+1≥2组成不等式组,如果要使该不等式组的解集为x≥1,那么可以选择的不等式可以是〔〕A.x>﹣1 B.x>2 C.x<﹣1 D.x<24.〔4分〕已知点A〔x1,y1〕和点B〔x2,y2〕是直线y=2x+3上的两个点,如果x1<x2,那么y1与y2的大小关系正确的是〔〕A.y1>y2B.y1<y2C.y1=y2D.无法判断5.〔4分〕窗花是我国的传统艺术,下列四个窗花图案中,不是轴对称图形的是〔〕A.B.C.D.6.〔4分〕已知在四边形ABCD中,AC与BD相交于点O,那么下列条件中能判定这个四边形是正方形的是〔〕A.AC=BD AB∥CD,AB=CD B.AD∥BC,∠A=∠CC.AO=BO=CO=DO,AC⊥BD D.AO=CO,BO=DO,AB=BC二、填空题〔本大题共12题,每题4分,满分48分〕[请将结果直接填入答题纸的相应位置上]7.〔4分〕因式分解:x3﹣4x=.8.〔4分〕已知=2,那么x=.9.〔4分〕如果分式的值为0,那么x的值为.10.〔4分〕已知关于x的一元二次方程x2﹣6x+m﹣1=0有两个相等的实数根,那么m的值为.11.〔4分〕已知在方程x2+2x+=3中,如果设y=x2+2x,那么原方程可化为关于y的整式方程是.12.〔4分〕布袋中有2个红球和3个黑球,它们除颜色外其他都相同,那么从布袋中取出1个球恰好是红球的概率为.13.〔4分〕某学校在开展"节约每一滴水"的活动中,从初三年级的360名同学中随机选出20名同学汇报了各自家庭一个月的节水情况,将有关数据整理如下表:节水量〔单位:吨〕1 1.2 1.52 2.5同学数45632用所学的统计知识估计这360名同学的家庭一个月节约用水的总量大约是吨.14.〔4分〕如图,在△ABC中,AD是边BC上的中线,设向量=,=,如果用向量,表示向量,那=.15.〔4分〕如图,已知△ABC和△ADE均为等边三角形,点D在BC边上,DE与AC 相交于点F,如果AB=9,BD=3,那么CF的长度为.16.〔4分〕如图,已知在⊙O中,弦CD垂直于直径AB,垂足为点E,如果∠BAD=30°,OE=2,那么CD=.17.〔4分〕如果一个二次函数的二次项系数为1,那么这个函数可以表示为y=x2+px+q,我们将p,q称为这个函数的特征数.例如二次函数y=x2﹣4x+2的特征数是﹣4,2.请根据以上的信息探究下面的问题:如果一个二次函数的特征数是2,3,将这个函数的图象先向左平移2个单位,再向下平移3个单位,那么此时得到的图象所对应的函数的特征数为.18.〔4分〕如图,在△ABC中,CA=CB,∠C=90°,点D是BC的中点,将△ABC沿着直线EF折叠,使点A与点D重合,折痕交AB于点E,交AC于点F,那么sin∠BED的值为.三、解答题〔本大题共7题,满分78分〕19.〔10分〕先化简,再求值:﹣÷,其中x=6tan30°.20.〔10分〕解方程组:.21.〔10分〕在Rt△ABC中,∠BAC=90°,点E是BC的中点,AD⊥BC,垂足为点D.已知AC=9,cosC=.〔1〕求线段AE的长;〔2〕求sin∠DAE的值.22.〔10分〕周末,小明骑电动自行车从家里出发到野外郊游.从家出发0.5小时后到达甲地,游玩一段时间后按原速前往乙地.小明离家1小时20分钟后,妈妈驾车沿相同路线前往乙地.如图是他们离家的路程y〔km〕与小明离家时间x〔h〕的函数图象.已知妈妈驾车的速度是小明骑电动自行车速度的3倍.〔1〕小明骑电动自行车的速度为千米/小时,在甲地游玩的时间为小时;〔2〕小明从家出发多少小时的时候被妈妈追上?此时离家多远?23.〔12分〕如图,△ABC中,BC=2AB,点D、E分别是BC、AC的中点,过点A作AF ∥BC交线段DE的延长线于点F,取AF的中点G,联结DG,GD与AE交于点H.〔1〕求证:四边形ABDF是菱形;〔2〕求证:DH2=HE•HC.24.〔12分〕如图,已知抛物线y=ax2+bx+c经过点A〔0,﹣4〕,点B〔﹣2,0〕,点C 〔4,0〕.〔1〕求这个抛物线的解析式,并写出顶点坐标;〔2〕已知点M在y轴上,∠OMB+∠OAB=∠ACB,求点M的坐标.25.〔14分〕如图,在Rt∠ABC中,∠ACB=90°,AC=8,tinB=,点P是线段AB上的一个动点,以点P为圆心,PA为半径的⊙P与射线AC的另一个交点为点D,射线PD交射线BC于点E,点Q是线段BE的中点.〔1〕当点E在BC的延长线上时,设PA=x,CE=y,求y关于x的函数关系式,并写出定义域;〔2〕以点Q为圆心,QB为半径的⊙Q和⊙P相切时,求⊙P的半径;〔3〕射线PQ与⊙P相交于点M,联结PC、MC,当△PMC是等腰三角形时,求AP 的长.2015年##市崇明县中考数学二模试卷参考答案与试题解析一、选择题〔本大题共6题,每题4分,满分24分〕[下列各题的四个选项中,有且只有一个选项是正确的,请选择正确选项的代号并填涂在答题纸的相应位置上] 1.〔4分〕〔2015•崇明县二模〕下列运算中,正确的是〔〕A.=±3 B.=3 C.〔﹣3〕n=0 D.3﹣2=[考点]分数指数幂;有理数的乘方;立方根;负整数指数幂.[分析]根据分数指数幂的意义、立方根的意义、乘方的意义、负整数指数幂的意义分别计算即可求解.[解答]解:A、==3,故本选项错误;B、=﹣3,故本选项错误;C、〔﹣3〕n≠0,故本选项错误;D、3﹣2=,故本选项正确;故选D.[点评]本题考查了分数指数幂的意义、立方根的意义、乘方的意义、负整数指数幂的意义,熟练掌握定义是解题的关键.2.〔4分〕〔2015•崇明县二模〕轨道交通给人们的出行提供了便捷的服务,据悉,##轨道交通19号线即将开建,一期规划为自川桥路站至长兴岛,设6站,全长约为20600米.二期、远期将延伸到崇明岛、横沙岛,届时崇明县三岛将全通地铁.将20600用科学记数法表示应为〔〕A.2.06×105B.20.6×103C.2.06×104D.0.206×105[考点]科学记数法—表示较大的数.[分析]科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.[解答]解:将20600用科学记数法表示为2.06×104.故选C.[点评]此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以与n的值.3.〔4分〕〔2016•扬州二模〕从下列不等式中选择一个与x+1≥2组成不等式组,如果要使该不等式组的解集为x≥1,那么可以选择的不等式可以是〔〕A.x>﹣1 B.x>2 C.x<﹣1 D.x<2[考点]不等式的解集.