《数字信号处理》实验指导书
- 格式:doc
- 大小:111.50 KB
- 文档页数:5
数字信号处理实验电子信息科学与技术实验室2007年7月目录实验一离散时间信号的时域表示 (3)实验二离散信号的卷积和 (6)实验三离散傅立叶变换及其特性验证 (8)实验四信号处理中FFT的应用 (11)实验五离散系统的Z域分析 (15)实验六无限冲激响应(IIR)数字滤波器的三种结构 (19)实验七冲激响应不变法IIR数字滤波器设计 (23)实验八双线性变换法IIR数字滤波器设计 (26)实验一 离散时间信号的时域表示一、实验目的1、熟悉Matlab 命令,掌握离散时间信号-序列的时域表示方法。
2、掌握用Matlab 描绘二维图像的方法。
3、掌握用Matlab 对序列进行基本的运算和时域变换的方法。
二、实验原理与计算方法(一)序列的表示方法 序列的表示方法有列举法、解析法和图形法,相应的用Matlab 也可以有这样几种表示方法,分别介绍如下:1、列举法 在Matlab 中,用一个列向量来表示一个有限长序列,由于一个列向量并不包含位置信息,因此需要用表示位置的n 和表示量值的x 两个向量来表示任意一个序列,如:例1.1:>>n=[-3,-2,-1,0,1,2,3,4]; >>x=[2,1,-1,0,1,4,3,7];如果不对向量的位置进行定义,则Matlab 默认该序列的起始位置为n=0。
由于内存有限,Matlab 不能表示一个无限序列。
2、解析法对于有解析表达式的确定信号,首先定义序列的范围即n 的值,然后直接写出该序列的表达式,如:例1.2:实现实指数序列nn x )9.0()(=,100≤≤n 的Matlab 程序为:>>n=[0:10]; >>x=(0.9).^n;例 1.3:实现正余弦序列)5.0sin(2)31.0cos(3)(n n n x πππ++=,155≤≤n 的Matlab 程序为:>>n=[5:15];>>x=3*cos(0.1*pi*n+pi/3)+2*sin(0.5*pi*n); 3、图形法在Matlab 中用图形法表示一个序列,是在前两种表示方法的基础上将序列的各个量值描绘出来,即首先对序列进行定义,然后用相应的画图语句画图,如:例1.4:绘制在例1.1中用列举法表示的序列的图形,则在向量定义之后加如下相应的绘图语句:>>stem(n,x);此时得到的图形的横坐标范围由向量n 的值决定,为-3到4,纵坐标的范围由向量x 的值决定,为-1到7。
《数字信号处理》实验指导书实验一离散傅里叶变换一、实验目的(1) 熟悉Matlab的主要操作命令;掌握Matlab的基本使用方法,能够运用Matlab软件分别产生常见的连续信号和离散信号,并对其进行一定的运算。
(2) 理解离散傅立叶变换是信号分析与处理的一种重要变换,特别是FFT在数字信号处理中的高效率应用。
掌握DFT的理论,通过DFT对典型信号进行的频谱分析,加深对DFT的理解。
(3) 通过对同一信号,作不同点数的FFT,比较其对应的频谱,比较两者的异同点,加深理解信号频谱概念和谱分析的原理与方法,了解快速傅立叶变换(FFT)可以提高运算量的特点,并运用Matlab软件分别对离散周期信号和非周期信号进行谱分析,同时绘出幅度频谱和相位频谱。
二、预习要求1、掌握连续信号和离散信号的特点及其运算方法;2、熟悉Matlab的基本编程语言及其变量、数组、向量与矩阵和部分运算符的使用;3、掌握部分Matlab基本数学函数和作图函数的使用。
三、和实验相关的一些功能函数正弦信号:A*sin(w0*t+phi),A*cos(w0*t+phi),A*sin(omega*n+phi);方波信号:square(w0*t),square(w0*t,DUTY),A*square(omega*n);注意DUTY的取值情况。
