多边形和圆的初步认识(公开课)
- 格式:ppt
- 大小:1.89 MB
- 文档页数:16
4.5 多边形和圆的初步认识第四环节回忆思考,稳固拓展. 通过本节课的学习你有哪些收获?当堂检测1..从八边形的顶点A出发,可以画出多少条对角线?分别用字母表示出来。
2.半径为1的圆中,扇形AOB的圆心角为1200。
请在圆内画出这个扇形并求出它的面积。
板书设计教学反思字母表示数【学习目标】课标要求:1.能用字母和代数式表示以前学过的运算律和计算公式。
2.体会字母表示数的意义,形成初步的符号感。
3. 经历探索规律并用代数式表示规律的过程。
目标达成:理解用字母表示数的意义。
学习流程:【课前展示】出示小题【创境激趣】提供便于学生感受需要使用一般性符号表达事物的实例。
如:“一支青蛙一张嘴,两支眼睛四条腿……〞,让学生想方法用一句歌词将它唱完整。
【自学导航】请同学们认真看题,利用图形解答以下问题〔利用电脑或投影仪〕问题〔一〕【合作探究】搭一个正方形需要4根火柴棒。
①按上述方式,搭2个正方形需要______根火柴棒,搭3个正方形需要______根火柴棒。
②搭10个这样的正方形需要多少根火柴棒?③搭100个这样的正方形需要多少根火柴棒?你是怎样得到的?待学生解答完以上问题后,出示引申题:④如果用X表示所搭正方形的个数,那么搭X个这样的正方形需要多少根火柴棒?与同学交流?【展示提升】典例分析知识迁移提供教材上的实例,师生共同活动。
要求学生经历“独立思考、合作交流【强化训练】①要求学生说出用字母表示数的其他例子,教师引导学生分析各式中字母可表示什么数。
②练一练:1、小明步行上学,速度为v米/秒,亮亮骑自行车上学,速度是小明的3倍, 那么亮亮的速度可以表示为_______米/秒.2、如图, 用字母表示图中阴影局部的面积是_________3、一个三位数,个位数字是a, 十位数字是b, 百位数字是c, 这个三位数是____________【归纳总结】让学生交流这节课的学习收获,包括知识和方法方面的。
【板书设计】【教学反思】本节课按照创设问题情景→建立模型→解释、应用与拓展的根本模式展开教学,课堂显得生机勃勃。
4.5 多边形和圆的初步认识教案1.在具体情境中认识多边形、正多边形、圆、扇形.2.能根据扇形和圆的关系求扇形的圆心角的度数.3.经历从现实世界中抽象出平面图形的过程,感受图形世界的丰富多彩.4.在丰富的活动中发展学生有条理的思考和表达能力.教学重点与难点:重点:经历从现实世界中抽象出平面图形的过程,在具体的情境中认识多边形、圆、扇形.难点:探索分割平面图形的一些规律,感受图形世界的丰富图形,养成把数学应用于生活实际问题的习惯.教法与学法指导:教法:教学中借助计算机提供大量丰富多彩的生活素材,增加趣味性和实用性,引导学生自主发现问题,探究问题,解决问题,让学生体会数学与生活的联系.学法:自主探究——交流合作——归纳应用课前准备:圆规、绳子、多媒体课件.教学过程:一、创设情境,引入新课师:请学生观看一组图片(扇子、蜂房、六角螺母的正面、建筑钢结构、一角硬币),你发现了图片中哪些是你熟悉的平面图形?(多媒体展示)生:有线段、三角形、长方形、正方形、五边形、六边形、扇形、圆等.师:我们把三角形、长方形、正方形、五边形、六边形这样的图形称为多边形这就是我们这节课共同研究的内容.(教师板书课题)设计意图:从学生熟悉的事物抽象出平面图形从而引出课题,不仅调动了学生学习的兴趣,也激发了学生学习的热情.让学生感知到数学源于生活,数学就在我们身边.让学生经历了从现实世界中抽象出平面图形的过程.二、探求新知,生成概念探究1.多边形有关概念师:既然三角形……六边形等都是多边形,你能用自己的语言描述它们的特征吗?这些图形是由什么样的线按怎样的方式组成的?(教师用多媒体展示三角形、长方形、正方形、五边形、六边形图形)AC D EB生1:(学生交流讨论)由一些线段组成,这些线段端点分别重合两次.生2:由一些线段首尾顺次连接成的.生3:这些没有缺口图形是封闭图形(教师结合图形总结多边形的定义及相关的名称.)