[分析]首先计算出不等式x+1≥2的解集,再根据不等式的解集确定方法:大大取大可确定另一个不等式的解集,进而选出答案.[解答]解:x+1≥2,解得:x≥1,根据大大取大可得另一个不等式的解集一定是x不大于1.故选:A.[点评]此题主要考查了不等式的解集,关键是正确理解不等式组解集的确定方法:大大取大,小小取小,大小小大中间找,大大小小找不着.4.〔4分〕〔2015•崇明县二模〕已知点A〔x1,y1〕和点B〔x2,y2〕是直线y=2x+3上的两个点,如果x1<x2,那么y1与y2的大小关系正确的是〔〕A.y1>y2B.y1<y2C.y1=y2D.无法判断[考点]一次函数图象上点的坐标特征.[分析]先根据一次函数的解析式判断出函数的增减性,再由x1<x2即可得出结论.[解答]解:∵直线y=2x+3中,k=2>0,∴y随x的增大而增大.∵x1<x2,∴y1<y2.故选B.[点评]本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.5.〔4分〕〔2015•崇明县二模〕窗花是我国的传统艺术,下列四个窗花图案中,不是轴对称图形的是〔〕A.B.C.D.[考点]轴对称图形.[分析]根据轴对称的概念作答.如果一个图形沿一条直线对折,直线两旁的部分能互相重合,那么这个图形叫做轴对称图形.[解答]解:A、是轴对称图形,不符合题意;B、是轴对称图形,不符合题意;C、是轴对称图形,不符合题意;D、不是轴对称图形,找不到任何这样的一条直线使一个图形沿一条直线对折,直线两旁的部分能互相重合,符合题意;故选:D.[点评]此题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.6.〔4分〕〔2015•崇明县二模〕已知在四边形ABCD中,AC与BD相交于点O,那么下列条件中能判定这个四边形是正方形的是〔〕A.AC=BD AB∥CD,AB=CD B.AD∥BC,∠A=∠CC.AO=BO=CO=DO,AC⊥BD D.AO=CO,BO=DO,AB=BC[考点]正方形的判定.[分析]根据正方形的判定:对角线互相垂直平分且相等的四边形是正方形进行分析从而得到最后的答案.[解答]解:A、不能,只能判定为矩形;B、不能,只能判定为平行四边形;C、能;D、不能,只能判定为菱形.故选:C.[点评]本题是考查正方形的判别方法,判别一个四边形为正方形主要根据正方形的概念,途经有两种:①先说明它是矩形,再说明有一组邻边相等;②先说明它是菱形,再说明它有一个角为直角.二、填空题〔本大题共12题,每题4分,满分48分〕[请将结果直接填入答题纸的相应位置上]7.〔4分〕〔2015•宿迁〕因式分解:x3﹣4x=x〔x+2〕〔x﹣2〕.[考点]提公因式法与公式法的综合运用.[分析]首先提取公因式x,进而利用平方差公式分解因式得出即可.[解答]解:x3﹣4x=x〔x2﹣4〕=x〔x+2〕〔x﹣2〕.故答案为:x〔x+2〕〔x﹣2〕.[点评]此题主要考查了提取公因式法以与公式法分解因式,熟练应用平方差公式是解题关键.8.〔4分〕〔2015•崇明县二模〕已知=2,那么x=1.[考点]无理方程.[分析]把方程=2两边平方,求出x的值即可.[解答]解:∵=2,∴x+3=4,∴x=1,经检验x=1是方程的解.故答案为1.[点评]本题主要考查了无理方程的知识,解答本题的关键是把方程两边进行平方运算,注意无理方程需要验根,此题比较简单.9.〔4分〕〔2016•静安区二模〕如果分式的值为0,那么x的值为2.[考点]分式的值为零的条件.[分析]根据分式值为零的条件可得x2﹣4=0,且x+2≠0,再解即可.[解答]解:由题意得:x2﹣4=0,且x+2≠0,解得:x=2,故答案为:2.[点评]此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.注意:"分母不为零"这个条件不能少.10.〔4分〕〔2015•崇明县二模〕已知关于x的一元二次方程x2﹣6x+m﹣1=0有两个相等的实数根,那么m的值为10.[考点]根的判别式.[分析]根据一元二次方程x2﹣6x+m﹣1=0有两个相等的实数根得到△=36﹣4〔m ﹣1〕=0,求出m的值即可.[解答]解:∵一元二次方程x2﹣6x+m﹣1=0有两个相等的实数,∴△=36﹣4〔m﹣1〕=0,∴m=10,故答案为10.[点评]此题主要考查了一元二次方程根的情况与判别式△的关系:〔1〕△>0⇔方程有两个不相等的实数根;〔2〕△=0⇔方程有两个相等的实数根;〔3〕△<0⇔方程没有实数根.11.〔4分〕〔2015•崇明县二模〕已知在方程x2+2x+=3中,如果设y=x2+2x,那么原方程可化为关于y的整式方程是y2﹣3y+2=0.[考点]换元法解分式方程.[分析]方程各项具备倒数关系,设y=x2+2x,则原方程另一个分式为.可用换元法转化为关于y的分式方程,然后去分母即可求解.[解答]解:设y=x2+2x,则原方程可化为y+=3,去分母,得y2﹣3y+2=0.故答案是:y2﹣3y+2=0.[点评]本题考查了换元法解分式方程.这是常用方法之一,它能够把一些分式方程化繁为简,化难为易,对此应注意总结能用换元法解的分式方程的特点,寻找解题技巧.12.〔4分〕〔2015•崇明县二模〕布袋中有2个红球和3个黑球,它们除颜色外其他都相同,那么从布袋中取出1个球恰好是红球的概率为.[考点]概率公式.[分析]由布袋中有2个红球和3个黑球,它们除颜色外其他都相同,直接利用概率公式求解即可求得答案.[解答]解:∵布袋中有2个红球和3个黑球,它们除颜色外其他都相同,∴从布袋中取出1个球恰好是红球的概率为:=.故答案为:.[点评]此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.13.〔4分〕〔2015•崇明县二模〕某学校在开展"节约每一滴水"的活动中,从初三年级的360名同学中随机选出20名同学汇报了各自家庭一个月的节水情况,将有关数据整理如下表:节水量〔单位:吨〕1 1.2 1.52 2.5同学数45632用所学的统计知识估计这360名同学的家庭一个月节约用水的总量大约是540吨.[考点]用样本估计总体;加权平均数.[分析]先计算这20名同学各自家庭一个月的节水量的平均数,即样本平均数,然后乘以总数360即可得出答案.[解答]解:这20名同学各自家庭一个月的节水量的平均数是:〔4+1.2×5+1.5×6+2×3+2.5×2〕÷20=1.5〔吨〕,则这360名同学的家庭一个月节约用水的总量大约是1.5×360=540〔吨〕;故答案为:540.