指数信号:A*exp(a*t);矩形脉冲信号:rectpulse(t),rectpulse(t,w);单位脉冲信号和单位阶跃信号:ones(1,n)和zeros(1,n);基本信号运算函数:abs(幅值)、 angle(相角)。
四、实验原理1、有限长序列x(n)的DFT的概念和公式:N?1?kn?x(k)??x(n)WN?n?0?N?1?kn?x(n)?1x(k)WN??Nk?0?0?k?N?10?n?N?1《数字信号处理》实验指导书WN?e?j(2?/N)2、FFT算法调用格式是X= fft(x)或 X=fft(x,N)对前者,若x的长度是2的整数次幂,则按该长度实现x的快速变换,否则,实现的是慢速的非2的整数次幂的变换;对后者,N应为2的整数次幂,若x的长度小于N,则补零,若超过N,则舍弃N以后的数据。
数字信号处理实验指导书实验一离散时间与系统的傅立叶分析一、实验目的用傅立叶变换对信号和系统进行频域分析。
二、实验原理对信号进行频域分析就是对信号进行傅立叶变换。
对系统进行频域分析即对它的单位脉冲响应进行傅立叶变换,得到系统的传输函数。
也可以由差分方程经过;傅立叶变换直接求它的传输函数。
传输函数代表的就是系统的频率响应特性。
但传输函数是ω的连续函数,计算机只能计算出有限个离散频率点的传输函数值,因此得到传输函数以后,应该在0~2л之间取许多点,计算这些点的传输函数的值,并取它们的包络,该包络才是需要的频率特性。
当然,点数取得多一些,该包络才能接近真正的频率特性。
注意:非周期信号的频率特性是ω的连续函数,而周期信号的频率特性是离散谱,它们的计算公式不一样,响应的波形也不一样。
三、实验内容‘1.已知系统用下面差分方程描述:y(n)=x(n)十ay(n一1)试在a=0.95和a=一0.5两种情况下用傅立叶变换分析系统的频率特性。
要求写出系统的传输函数和幅度响应,并打印|H(e jw)|~ω曲线。
2.已知两系统分别用下面差分方程描述:y1(n)=x(n)+x(n一1)y2(n)=x(n)一x(n一1)试分别写出它们的传输函数和幅度响应,并分别打印|H(e jw)|~ω曲线。
3.已知信号x(n)=R3(n),试分析它的频域特性,要求打印|H(e jw)|~ω曲线。
4.假设x(n)=a(n),将x(n)以2为周期进行周期延拓,得到x(n),试分析它的频率特性,并画出它的幅频特性。
四、实验用MATLAB函数介绍1.abs功能:求绝对值(复数的模)。
y=abs(x):计算实数x的绝对值。
当x为复数时得到x的模(幅度值)。
当x为向量时,计算其每个元素的模,返回模向量y。
2.angle功能:求相角。
Ph=angle(x):计算复向量x的相角(rad)。
Ph值介于-л和+л之间.3.freqz:计算数字滤波器H(z)的频率响应。
《数字信号处理》实验指导书通信教研室安阳工学院二零零九年三月第1章 系统响应及系统稳定性1.1 实验目的● 学会运用MATLAB 求解离散时间系统的零状态响应;● 学会运用MATLAB 求解离散时间系统的单位取样响应;● 学会运用MATLAB 求解离散时间系统的卷积和。
1.2 实验原理及实例分析1.2.1 离散时间系统的响应离散时间LTI 系统可用线性常系数差分方程来描述,即∑∑==-=-Mj jN i i j n x b i n y a 00)()( (1-1) 其中,i a (0=i ,1,…,N )和j b (0=j ,1,…,M )为实常数。
MATLAB 中函数filter 可对式(13-1)的差分方程在指定时间范围内的输入序列所产生的响应进行求解。
函数filter 的语句格式为y=filter(b,a,x)其中,x 为输入的离散序列;y 为输出的离散序列;y 的长度与x 的长度一样;b 与a 分别为差分方程右端与左端的系数向量。
【实例1-1】 已知某LTI 系统的差分方程为)1(2)()2(2)1(4)(3-+=-+--n x n x n y n y n y试用MATLAB 命令绘出当激励信号为)()2/1()(n u n x n=时,该系统的零状态响应。