多边形:在平面内,是由若干条不在同一直线上的线段首尾顺次相接组成的封闭的平面图形叫做多边形.(我们平常所说的多边形都是指凸多边形,即多边形总在任何一条边所在直线的同一侧.)多边形的边:组成多边形的各条线段叫做多边形的边.多边形的顶点:每相邻两条边的公共端点叫做多边形的顶点. 多边形的对角线:在多边形中,连接不相邻两个顶点的线段叫做多边形的对角线. 如在多边形ABCDE 中,点A 、点B 等是多边形的顶点;线段AB 、线段BC 等是多边形的边;∠EAB 、∠B 等是多边形的内角;如线段AC 、线段AD 是多边形的对角线.探究2.多边形边、角、对角线的关系师:多边形的顶点、边、内角存在什么联系?观看下面的图形, 回答问题.(多媒体显示) 1、三角形有几个顶点,几条边,几个内角?四边形有几个顶点,几条边,几个内角?………n 边形呢?生1:三角形有3个顶点,3条边, 3个内角生2:四边形有4个顶点,4条边,4个内角生3:n 边形有n 个顶点,n 条边,n 个内角2、从四边形的一个顶点出发,可以画出几条对角线? 从五边形的一个顶点出发,可以画出几条对角线?六边形……n 边形呢?和同伴交流你的想法.(教师巡视指导,引导学生由四边形、五边形、六边形、七边形一个顶点出发,分别连接这个顶点和其余各顶点,总结出n 边形一个顶点出发对角线的条数)生1:从四边形的一个顶点出发,可以画出1条对角线.生2:从五边形的一个顶点出发,可以画出2条对角线.生3:从六边形的一个顶点出发,可以画出3条对角线.生4:从n 边形的一个顶点出发,可以画出(n -3)条对角线.师:你们真是太聪明了!那么从n 边形一个顶点出发的对角线,把n 边形分割成多少个三角形?(让学生思考后回答)生:从n 边形一个顶点出发的对角线,把n 边形分割成(n -2)个三角形. 设计意图:这组题目实际是对概念的应用,学生先动手画图,观察讨论,得出结论,发表不同意见.在活动中感悟知识的生成、发展与变化.在这一过程中让学生领悟做任何事情都要勤于思考、善于发现规律.这里主要让学生感受图形的分解与组合,以及如何通过分解、组合进行分类、计数等,体现了从特殊到一般的数学思想.探究3.正多边形的定义师:观察下图中的多边形,它们的边、角有什么特点?与同伴交流.(提示学生利用教材的图形通过动手如用尺子、圆规、量角器等测量工具操作,得到正多边形的定义.)设计意图:学生利用尺子、圆规、量角器等测量工具操作,这也是对线段的比较和角度比较知识的进一步的复习,不仅生成了新知识也巩固了旧知识.教师总结:正多边形:在平面内,各内角都相等、各边也都相等的多边形叫做正多边形.如上图分别是正三角形,正四边形(正方形),正五边形,正六边形,正八边形.师:现实生活中有许多正多边形的实例,你能举出例子吗?(学生思考后回答)设计意图:学生通过观察概括出感知的图形特征,教师在加以总结形成概念,这个过程有利于学生进行合作学习,有利于学生在实践中感悟知识的生成过程,发展学生有条理的思考和语言表达能力.探究4.和圆、有关的概念教师:多媒体显示一组图片:打开的扇子、一元硬币等师:上面的图形中有你们熟悉的图形吗?生:有,圆形、扇形.师:你能用哪些方法画出一个圆?生1:用圆规.生2:我用绳子也能作出圆.(找一名学生在黑板演示画图,用圆规或绳子)师:通过这名学生的作图你能给圆下个定义吗?(学生先思考再交流,教师总结圆及和圆有关的概念.)圆:平面上,一条线段OA绕着它固定的一个端点O旋转一周,另一个端点A形成的图形叫做圆(circle).固定的端点O称为圆心(center of a circle),线段OA称为半径(radius).圆弧:圆上A,B两点之间的部分叫做圆弧(arc)“以A、B为端点的弧记作AB,读作“圆弧AB或“弧AB”.扇形:由一条弧AB和经过这条弧的端点的两条半径OA,OB所组成的图形叫做扇形(sector).圆心角:顶点在圆心的角叫做圆心角.(教师作出图形结合图形介绍圆中的概念.)设计意图:由于学生在小学接触了圆,对圆并不陌生,但是没有用数学语言形成定义,这里用圆规或绳子演示结合语言使学生理解定义,圆弧扇形圆心角的概念同样也要结合图形,特别要强调圆弧和扇形的概念.三、思维训练,应用新知师:如果将一个圆分割成三个扇形,使它们的圆心角的比为1:2:3,你能求这三个扇形的圆心角的度数吗?(学生独立解出,教师强调数值应加单位:度.教师板书。