[点评]本题考查的是通过样本去估计总体,关键是求出这20名同学各自家庭一个月的节水量的平均数,将样本"成比例地放大"为总体即可.14.〔4分〕〔2016•崇明县二模〕如图,在△ABC中,AD是边BC上的中线,设向量=,=,如果用向量,表示向量,那=2﹣2.[考点]*平面向量.[分析]由向量=,=,利用三角形法则,即可求得,再由AD是边BC上的中线,即可求得答案.[解答]解:∵向量=,=,∴=﹣=﹣,∵AD是边BC上的中线,∴=2=2〔﹣〕=2﹣2.故答案为:2﹣2.[点评]此题考查了平面向量的知识.注意掌握三角形法则的应用.15.〔4分〕〔2015•崇明县二模〕如图,已知△ABC和△ADE均为等边三角形,点D 在BC边上,DE与AC相交于点F,如果AB=9,BD=3,那么CF的长度为2.[考点]相似三角形的判定与性质;等边三角形的性质.[分析]利用两对相似三角形,线段成比例:AB:BD=AE:EF,CD:CF=AE:EF,可得CF=2.[解答]解:如图,∵△ABC和△ADE均为等边三角形,∴∠B=∠BAC=60°,∠E=∠EAD=60°,∴∠B=∠E,∠BAD=∠EAF,∴△ABD∽△AEF,∴AB:BD=AE:EF.同理:△CDF∽△EAF,∴CD:CF=AE:EF,∴AB:BD=CD:CF,即9:3=〔9﹣3〕:CF,∴CF=2.故答案为:2.[点评]本题考查了相似三角形的判定与性质和等边三角形的性质.此题利用了"两角法"证得两个三角形相似.16.〔4分〕〔2015•崇明县二模〕如图,已知在⊙O中,弦CD垂直于直径AB,垂足为点E,如果∠BAD=30°,OE=2,那么CD=4.[考点]垂径定理;勾股定理.[分析]连接OD,弦CD垂直于直径AB,∠BAD=30°,由圆周角定理得∠BOD=60°,设半径为r,则OE=,r=4,得DE,CD.[解答]解:连接OD,∵∠BAD=30°,∴∠BOD=60°,设半径为r,OE=r,OE=2,∴r=4,∴DE=×4=2,∴.故答案为:4.[点评]本题主要考查了垂径定理,圆周角定理,特殊角的三角函数,熟练运用特殊角的三角函数是解答此题的关键.17.〔4分〕〔2015•崇明县二模〕如果一个二次函数的二次项系数为1,那么这个函数可以表示为y=x2+px+q,我们将p,q称为这个函数的特征数.例如二次函数y=x2﹣4x+2的特征数是﹣4,2.请根据以上的信息探究下面的问题:如果一个二次函数的特征数是2,3,将这个函数的图象先向左平移2个单位,再向下平移3个单位,那么此时得到的图象所对应的函数的特征数为6,8.[考点]二次函数图象与几何变换.[分析]首先得出函数解析式,进而利用函数平移规律得出答案.[解答]解:特征数是2,3的函数解析式为:y=x2+2x+3=〔x+1〕2+2,其顶点坐标是〔﹣1,2〕,将这个函数的图象先向左平移2个单位,再向下平移3个单位后的顶点坐标是〔﹣3,﹣1〕,所以平移后的函数解析式为:y=〔x+3〕2﹣1=x2+6x+8,那么此时得到的图象所对应的函数的特征数为6,8.故答案是:6,8.[点评]主要考查了函数图象的平移,抛物线与坐标轴的交点坐标的求法,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.会利用方程求抛物线与坐标轴的交点.18.〔4分〕〔2016•江宁区一模〕如图,在△ABC中,CA=CB,∠C=90°,点D是BC的中点,将△ABC沿着直线EF折叠,使点A与点D重合,折痕交AB于点E,交AC于点F,那么sin∠BED的值为.[考点]翻折变换〔折叠问题〕.[分析]先根据翻折变换的性质得到△DEF≌△AEF,再根据等腰三角形的性质与三角形外角的性质可得到∠BED=CDF,设CD=1,CF=x,则CA=CB=2,再根据勾股定理即可求解.[解答]解:∵△DEF是△AEF翻折而成,∴△DEF≌△AEF,∠A=∠EDF,∵△ABC是等腰直角三角形,∴∠EDF=45°,由三角形外角性质得∠CDF+45°=∠BED+45°,∴∠BED=∠CDF,设CD=1,CF=x,则CA=CB=2,∴DF=FA=2﹣x,∴在Rt△CDF中,由勾股定理得,CF2+CD2=DF2,即x2+1=〔2﹣x〕2,解得x=,∴sin∠BED=sin∠CDF==,故答案为:[点评]本题考查的是图形翻折变换的性质、等腰直角三角形的性质、勾股定理、三角形外角的性质,涉与面较广,但难易适中.三、解答题〔本大题共7题,满分78分〕19.〔10分〕〔2015•崇明县二模〕先化简,再求值:﹣÷,其中x=6tan30°.[考点]分式的化简求值;特殊角的三角函数值.[分析]原式第二项利用除法法则变形,约分后利用同分母分式的减法法则计算得到最简结果,把x的值代入计算即可求出值.[解答]解:原式=﹣•=﹣=,∵x=6tan30°﹣2=6×﹣2=2﹣2,∴原式==.[点评]此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.20.〔10分〕〔2011•##〕解方程组:.[考点]高次方程.[分析]用代入法即可解答,把①化为x=1+y,代入②得〔1+y〕2+2y+3=0即可.[解答]解:由①得y=x﹣2③把③代入②,得x2﹣2x〔x﹣2〕﹣3〔x﹣2〕2=0,即x2﹣4x+3=0解这个方程,得x1=3,x2=1代入③中,得或.∴原方程组的解为或.[点评]考查了高次方程,解答此类题目一般用代入法比较简单,先消去一个未知数再解关于另一个未知数的一元二次方程,把求得结果代入一个较简单的方程中即可.21.〔10分〕〔2015•崇明县二模〕在Rt△ABC中,∠BAC=90°,点E是BC的中点,AD ⊥BC,垂足为点D.已知AC=9,cosC=.〔1〕求线段AE的长;〔2〕求sin∠DAE的值.[考点]解直角三角形.[分析]〔1〕先在Rt△ABC中利用∠C的余弦计算出BC=15,然后根据斜边上的中线性质求AE;〔2〕先在Rt△ADC中利用∠C的余弦计算出CD=,则可得到DE=CE﹣CD=,然后在Rt△ADE中利用正弦的定义求解.[解答]解:〔1〕在Rt△ABC中,∵cosC==,∴BC=×9=15,∵点E是斜边BC的中点,∴AE=BC=;〔2〕∵AD⊥BC,∴∠ADC=∠ADE=90°,在Rt△ADC中,∵cosC==,∴CD=×9=,∵点E是BC的中点,∴CE=BC=,∴DE=CE﹣CD=﹣=,在Rt△ADE中,sin∠DAE===.[点评]本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.灵活由于勾股定理、互余关系和三角函数关系.22.〔10分〕〔2015•崇明县二模〕周末,小明骑电动自行车从家里出发到野外郊游.