解:MATLAB 源程序为>>a=[3 -4 2];>>b=[1 2];>>n=0:30;>>x=(1/2).^n;>>y=filter(b,a,x);>>stem(n,y,'fill'),grid on>>xlabel('n'),title('系统响应y(n)')程序运行结果如图1-1所示。
1.2.2 离散时间系统的单位取样响应系统的单位取样响应定义为系统在)(n 激励下系统的零状态响应,用)(n h 表示。
《数字信号处理》实验指导书适用专业:电气、信息、测控课程代码: 8401980总学时: 48 总学分: 3编写单位:电气学院信息工程系编写人:阳小明审核人:审批人:批准时间:年月日目录实验一 Matlab与数字信号处理基础 (2)实验二离散傅里叶变换与快速傅里叶变换 (4)实验三数字滤波器结构 (6)注释 (9)主要参考文献 (9)实验一 Matlab与数字信号处理基础一、实验目的和任务1、熟悉Matlab的操作环境2、学习用Matlab建立基本序列的方法;3、学习用仿真界面进行信号抽样的方法。
二、实验内容1、基本序列的产生:单位抽样序列、单位阶跃序列、矩形序列、实指数序列和复指数序列的产生2、用仿真界面进行信号抽样练习:用simulink建模仿真信号的抽样三、实验仪器、设备及材料计算机、Matlab软件四、实验原理序列的运算、抽样定理五、主要技术重点、难点Matlab的各种命令与函数、建模仿真抽样定理六、实验步骤1、基本序列的产生:单位抽样序列δ(n): n=-2:2;x=[0 0 1 0 0];stem(n,x);单位阶跃序列u(n):n=-10:10;x=[zeros(1,10) ones(1,11)];stem(n,x);矩形序列R N(n):n=-2:10;x=[0 0 ones(1,5) zeros(1,6)];stem(n,x);实指数序列0.5n:n=0:30;x=0.5.^nstem(n,x);复指数序列e(-0.2+j0. 3)n:n=0:30;x=exp((-0.2+j*0.3)*n);模:stem(n,abs(x));幅角:stem(n,angle(x));2、用仿真界面进行信号抽样练习:(1)在Matlab命令窗口中输入simulink 并回车,以打开仿真模块库;(2)按CTRL+N,以新建一仿真窗口;在仿真模块库中用鼠标点击Sources(输入源模块库),从中选择sine wave(正弦波模块)并将其拖至仿真窗口;(3)在仿真模块库中用鼠标点击Discrete(离散模块库),从中选择Zero-Order Hold(零阶保持器模块)并将其拖至仿真窗口;(4)在仿真模块库中用鼠标点击Sinks(显示模块库),从中选择Scope(示波器模块)并将其拖至仿真窗口;(5)在仿真窗口中把上述模块依次连接起来;(6)用鼠标双击Scope模块,以打开示波器的显示界面;(7)用鼠标点击仿真窗口工具条中的►图标开始仿真,结果显示在示波器中;(8)用鼠标双击Zero-Order Hold模块,打开其参数设置窗口,改变sample time参数值,例如1、0.5、0.1、0.05…,用鼠标点击仿真窗口工具条中的►图标开始仿真,比较示波器显示结果(选三个参数值,得三个结果);(9)在仿真模块库中用鼠标点击Sinks(显示模块库),从中选择To Workspace(输出到当前工作空间的变量模块)并将其拖至仿真窗口;(10)用鼠标双击To Workspace模块,打开其参数设置窗口,改变variable name参数值为x ;同时把save format参数值设置为Array ;(11)在仿真窗口中先用鼠标点击Zero-Order Hold模块与Scope模块的连线,然后按住CTRL 键,从选中连线的中部引出一条线到To