第四章基本平面图形4.5多边形和圆初步认识教学设计一、教学目标1.让学生通过操作、观察、比较和交流活动,初步认识四边形、五边形、六边形等平面图形,知道这些图形的名称,能识别这些图形.2.了解多边形及有关概念,认识多边形的边、内角、顶点、对角线,理解正多边形及其有关概念.3.能在学习的过程中归纳圆的共同特征,理解圆、弧、弦等有关概念.二、教学重点及难点重点:经历从现实世界中抽象出平面图形的过程,理解并掌握多边形与圆的相关概念.难点:掌握多边形与圆的相关概念,并能解决相关的问题.三、教学准备直尺、圆规、多媒体课件四、相关资源图片(蜂房)、视频《正多边形和圆》的导入五、教学过程【问题情境】创设情境教师活动:①提出问题:你发现了图片中哪些熟悉的平面图形?②根据学生发言,板书:线段、三角形、长方形、正方形、五边形、六边形、扇形并画出图形.学生活动:有的说三角形,有的说长方形,有的说正方形……(如学生能看出五边形、线段和扇形最好,如发现不了,师要启发引导).设计意图:通过图片和视频,调动学生的各种感官,激发兴趣,引入新课.让学生经历从现实世界中抽象出平面图形的过程,使学生感到数学就在我们身边.俗话说实践出真知,我们一起学习上面的图形.板书:多边形和圆的初步认识【新知讲解】合作交流,探索新知探究一:多边形的认识活动1:多边形定义(1)三角形的概念是怎样的?仿照三角形的定义给出多边形的定义吗?由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.(2)你能仿照三角形的定义给出多边形的定义吗?多边形定义:在平面内,由一些线段首尾顺次相接组成的封闭图形叫做多边形.要点:①在同一个平面内;②若干条线段;③首尾顺次相接;④封闭图形.多边形按组成它的线段的条数分成三角形、四边形、五边形……三角形是最简单的多边形.如果一个多边形由n条线段组成,那么这个多边形就叫做n边形.如图,是一个五边形,可表示为五边形ABCDE.活动2:多边形的内角与外角(1)你能说说什么是三角形的内角和外角吗?三角形相邻两边组成的角,叫做三角形的内角.三角形的一边与另一边的延长线组成的角,叫做三角形的外角.(2)根据三角形的内角、外角的概念,你能说说什么是多边形的内角和外角吗?与三角形类似,多边形相邻两边组成的角叫做多边形的内角,如图中的∠A,∠B,∠C,∠D,∠E是五边形ABCDE的5个内角.多边形的边与它的邻边的延长线组成的角叫做多边形的外角.如图中的∠1,∠2,∠3是五边形ABCDE的一个外角.注意:多边形每一个顶点处有两个外角,并且同顶点的外角与内角互为邻补角. (3)如图展示了五边形的相关概念.总结:n 边形有______个顶点;______条边;______个内角;______个外角. 答案:n ,n ,n ,2n . 活动3:多边形的对角线 (1)多边形对角线的定义:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线. (2)请说出下列图形从某一顶点出发的对角线的条数:(3)以上从一个顶点引出的对角线,将相应多边形分为了多少个三角形?A BCDE321E DCBA(4)那么n边形从某一个顶点可以引多少条对角线呢?这些对角线又将n边形分为多少个三角形呢?从某个顶点可以引出(n-3)条(n≥3)对角线;这些对角线将n边形分为(n-2)个三角形.(5)你能猜想n边形有多少条对角线吗?说说你的想法.n边形有(3)2n n-条对角线.因为从n边形的一个顶点可以引(n-3)条对角线,n个顶点共引n(n-3)条对角线,又由于连接任意两个顶点的两条对角线是相同的,所以,n边形有(3)2n n-条对角线.活动4:正多边形正多边形定义:像正方形这样,各个角都相等,各条边都相等的多边形叫做正多边形.例如:正多边形必须具备两个条件:①各个角都相等;②各条边都相等.