从家出发0.5小时后到达甲地,游玩一段时间后按原速前往乙地.小明离家1小时20分钟后,妈妈驾车沿相同路线前往乙地.如图是他们离家的路程y〔km〕与小明离家时间x〔h〕的函数图象.已知妈妈驾车的速度是小明骑电动自行车速度的3倍.〔1〕小明骑电动自行车的速度为20千米/小时,在甲地游玩的时间为0.5小时;〔2〕小明从家出发多少小时的时候被妈妈追上?此时离家多远?[考点]一次函数的应用.[分析]〔1〕根据图象可以求出小明在甲地游玩的时间,由速度=路程÷时间就可以求出小明骑车的速度;〔2〕直接运用待定系数法就可以求出直线BC和DE的解析式,再由其解析式建立二元一次方程组,求出点F的坐标就可以求出结论.[解答]解:〔1〕由图象得在甲地游玩的时间是1﹣0.5=0.5〔h〕,小明骑车速度:10÷0.5=20〔km/h〕,故答案为:20,0.5.〔2〕如图,妈妈驾车速度:20×3=60〔km/h〕设直线OA的解析式为y=kx〔k≠0〕,则10=0.5k,解得:k=20,故直线OA的解析式为:y=20x.∵小明走OA段与走BC段速度不变,∴OA∥BC,设直线BC解析式为y=20x+b1,把点B〔1,10〕代入得b1=﹣10,∴y=20x﹣10,设直线DE解析式为y=60x+b2,把点D〔,0〕代入得:b2=﹣80,∴y=60x﹣80,∴,解得:,∴F〔1.75,25〕.答:小明出发1.75小时〔105分钟〕被妈妈追上,此时离家25km.[点评]本题考查了一次函数的应用,考查了路程=速度×时间的运用,待定系数法求一次函数的解析式的运用,一次函数图象性质的而运用.解题的关键是从实际问题中整理出一次函数模型.23.〔12分〕〔2015•崇明县二模〕如图,△ABC中,BC=2AB,点D、E分别是BC、AC 的中点,过点A作AF∥BC交线段DE的延长线于点F,取AF的中点G,联结DG,GD 与AE交于点H.〔1〕求证:四边形ABDF是菱形;〔2〕求证:DH2=HE•HC.[考点]相似三角形的判定与性质;全等三角形的判定与性质;菱形的判定与性质.[分析]〔1〕首先根据三角形的中位线定理,得DE∥AB,结合AF∥BC,根据两组对边分别平行的四边形是平行四边形,可以判断该四边形是平行四边形,再根据一组邻边相等的平行四边形是菱形即可证明;〔2〕根据菱形的性质可以进一步得到△FGD≌△FEA,则GD=AE,然后通过证明三角形相似,即可得到结论.[解答]〔1〕证明:∵点D、E分别是BC、AC的中点∴DE∥AB,BC=2BD,∵AF∥BC,∴四边形ABDF是平行四边形,∵BC=2AB,∴AB=BD,∴四边形ABDF是菱形;〔2〕证明:∵四边形ABDF是菱形,∴AF=DF,∵点G是AF的中点,∴FG=AF,∵点E是AC的中点,∴AE=CE,∵AF∥BC,∴==1,∴EF=DF,∴FG=EF,在△AFE和△DFG中,∴△AFE≌△DFG,∴∠FAE=∠FDG,∵AF∥BC,∴∠FAE=∠C,∴∠FDG=∠C,又∵∠EHD=∠DHC,∴△HED∽△HDC,∴=,∴DH2=HE•HC.[点评]本题考查了三角形的中位线定理、菱形的判定和性质、全等三角形的判定和性质,相似三角形的判定和性质,熟记定理是解题的关键.24.〔12分〕〔2015•崇明县二模〕如图,已知抛物线y=ax2+bx+c经过点A〔0,﹣4〕,点B〔﹣2,0〕,点C〔4,0〕.〔1〕求这个抛物线的解析式,并写出顶点坐标;〔2〕已知点M在y轴上,∠OMB+∠OAB=∠ACB,求点M的坐标.[考点]二次函数综合题.[分析]〔1〕把点A〔0,﹣4〕,点B〔﹣2,0〕,点C〔4,0〕代入抛物线解析式,组成方程组,即可解答;〔2〕取OA的中点,记为点N,证明∠OMB=∠NBA,分两种情况讨论:①当点M在点N的上方时,记为M1,因为∠BAN=∠M1AB,∠NBA=∠OM1B,所以△ABN∽△AM1B,求出AM1=10,又根据A〔0,﹣4〕,所以M1〔0,6〕.②当点M在点N的下方时,记为M2,点M1与点M2关于x轴对称,所以M2〔0,﹣6〕.[解答]〔1〕解:∵抛物线y=ax2+bx+c经过点A〔0,﹣4〕,点B〔﹣2,0〕,点C〔4,0〕.∴,解得,∴这个抛物线的解析式为:,顶点为.〔2〕如图:取OA的中点,记为点N,∵OA=OC=4,∠AOC=90°,∴∠ACB=45°,∵点N是OA的中点,∴ON=2,又∵OB=2,∴OB=ON,又∵∠BON=90°,∴∠ONB=45°,∴∠ACB=∠ONB,∵∠OMB+∠OAB=∠ACB,∠NBA+∠OAB=∠ONB,∴∠OMB=∠NBA;①当点M在点N的上方时,记为M1,∵∠BAN=∠M1AB,∠NBA=∠OM1B,∴△ABN∽△AM1B∴,又∵AN=2,AB=2,∴AM1=10,又∵A〔0,﹣4〕∴M1〔0,6〕.②当点M在点N的下方时,记为M2,点M1与点M2关于x轴对称,∴M2〔0,﹣6〕,综上所述,点M的坐标为〔0,6〕或〔0,﹣6〕.[点评]本题考查了二次函数,该函数综合题的难度较大,〔2〕题注意分类讨论,通过构建相似三角形是打开思路的关键所在.25.〔14分〕〔2015•崇明县二模〕如图,在Rt∠ABC中,∠ACB=90°,AC=8,tinB=,点P是线段AB上的一个动点,以点P为圆心,PA为半径的⊙P与射线AC的另一个交点为点D,射线PD交射线BC于点E,点Q是线段BE的中点.〔1〕当点E在BC的延长线上时,设PA=x,CE=y,求y关于x的函数关系式,并写出定义域;〔2〕以点Q为圆心,QB为半径的⊙Q和⊙P相切时,求⊙P的半径;〔3〕射线PQ与⊙P相交于点M,联结PC、MC,当△PMC是等腰三角形时,求AP 的长.[考点]圆的综合题.[分析]〔1〕过点P作PH⊥AD,垂足为点H,利用已知条件以与勾股定理可分别得到PH,AH,AD,CD的长,再由PH∥BE,可得,所以,进而可求出y关于x的函数关系式;〔2〕首先利用已知条件得到BQ,PQ的长,再分两种情况:①当⊙Q和⊙P外切时,②当⊙Q和⊙P内切时,分别讨论求出⊙P的半径即可;〔3〕当△PMC是等腰三角形,存在以下几种情况:①当MP=MC=x时,②当CP=CM 时,③当PM=PC=x时,分别讨论求出符合题意的x值即可得到AP的长.[解答]解:〔1〕过点P作PH⊥AD,垂足为点H,∵∠ACB=90°,tanB=,∴sinA=,∵PA=x,∴PH=x,∵∠PHA=90°,∴PH2+AH2=PA2,∴AH=x.