Workspace模块;(12)用鼠标双击Zero-Order Hold模块,打开其参数设置窗口,改变sample time参数值,例如1、0.5、0.1、0.05…,用鼠标点击仿真窗口工具条中的►图标开始仿真,并返回命令窗口,用stem(x)作图,比较序列图显示结果(选三个参数值,得三个结果);七、实验报告要求1、实验步骤按实验内容指导进行;2、对于实验内容1和2的数据必须给出的离散图,其相关参数应在图中注明;3、具有关联性和比较性的图形最好用subplot()函数,把它们画在一起;4、实验报告按规定格式填写,要求如下:(1)实验步骤根据自己实际操作填写;(2)各小组实验数据不能完全相同,否则以缺席论处;5、实验结束,实验数据交指导教师检查,得到允许后可以离开,否则以缺席论处;八、实验注意事项1、Matlab编程、文件名、存盘目录均不能使用中文。
实验一 离散时间信号分析一、实验目的1.掌握各种常用的序列,理解其数学表达式和波形表示。
2.掌握在计算机中生成及绘制数字信号波形的方法。
3.掌握序列的相加、相乘、移位、反褶等基本运算及计算机实现与作用。
4.掌握线性卷积软件实现的方法。
5.掌握计算机的使用方法和常用系统软件及应用软件的使用。
6.通过编程,上机调试程序,进一步增强使用计算机解决问题的能力。
二、实验原理1.序列的基本概念离散时间信号在数学上可用时间序列来表示,其中代表序列的第n 个数字,n 代表时间的序列,n 的取值范围为∞<<∞-n 的整数,n 取其它值)(n x 没有意义。
离散时间信号可以是由模拟信号通过采样得到,例如对)(t x a 模拟信号进行等间隔采样,采样间隔为T ,得到一个{})(nT x a 有序的数字序列就是离散时间信号,简称序列。
2.常用序列常用序列有:单位脉冲序列(单位采样))(n δ、单位阶跃序列)(n u 、矩形序列)(n R N 、实指数序列、复指数序列、正弦型序列等。
3.序列的基本运算序列的运算包括移位、反褶、和、积、标乘、累加、差分运算等。
4.序列的卷积运算∑∞∞-*=-=)()()()()(n h n x m n h m x n y上式的运算关系称为卷积运算,式中代表两个序列卷积运算。
两个序列的卷积是一个序列与另一个序列反褶后逐次移位乘积之和,故称为离散卷积,也称两序列的线性卷积。
其计算的过程包括以下4个步骤。
(1)反褶:先将)(n x 和)(n h 的变量n 换成m ,变成)(m x 和)(m h ,再将)(m h 以纵轴为对称轴反褶成)(m h -。
(2)移位:将)(m h -移位n ,得)(m n h -。
当n 为正数时,右移n 位;当n 为负数时,左移n 位。
(3)相乘:将)(m n h -和)(m x 的对应点值相乘。
(4)求和:将以上所有对应点的乘积累加起来,即得)(n y 。
《数字信号处理实验》实验1 常用信号产生实验目的:学习用MATLAB编程产生各种常见信号。
实验内容:1、矩阵操作:输入矩阵:x=[1 2 3 4;5 4 3 2;3 4 5 6;7 6 5 4]引用 x的第二、三行;引用 x的第三、四列;求矩阵的转置;求矩阵的逆;2、单位脉冲序列:产生δ(n)函数;产生δ(n-3)函数;3、产生阶跃序列:产生U(n)序列;产生U(n-n0)序列;4、产生指数序列:x(n)=0.5n⎪⎭⎫⎝⎛4 35、产生正弦序列:x=2sin(2π*50/12+π/6)6、产生取样函数:7、产生白噪声:产生[0,1]上均匀分布的随机信号:产生均值为0,方差为1的高斯随机信号:8、生成一个幅度按指数衰减的正弦信号:x(t)=Asin(w0t+phi).*exp(-a*t)9、产生三角波:实验要求:打印出程序、图形及运行结果,并分析实验结果。