∵在⊙P中,PH⊥弦AD,∴DH=AH=x,∴AD=x,又∵AC=8,∴CD=8﹣x,∵∠PHA=∠BCA=90°,∴PH∥BE,∴,∴,∴y=6﹣x〔0<x<5〕;〔2〕∵PA=PD,PH⊥AD,∴∠1=∠2,∵PH∥BE,∴∠1=∠B,∠2=∠3,∴PB=PE,∵Q是BE的中点,∴PQ⊥BE,∴tanB==,∴cosB=,∵PA=x,∴PB=10﹣x,∴BQ=6﹣x,PQ=8﹣x,①当⊙Q和⊙P外切时:PQ=AP+BQ∴8﹣x=x+6﹣x,∴x=;②当⊙Q和⊙P内切时,此时⊙P的半径大于⊙Q的半径,则PQ=AP﹣BQ,∴8﹣x=x﹣〔6﹣x〕,∴x=,∴当⊙Q和⊙P相切时,⊙P的半径为或.〔3〕当△PMC是等腰三角形,存在以下几种情况:①当MP=MC=x时,∵QC=6﹣〔6﹣x〕=x,∴MQ=x,若M在线段PQ上时,PM+MQ=PQ,∴x+x=8﹣x,∴x=;若M在线段PQ的延长线上时,PM﹣MQ=PQ,∴x﹣x=8﹣x,∴x=8;②当CP=CM时,∵CP=CM,CQ⊥PM,∴PQ=QM=PM=x,∴x﹣x=x,∴x=,③当PM=PC=x时,∵AP=x,∴PA=PC,又∵PH⊥AC,∴AH=CH,∵PH∥BE,∴,∴,∴x=5.综上所述:当△PMC是等腰三角形时,AP的长为或或5或8.[点评]本题考查了圆的综合题:熟练掌握两圆相切的性质和三角形相似的判定与性质;会运用勾股定理和相似比进行几何计算;能运用分类讨论的思想解题是答题关键,题目的综合性很强,牵扯到的知识点较多,对学生的综合解题能力要求很高.。
崇明县2015学年第一学期教学质量调研测试卷八年级数学(满分100分,考试时间90分钟)一、填空题(本大题共15题,每题2分,满分30分)1 •计算:• 24 二_____________ .2 .方程x2 =4x的根是 ______________ •x3. 函数V =——的定义域是x+24. 如果最简二次根式_________________________________________.厂2与3x是同类二次根式,那么x 的值是.2 _5. 已知f(x)二——,贝y f c 3) = _________ .x -16. 在实数范围内因式分解:__ x2 _3x_2二.7. ______________________________________________________________________ 已知关于x的方程x2 -2x 3k =0没有实数根,则k的取值范围是_______________________________________________________.k8已知Pg , yj, Q(X2, V2)在反比例函数y二一(k 0)的图像上,若为:::x? :::0 ,则旳V(填“> “”或“”.x9.如果正比例函数的图像经过点(-2,1),那么这个正比例函数的解析式是__________________10 .命题“对顶角相等”的逆命题是_______________________________________ .11.到点P(-5,0)的距离等于4的点的轨迹是_________________________________________ .12 .如图,. ABC中,CD_AB于D, E是AC的中点.若AD =6 , DE =5,则CD的长等于_________________________ .13. 如图,在ABC中,.ABC =56 ,三角形的外角.DAC和.ACF的平分线交于点E,贝,ABE = 度.14. 如图,在Rt ABC中,.BAC =90 , . C =30,以直角顶点A为圆心,AB长为半径画弧交BC于点D,过D作DE _ AC于点E.若DE =a,则ABC的周长用含a的代数式表示为______________________ .C(第12题图)(第13题图)15.如图,在长方形ABCD中,AB =6, AD =8,把长方形ABCD沿直线MN翻折,点B落在边AD上的E点处, 若AE =2AM,那么ED的长等于__________________________________________ .八年级数学共6页第1页、选择题(本大题共4题,每题3分,满分12分)16.下列代数式中,x 1的一个有理化因式是.................................. ()A. • x 1B. x -1C. 、x 1D. - x -1八年级数学共6页第2页17 .2关于反比例函数y二三的图像,下列叙述错误的是xA . y随x的增大而减小18 . 19 .B .图像位于一、三象限C.图像关于原点对称D.点(-1-2)在这个图像上如图,是一台自动测温记录仪的图像,它反映了某市冬季某天气温T随时间t变化而变化的关系,观察图像得到下列信息,其中错误的是..................... ( )A .凌晨4时气温最低为-3 CB . 14时气温最高为8 C8O-3*T/'C14 24 t/时C.从0时至14时,气温随时间增长而上升 D .从14时至24时,气温随时间增长而下降如图,在平面直角坐标系中,直线AB与x轴交于点A(_2,0),与x轴夹角为30,将ABO沿直线AB k翻折,点O的对应点C恰好落在双曲线y=k(k=0)x•-( )C. .3BO(第18题图)y*上,则k的值为B.—2D. - .3(第19题图)、简答题(本大题共4题,每题6分,满分24分)20 .计算:一1 3 27 - 1 48 - . 24 ■ 621.解方程:(2x 1)(x-1)=8(9-x)—1222 .已知关于x的一元二次方程ax -(4a 1)x (4^1^0有两个实数根.(1)求a的取值范围;(2)当a在允许的取值范围内取最小的整数时,请用配方法解此方程.八年级数学共6页第3页23.如图,在:ABC中,AB =AC,作AD _ AB交BC的延长线于点D,作AE II BD , CE _ AC , 且AE, CE相交于点E,求证:AD =CE .A四、解答题(本大题共3题,每题8分,满分24 分)24•某药品研究所开发一种抗菌新药,经多年动物实验,首次用于临床人体试验,测得成人服药后血液中药物浓度y (微克/毫升)与服药时间x小时之间函数关系如图所示(当4 < x< 10时,y与x成反比例)(1) 根据图像分别求出血液中药物浓度上升和下降阶段y与x之间的函数关系式;(2)问血液中药物浓度不低于25. 2013年,某市某楼盘以每平方米6500元的均价对外销售,因为楼盘滞销,房地产开发商为了加快资金周转,决定进行降价促销,经过连续两年下调后,2015年的均价为每平方米5265元.(1)求平均每年下调的百分率;(2)假设2016年的均价仍然下调相同的百分率,张强准备购买一套100平方米的住房,他持有现金20万元,可以在银行贷款30万元,张强的愿望能否实现?(房价每平方米按照均价计算)八年级数学共6页第4页八年级数学共6页第5页:ABC 中,.BAC =90 , AB =AC ,点 D 在边 BC 上,作.DAF =90 , 过点 F 作 EF II AD ,且 EF =AF ,联结 CF, CE ._BC ; (2)如果BD =AC ,求证:点27.(本题满分10分)ABC 中,AB =AC , . A =60,点D 是线段BC 的中点,.EDF =120 , DE 与线段AB 相交于点E , DF 与 线段AC (或AC 的延长线)相交于点 F . (1)如图1,若DF _AC ,垂足为F , AB =4,求BE 的长;(2) 如图2,将(1)中的.EDF 绕点D 顺时针旋转一定的角度,仍与线段AC 相交于点F .1求证:BE CF AB ;2(3) 如图3,将(2)中的.EDF 继续绕点D 顺时针旋转一定的角度,使DF 与线段AC 的延长线交与点F ,作DN A于点 N , 若 DN 二FN ,求证:BE CF =£3(BE -CF ).C26.如图,已知在且 AF =AD , (1)求证:FC (第 26题图)八年级数学共6页第6页崇明县2015学年第一学期教学质量调研测试卷八年级数学答案及评分参考2016.1三、 简答题(本大题共 4题,每题6分,满分24分) 20.解:原式=2 .3 3.3、2 (48 - 24)“ ..6 ............................ (3分)=2+U 3+373-丄72+2J 。
目录宝山区2015年初三一模数学试卷 (1)长宁区2015届第一学期初三数学教学质量检测试卷 (10)崇明县2014学年第一学期教学质量调研测试卷 (17)奉贤区2014学年调研测试 (28)虹口区2014学年度第一学期期终教学质量监控测试 (36)黄浦区2015年初三一模数学试卷 (43)嘉定区2014学年九年级第一次质量调研 (51)金山区2014-2015学年第一学期期末质量检测 (60)五区联考2015年上海市初三一模数学试卷 (68)普陀区2015届度第一学期初三质量调研 (74)徐汇区2015年数学一模 (84)闸北区2015届九年级数学学科期末练习卷 (93)宝山区2015年初三一模数学试卷一. 选择题(24分)1. 如图,在直角△ABC 中,90C ∠=︒,1BC =,2AC =,下列判断正确的是( )A. 30A ∠=︒;B. 45A ∠=︒;C. 2cot 2A =; D. 2tan 2A =; 2. 如图,△ABC 中,D 、E 分别为边AB 、AC 上的点,且DE ∥BC ,下列判断错误 的是( )A. AD AE DB EC =;B. AD DE DB BC =;C. AD AE AB AC =;D. AD DE AB BC=;3. 如果在两个圆中有两条相等的弦,那么( )A. 这两条弦所对的圆心角相等;B. 这两条线弦所对的弧相等;C. 这两条弦都被与它垂直的半径平分;D. 这两条弦所对的弦心距相等;4. 已知非零向量a 、b 、c ,下列命题中是假命题的是( )A. 如果2a b =,那么a ∥b ;B. 如果2a b =-,那么a ∥b ;C. 如果||||a b =,那么a ∥b ;D. 如果2a b =,2b c =,那么a ∥c ;5. 已知O 半径为3,M 为直线AB 上一点,若3MO =,则直线AB 与O 的位置关系 为( )A. 相切;B. 相交;C. 相切或相离;D. 相切或相交;6. 如图边长为3的等边△ABC 中,D 为AB 的三等分点(12AD BD =),三角形边上的 动点E 从点A 出发,沿A C B →→的方向运动,到达点B 时停止,设点E 运动的路程 为x ,2DE y =,则y 关于x 的函数图像大致为( )A. B. C. D.二. 填空题(48分)7. 线段b 是线段a 和c 的比例中项,若1a =,2b =,则c = ;8. 两个相似三角形的相似比为2:3,则它们的面积比为 ;9. 已知两圆半径分别为3和7,圆心距为d ,若两圆相离,则d 的取值范围是 ;10. 已知△ABC 的三边之比为2:3:4,若△DEF 与△ABC 相似,且△DEF 的最大边长为20,则△DEF 的周长为 ;11. 在△ABC 中,3cot 3A =,3cos 2B =,那么C ∠= ; 12. B 在A 北偏东30°方向(距A )2千米处,C 在B 的正东方向(距B )2千米处,则C和A 之间的距离为 千米;13. 抛物线2(3)4y x =--+的对称轴是 ;14. 不经过第二象限的抛物线2y ax bx c =++的开口方向向 ;15. 已知点11(,)A x y 、22(,)B x y 为函数22(1)3y x =--+的图像上的两点,若121x x >>,则1y 2y ;16. 如图,D 为等边△ABC 边BC 上一点,60ADE ∠=︒,交AC 于E ,若2BD =,3CD =,则CE = ;17. 如图,O 的直径AB 垂直弦CD 于M ,且M 是半径OB 的中点,26CD =,则直径AB 的长为 ;18. 如图直角梯形ABCD 中,AD ∥BC ,2CD =,AB BC =,1AD =,动点M 、N分别在AB 边和BC 的延长线运动,而且AM CN =,联结AC 交MN 于E ,MH ⊥AC 于H ,则EH = ;三. 解答题(78分)19. 计算:2sin 602cot 30cos 602cos 45tan 60︒+︒-︒︒+︒;20. 如图,已知M 、N 分别是平行四边形ABCD 边DC 、BC 的中点,射线AM 和射线BC相交于E ,设AB a =,AD b =,试用a 、b 表示AN ,AE ;(直接写出结果)21. 已知一个二次函数的图像经过点(1,0)A 和点(0,6)B ,(4,6)C ,求这个抛物线的表达式以及该抛物线的顶点坐标;22. 如图,D为等边△ABC边BC上一点,DE⊥AB于E,若:2:1BD CD=,DE= 23,求AE;23. 如图,P为O的直径MN上一点,过P作弦AC、BD使APM BPM∠=∠,求证:PA PB=;24. 