实验2 利用MATLAB 进行信号分析实验目的:学习用MATLAB 编程进行信号分析实验内容:1数字滤波器的频率响应:数字滤波器的系统函数为:H(z)=21214.013.02.0----++++z z z z , 求其幅频特性和相频特性:2、离散系统零极点图:b =[0.2 0.1 0.3 0.1 0.2];a=[1.0 -1.1 1.5 -0.7 0.3];画出其零极点图3、数字滤波器的冲激响应:b=[0.2 0.1 0.3 0.1 0.2];a=[1.0 -1.1 1.5 -0.7 0.3];求滤波器的冲激响应。
4、 计算离散卷积:x=[1 1 1 1 0 0];y=[2 2 3 4];求x(n)*y(n)。
5、 系统函数转换:(1)将H(z)=)5)(2)(3.0()1)(5.0)(1.0(------z z z z z z 转换为直接型结构。
(2)将H (z )=3213210.31.123.7105.065.06.11-------+--+-zz z z z z 转换为级联型结构。
数字信号处理实验指导书电子信息工程学院2012年6月目录实验一离散信号产生和基本运算 (3)实验二基于MATLAB的离散系统时域分析 (7)实验三基于ICETEK-F2812-A 教学系统软件的离散系统时域分析 (9)实验四基于MATLAB 的FFT 算法的应用 (16)实验五基于ICETEK-F2812-A 的FFT 算法分析 (18)实验六基于ICETEK-F2812-A 的数字滤波器设计 (20)实验七基于ICETEK-F2812-A的交通灯综合控制 (24)实验八基于BWDSP100的步进电机控制 (26)实验一离散信号产生和基本运算一、实验目的(1)掌握MATLAB最基本的矩阵运算语句。
(2)掌握对常用离散信号的理解与运算实现。
二、实验原理1.向量的生成a.利用冒号“:”运算生成向量,其语句格式有两种:A=m:nB=m:p:n第一种格式用于生成不长为1的均匀等分向量,m和n分别代表向量的起始值和终止值,n>m 。
第二种格式用于生成步长为p的均匀等分的向量。
b.利用函数linspace()生成向量,linspace()的调用格式为:A=linspace(m,n)B=linspace(m,n,s)第一种格式生成从起始值m开始到终止值n之间的线性等分的100元素的行向量。
第二种格式生成从起始值m开始到终止值n之间的s个线性等分点的行向量。
2.矩阵的算术运算a.加法和减法对于同维矩阵指令的A+BA-B对于矩阵和标量(一个数)的加减运算,指令为:A+3A-9b.乘法和除法运算A*B 是数学中的矩阵乘法,遵循矩阵乘法规则A.*B 是同维矩阵对应位置元素做乘法B=inv(A)是求矩阵的逆A/B 是数学中的矩阵除法,遵循矩阵除法规则A./B 是同维矩阵对应位置元素相除另'A表示矩阵的转置运算3.数组函数下面列举一些基本函数,他们的用法和格式都相同。
sin(A),cos(A),exp(A),log(A)(相当于ln)sqrt(A)开平方 abs(A)求模 real(A)求实部 imag(A)求虚部 式中A 可以是标量也可以是矩阵 例: 利用等差向量产生一个正弦值向量 t=0:0.1:10 A=sin(t) plot(A)这时候即可看到一个绘有正弦曲线的窗口弹出 另:每条语句后面加“;”表示不要显示当前语句的执行结果 不加“;”表示要显示当前语句的执行结果。
实验一 采样率对信号频谱的影响一、实验目的1.理解采样定理; 2.掌握采样频率确定方法; 3.理解频谱的概念; 4.理解三种频率之间的关系。
二、实验原理理想采样过程是连续信号x a (t )与冲激函数串M (t )的乘积的过程∑∞-∞=-=k skT t t M )()(δ (1))()()(ˆt M t x t xa a = (2) 式中T s 为采样间隔。
因此,理想采样过程可以看作是脉冲调制过程,调制信号是连续信号x a (t ),载波信号是冲激函数串M (t )。