如图,正方形ABCD中,(1)E为边BC的中点,AE的垂直平分线分别交AB、AE、CD于G、F、H,求GF FH;(2)E的位置改动为边BC上一点,且BEkEC=,其他条件不变,求GFFH的值;25. (1)数学小组的单思稿同学认为形如的抛物线2y ax bx c =++,系数a 、b 、c 一旦 确定,抛物线的形状、大小、位置就不会变化,所以称数a 、b 、c 为抛物线2y ax bx c =++ 的特征数,记作{,,}a b c ;请求出与y 轴交于点(0,3)C -的抛物线22y x x k =-+在单同学 眼中的特征数;(2)同数学小组的尤恪星同学喜欢将抛物线设成2()y a x m k =++的顶点式,因此坚持称a 、m 、k 为抛物线的特征数,记作{,,}a m k ;请求出上述抛物线在尤同学眼中的特征数;(3)同一个问题在上述两位同学眼中的特征数各不相同,为了让两人的研究保持一致,同 组的董和谐将上述抛物线表述成:特征数为{,,}u v w 的抛物线沿平行于某轴方向平移某单位 后的图像,即此时的特征数{,,}u v w 无论按单思稿同学还是按尤恪星同学的理解做出的结果 是一样的,请你根据数学推理将董和谐的表述完整地写出来;(4)在直角坐标系XOY 中,上述(1)中的抛物线与x 轴交于A 、B 两点(A 在B 的左 边),请直接写出△ABC 的重心坐标;26. 如图在△ABC 中,10AB BC ==,45AC =,D 为边AB 上一动点(D 和A 、B 不重合),过D 作DE ∥BC 交AC 于E ,并以DE 为边向BC 一侧作正方形DEFG ,设 AD =x ,(1)请用x 的代数式表示正方形DEFG 的面积,并求出当边FG 落在BC 边上时的x 的值;(2)设正方形DEFG 与△ABC 重合部分的面积为y ,求y 关于x 的函数及其定义域;(3)点D 在运动过程中,是否存在D 、G 、B 三点中的两点落在以第三点为圆心的圆上 的情况?若存在,请直接写出此时AD 的值,若不存在,则请说明理由;长宁区2015届第一学期初三数学教学质量检测试卷(考试时间100分钟,满分150分) 2015.1考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、单项选择题:(本大题共6题,每题4分,满分24分)1、如果两个相似三角形的面积比是1:6,则它们的相似比( )A .1:36 ;B .1:6 ;C .1:3 ;D .1:6.2、在Rt △ABC 中,已知∠C =90°,AC =3,BC =4,那么∠A 的余弦值等于( )A .53;B .54 ;C .43 ;D .34. 3、如图,点A B C DEFGH K ,,,,,,,,都是7×8方格纸中的格点,为使DEM ABC △∽△(点D 和A 对应, 点E和B 对应),则点M 应是F G H K ,,,四点中的( )A. F ; B. G ; C. K ; D. H . 4、已知两圆半径分别是3和4,若两圆内切,则两圆的圆心距为( )A . 1或7; B. 1; C . 7; D . 2. AB CK HG F D E第3题图 第6题图5、抛物线y =2x 2,y =﹣2x 2,221x y =共有的性质是( ) A .开口向下; B .对称轴是y 轴;C .都有最低点; D. y 的值随x 的值的增大而减小. 6、如图,动点P 从点A 出发,沿线段AB 运动至点B 后,立即按原路返回,点P 在运动过程中速度不变,则以点B 为圆心,线段BP 长为半径的圆的面积S 与点P 的运动时间t 的函数图象大致为( ) A .; B . ; C . ; D . .二、填空题:(本大题共12题,每题4分,满分48分)7、已知线段a =2 cm ,c=8 cm ,则线段a 、c 的比例中项是 ▲ cm .8、计算: 3(→a -→b )-3→a = ▲ .9、已知⊙P 在直角坐标平面内,它的半径是5, 圆心P (-3,4),则坐标原点O 与⊙P 的位置关系是 ▲ .10、如果圆心O 到直线l 的距离等于⊙O 的半径,那么直线l 和⊙O 的公共点有 ▲ 个.11、抛物线()2132+--=x y 的顶点坐标是 ▲ . 12、将抛物线322-=x y 向左移动3个单位后所得抛物线的解析式是 ▲ .13.已知二次函数722-+=x x y 的一个函数值是8,那么对应的自变量x 的值是 ▲ .14、已知二次函数2)1(2-+-=x a ax y ,当x >1时,y 的值随x 的值的增大而增大,当x <1时,y 的值随x 的值的增大而减小,则实数a 的值为 ▲ .15、某企业今年第一月新产品的研发资金为100万元,以后每月新产品的研发资金与上月相比增长率都是x ,则该厂今年第三月新产品的研发资金y (万元)关于x 的函数关系式为 y = ▲ .16、如图所示,铁路的路基横断面是等腰梯形,斜坡AB 的坡度为1:3,斜坡AB 的水平宽度BE =33m ,则斜坡AB = ▲ m .D'C'B'D C B A 第18题图 B D CAG 第17题图 E 第16题图E D C B A第21题图 D C B A O17、如图,已知AD 是△ABC 的中线,G 是△ABC 的重心,联结BG 并延长交AC 于点E ,联结DE .则GED ABC S S ∆∆:的值为 ▲ .18、如图,正方形ABCD 绕点A 逆时针旋转,得到正方形'''D C AB .当两正方形重叠部分的面积是原正方形面积的41时,AD B '21sin ∠= ▲ . 三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)计算:()()0245tan 201530sin 60cos 60sin 1︒-︒︒-+︒--20.(本题满分10分)如图,已知O 为△ABC 内的一点,点D 、E 分别在边AB 、AC 上,且31=DB AD ,41=AC AE .设m OB =,n OC =,试用n m ,表示DE .21.(本题满分10分)如图,AB 是⊙O 的弦,点C 、D 在弦AB 上,且AD =BC ,联结OC 、OD .求证:△OCD 是等腰三角形.22.(本题满分10分)如图,在△ABC 中,AD 是BC 边上的高,点G 在AD 上,过G 作BC的平行线分别与AB 、AC 交于P 、Q 两点,过点P 作PE ⊥BC 于点E ,过点Q 作QF ⊥BC 于点F .设AD =80,BC =120,当四边形PEFQ 为正方形时,试求此正方形的边长.第20题图 E DO C B A第22题图F E QG P C B D A A BC 第23题图23.(本题满分12分)如图,A 、B 两地之间有一座山,汽车原来从A 地到B 地须经C 地沿折线A-C-B 行驶,现开通隧道后,汽车直接沿直线AB 行驶.已知AC =120千米,∠A =30°,∠B =135°,则隧道开通后,汽车从A 地到B 地比原来少走多少千米?(结果保留根号)24.(本题满分12分)如图,已知直角坐标平面上的△ABC ,AC=CB ,∠ACB =90°,且A (-1,0),B (m ,n ),C (3,0)。
崇明县2014学年第一学期教学质量调研测试卷
九年级数学
(测试时间: 100分钟,满分:150分)
一、选择题(本大题共6题,每题4分,满分24分)
1、已知
5
2
a b =,那么下列等式中,不一定正确的是………………………………( ) (A)25a b = (B)
52
a b = (C)7a b += (D)
7
2
a b b += 2、在Rt ABC ∆中,90C ∠=︒,A ∠、B ∠、C ∠所对的边分别为a 、b 、c ,下列等式中不一定成立的是 ……………………………………………………………………( )
(A)tan b a B = (B)cos a c B = (C)sin a
c A
= (D)cos a b A =
3、如果二次函数2y ax bx c =++的图像如图所示,那么下列判断中,不正确的是………( ) (A)0a >
(B)0b >
(C)0c <
(D)240b ac ->
4、将二次函数2x y =的图像向下平移1个单位,再向右平移1个单位后所得图像的函数表达式
为…………………………………………………………………………( ) (A)2(1)1y x =++ (B)2(1)1y x =+-
(C)2(1)1y x =-+
(D)2(1)1y x =--
5、下列说法正确的是……………………………………………………( )
(A) 相切两圆的连心线经过切点 (B) 长度相等的两条弧是等弧
(C) 平分弦的直径垂直于弦
(D) 相等的圆心角所对的弦相等
6、如图,点D 、E 、F 、G 为ABC ∆两边上的点,且DE FG BC ∥∥,若DE 、FG 将ABC ∆的面积三
等分,那么下列结论正确的是 ………………………………………( ) (A)14
DE FG
=
(B)1DF EG FB
GC
==
(C)AD FB
=
(D)
AD DB =
(第3题图) (第6题图)
二、填空题(本大题共12题,每题4分,满分48分)
7、已知点P 是线段AB 的黄金分割点()AP PB >,如果2AB =cm ,那么线段AP = cm . 8、如果两个相似三角形的面积比为1:4,那么它们的周长比为 .
A
B
C
D E F G
9、如果二次函数22(1)51y m x x m =-++-的图像经过原点,那么m = .
10、抛物线221y x =-在y 轴右侧的部分是 (填“上升”或“下降”).
11、如果将抛物线23y x =平移,使平移后的抛物线顶点坐标为(2,2),那么平移后的抛物线的表达
式为 .
12、已知抛物线2y x bx c =++经过点(0,5)A 、(4,5)B ,那么此抛物线的对称轴是 . 13、某飞机的飞行高度为1500m ,从飞机上测得地面控制点的俯角为60°,此时飞机与这地面控制
点的距离为 m .
14、已知正六边形的半径为2cm ,那么这个正六边形的边心距为 cm .
15、如图,已知在ABC ∆中,90ACB ∠=︒,6AC =,点G 为重心,GH BC ⊥,垂足为点H ,那么
GH = .
16、半径分别为8cm 与6cm 的1O 与2O 相交于A 、B 两点,圆心距O 1O 2的长为10cm ,那么公共
弦AB 的长为 cm .
17、如图,水库大坝的横截面是梯形,坝顶AD 宽5米,坝高10米,斜坡CD 的坡角为45︒,斜坡
AB 的坡度1:1.5i =,那么坝底BC 的长度为 米.
18、如图,将边长为6cm 的正方形ABCD 折叠,使点D 落在AB 边的中点E 处,折痕为FH ,点C
落在Q 处,EQ 与BC 交于点G ,那么EBG ∆的周长是 cm .
(第15题图) (第17题图) (第18题图)
三、解答题(本大题共7题,满分78分)
19、(本题满分10分)
计算:2014cos301(cot 45)sin60︒-+-︒+︒
C
A
B
C
D
F
G
H Q
E
已知:如图,□ABCD中,E是AD中点,BE交AC于点F,设BA a
=、BC b
=.(1)用,a b的线性组合表示FA;
(2)先化简,再直接在图中求作该向量:
1151 ()()() 2424
a b a b a b
-+-+++.
21、(本题满分10分,其中第(1)小题6分,第(2)小题4分)
如图,在Rt ABC
∆中,90
C
∠=︒,点D是BC边上的一点,6
CD=,
3 cos
5
ADC
∠=,
2
tan
3
B=.
(1)求AC和AB的长;(2)求sin BAD
∠的值.
F
E D A
C
D
如图,轮船从港口A 出发,沿着南偏西15︒的方向航行了100海里到达B 处,再从B 处沿着北偏东75︒的方向航行200海里到达了C 处. (1)求证:AC AB ⊥;
(2)轮船沿着BC 方向继续航行去往港口D 处,
已知港口D 位于港口A 的正东方向,求轮 船还需航行多少海里.
23、(本题满分12分,其中第(1)小题6分,第(2)小题6分)
如图,在梯形ABCD 中,AD BC ∥,AD AB =,2ABC C ∠=∠,E 与F 分别为边AD 与DC 上的两点,且有EBF C ∠=∠. (1)求证:::BE BF BD BC =;
(2)当F 为DC 中点时,求:AE ED 的比值.
D
A
B
C
E
F
北 A
B
C
东
24、(本题满分12分,其中每小题各4分)
如图,已知抛物线258y x bx c =++经过直线1
12y x =-+与坐标轴的两个交点A 、B ,
点C 为抛物线上的一点,且90ABC ∠=︒. (1)求抛物线的解析式;
(2)求点C 坐标;
(3)直线1
12
y x =-+上是否存在点P ,使得BCP ∆与OAB ∆相似,若存在,
请直接写出P 点的坐标;若不存在,请说明理由.
25、(本题满分14分,其中第(1)小题5分,第(2)小题5分,第(3)小题4分)
已知在ABC ∆中,5AB AC ==,6BC =,O 为边AB 上一动点(不与A 、B 重合),以O 为圆心OB 为半径的圆交BC 于点D ,设OB x =,DC y =. (1)如图1,求y 关于x 的函数关系式及定义域;
(2)当⊙O 与线段AC 有且只有一个交点时,求x 的取值范围;
(3)如图2,若⊙O 与边AC 交于点E (有两个交点时取靠近C 的交点),联结DE ,
当DEC ∆与ABC ∆相似时,求x 的值.
C
A
D
O
B · · · (图1)
B
C
A (备用图1)
E C
A D O
B
· ·
· ·
(图2) B
C
A
(备用图2)。