显然)()()()()(ˆs k s ak s aa kT t kT xkT t t xt x-=-=∑∑∞-∞=∞-∞=δδ (3)所以,)(ˆt xa 实际上是x a (t )在离散时间kT s 上的取值的集合,即)(ˆs a kT x 。
对信号采样我们最关心的问题是,信号经过采样后是否会丢失信息,或者说能否不失真地恢复原来的模拟信号。
下面从频域出发,根据理想采样信号的频谱)(ˆΩj X a和原来模拟信号的频谱)(Ωj X 之间的关系,来讨论采样不失真的条件∑∞-∞=Ω-Ω=Ωk ssakj j X T j X )(1)(ˆ (4)上式表明,一个连续信号经过理想采样后,其频谱将以采样频率Ωs =2π/T s 为间隔周期延拓,其频谱的幅度与原模拟信号频谱的幅度相差一个常数因子1/T s 。
只要各延拓分量与原频谱分量之间不发生频率上的交叠,则可以完全恢复原来的模拟信号。
根据式(4)可知,要保证各延拓分量与原频谱分量之间不发生频率上的交叠,则必须满足Ωs ≥2Ω。
这就是奈奎斯特采样定理:要想连续信号采样后能够不失真地还原原信号,采样频率必须大于或等于被采样信号最高频率的两倍h s Ω≥Ω2,或者h s f f 2≥,或者2hs T T ≤(5) 即对于最高频率的信号一个周期内至少要采样两点,式中Ωh 、f s 、T h 分别为被采样模拟信号的最高角频率、频率和最小周期。
数字信号处理实验指导书
信号与系统实验室
2019年9月10日
实验一 信号谱分析与FFT 算法的应用
实验目的:加深对DFT 算法原理的理解,学会用DFT 原理、FFT 算法实现谱分析和卷积运算。
实验原理:DFT 算法原理、FFT 算法原理、卷积定理。
实验仪器:计算机/相关编程软件。
实验安排:根据给定信号函数生成信号,并进行频谱分析;对两组信号分别采用直接卷积求解和FFT 算法求解。
实验报告要求:简述实验原理,给出设计步骤和编写程序(与步骤相对应);显示运行结果,并对实验结果做分析;实验报告按照科技论文规范写作。
实验内容及步骤:
(1)给定信号为()4cos(100)2cos(200)cos(100)x t abt abt abt πππ=++,其中a 为学号的最后两位,b 为学号的班级位,
如1905004223,则23a =,2b =;如19050041105,则5a =,11b =。
理论分析信号()x t 的频率成分。
(2)分别采用采样频率为1s f ,2s f ,3s f ,4s f 对()x t 进行采样,其中1100s f ab <,2100200s ab f ab <<,3200400s ab f ab <<,4400s f ab >,根据是否满足采样定理要求分析四种采样频率下频谱的分布,在满足采样定理情况下做频谱分析。
(3)任意生成两组有限长信号,对信号分别进行直接卷积和FFT 算法求卷积,并分析圆周卷积与线性卷积的关系。
实验二、数字滤波器的设计与应用
实验目的:学会设计IIR 滤波器和FIR 滤波器;学会对信号进行滤波器。
实验原理:IIR 滤波器的设计原理、FIR 滤波器的设计原理、信号通过系统的分析原理。
实验仪器:计算机/相关编程软件。
实验安排:根据已知滤波器的性能指标设计IIR 数字滤波器,并对心电图信号进行滤波器;针对已知多频率正弦信号的频谱,设计相应的FIR 滤波器按要求进行滤波。
实验报告要求:简述实验原理,给出设计步骤和编写程序(与步骤相对应);显示运行结果,并对实验结果做分析;实验报告按照科技论文规范写作。
实验内容及步骤:
(1)用双线性变换法设计一个巴特沃斯低通IIR 数字滤波器。
设计指标参数为:在通带内频率低于0.2π时,最大衰减小于1dB ;在阻带内[0.3π, π]频率区间上,最小衰减大于15dB 。
(2)用步骤(1)所设计的滤波器对实际心电图信号采样序列进行仿真滤波处理,观察总结滤波作用与效果,心电图信号为
{x(n)}={-4,-2,0,-4,-6,-4,-2,-4,-6,-6,-4,-4,-6,-6,-2,6,12,8,0,-16,-38,-60,-84,-90,-66,-32,-4,-2,-4,8,12,12,10,6,6,6,4,0,0,0,0,0,-2,-4,0,0,0,-2,-2,0,0,-2,-2,-2,-2,0}
(3)已知信号123()()()()x t x t x t x t =++,1()cos(100)x t abt π=,2()cos(200)x t abt π=,3()cos(300)x t abt π=,其中a 为学号的最后两位,b 为学号的班级位,如1905004223,则23a =,2b =;如19050041105,则5a =,11b =。
采用窗函数法设计低通、带通、高通滤波器分别提取信号 1()x t ,2()x t ,3()x t ,设计带阻滤波器提取信号13()()x t x t +,并对滤波效果进行分析。
附:常用命令和参考例子
一、常用命令
1、傅里叶变换:fft、fftshift、ifft、ifftshift
2、卷积:conv
3、IIR滤波器设计
(1)Buttord 巴特沃思模拟滤波器阶数的获得
[N,Wn]=buttord(Wp,Ws,Rp,Rs,’s’)
‘s’表示获取模拟滤波器的阶数
Wp通带截止频率,Ws阻带截止频率,Rp通带最大衰减,Rs阻带最小衰减; N符合要求的滤波器最小阶数,Wn为Butterworth滤波器固有频率(3dB)。
(2)buttap巴特沃思模拟滤波器的设计
[Z,P,K] = BUTTAP(N)
N为阶数,Z零点,P极点,K为增益
(3)zp2tf零极点增益模型到传递函数模型的转换
[B,A]=zp2tf(Z,P,K);
输人参数:Z,P,K分别表示零极点增益模型的零点、极点和增益;
输出参数:B,A分别为传递函数分子和分母的多项式系数。
(4)Lp2lp 低通到低通
[b,a]=lp2lp(B,A,Wn);
B,A分别为截止频率为1的模拟滤波器传递函数分子和分母的多项式系数
b,a分别为截止频率为Wn的模拟滤波器传递函数分子和分母的多项式系数,(5)Bilinear双线性变换法设计数字滤波器
[bz,a2]二bilinear(b,a,Fs);
b,a分别为模拟滤波器传递函数分子和分母的多项式系数,Fs是采样频率bz,az分别为数字滤波器传递函数分子和分母的多项式系数
4、FIR滤波器设计
B=firl(n,Wn)
B=firl(n,Wn,’ftype’)
B=firl(n,Wn,’window’)
B=firl(n,Wn,’ftype’,’window’)
其中,n为FIR滤波器的阶数,对于高通、带阻滤波器n取偶数。
Wn为滤波器截止频率,取值范围0~1。
对于带通、带阻滤波器,Wn=[Wl,W2],且Wl<W2。
’ftype’为滤波器类型。
缺省时为低通或带通滤波器,为’high’时是高通滤波器,为’stop’时是带阻滤波器。
window为窗函数,列向量,其长度为n+1;缺省时,自动取hamming 窗。
输出参数B为FIR滤波器系数向量,长度为n+1。
5、滤波器频响与滤波
(1)Freqz 数字滤波器的频响特性
[H,W]=freqz(bz,az);
H为幅度,W为相位
(2)filter 滤波
Y = filter(bz,az,X)
bz,az分别为数字滤波器传递函数分子和分母的多项式系数
X 为输入信号,Y为输出信号
二、参考例子
参考教材:
[1] 桂志国,陈友兴.数字信号处理原理及应用(第2版),国防工业出版社,2017.
[2] 陈友兴,桂志国.数字信号处理原理及应用,电子工业出版社,2019.
参考例子:
教材1:例3.7.1,例4.7.1,例6.3.5,例7.2.1~7.2.7
教材2:例3.7.1,例4.7.1,例6.3.5,例7.2.1~7.2.7。