正多边形性质:正方形的各个角都相等,各条边都相等.例如:矩形各个内角都相等,它就不是正四边形.再如,菱形各条边都相等,它却不是正四边形.如下图:设计意图:通过问题引导学生思考,总结,由浅入深,由简单到复杂,将问题逐步拔高,又通过旧知识逐步解决,体现了问题设置的“跳一跳,够的到”的要求.探究二:圆的认识活动1:圆的认识古希腊数学家毕达哥拉斯说:“一切立体图形中最美的是球,一切平面图形中最美的是圆.”圆是最常见的平面几何的基本图形之一,在工农业生产、交通运输、土木建筑等方面被广泛运用.在我国,圆还象征着圆满、团圆、和谐之意.设计意图:通过欣赏和举例,认识生活中的圆,体会圆的广泛应用,感受本章内容的价值.活动2:圆的定义定义1:师生活动:(1)用棉线和铅笔画圆,如下图.(2)用圆规画圆,如下图.通过画图体验和观察,你能描述圆的形成过程吗? 学生归纳,教师加以规范,共同得出:从旋转角度定义圆:如图,在一个平面内,线段OA 绕它固定的一个端点O 旋转一周,另一个端点A 所形成的图形叫做圆.其固定的端点O 叫做圆心,线段OA 叫做半径.以点O 为圆心的圆,记作⊙O ,读作“圆O ”.定义2通过画图体验和观察,描述圆的形成过程 (1)以定点O 为圆心能画几个圆? (2)以定长r 为半径能画几个圆?(3)以定点O 为圆心、定长r 为半径能画几个圆? (4)确定一个圆的要素有哪些?结论:确定圆的要素是圆心和半径,圆心确定位置,半径确定大小.设计意图:根据学生已有的画图经验,通过实际操作和观察,有利于学生发现圆的形成过程和确定圆的条件,帮助学生用“发生法”得出圆的定义,从直观形象的感性认识上升到理性思考.活动3:圆的相关概念(1)弦和直径:连接圆上任意两点的线段叫做弦,经过圆心的弦叫做直径.A如图,AB 、AC 是⊙O 的弦,AB 是⊙O 的直径.(2)弧:圆上任意两点间的部分叫做圆弧,简称弧.以A 、B 为端点的弧,记作: 读作“圆弧AB ”或“弧AB ”.圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.大于半圆的弧叫做优弧,如;小于半圆的弧叫做劣弧. (3)扇形:由一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形.(4)圆心角:观察下图中的∠1,∠2,它们有什么共同特点?师生活动:学生观察,在老师的引导下得出∠1,∠2的共同特点:顶点在圆心.然后老师给出圆心角的定义.像∠1,∠2这样,顶点在圆心的角叫做圆心角. 设计意图:使学生掌握与圆相关的概念. 【典型例题】例1.将一个圆分割成三个扇形,它们的圆心角的度数比为1:2:3,求这三个扇形的圆心角的度数.解:因为一个周角为360°,所以分成的三个扇形的圆心角分别是: 360°×1123++=60°,360°×2123++=120°,360°×3123++=180°.设计意图:通过例题,加深学生对圆心角知识的理解,熟练掌握并能灵活应. 例2.(1)如图,将一个圆分成三个大小相同的扇形,你能算出它们的圆心角的度数吗?每个扇形的面积和整个圆的面积的关系吗?ABC O'O21AB(2)画一个半径是2cm 的圆,并在其中画一个圆心角为60°的扇形,计算这个扇形的面积?解:(1)每一个扇形圆心角的度数为°°3601203=,每个扇形的面积是整个圆的面积的13. (2)画一个半径是2cm 的圆,并在其中画一个圆心角为60°的扇形AOB .如图所示,圆的面积为π×22=4π,S 扇形AOB =°°60243603⨯π=π.【随堂练习】1.九边形的对角线的条数是__________. 解析:九边形的对角线的条数是12×9×(9-3)=27. 解:27.2.下列说法正确的有( A ).(1)由四条线段首尾顺次相接组成的图形是四边形; (2)各边都相等的多边形是正多边形; (3)各角都相等的多边形一定是正多边形. A .0个B .1个C .2个D .3个解析:(1)不正确,一是要在同一平面内,二是不能在同一条直线上;(2)不正确,各边都相等,各角也都相等的多边形才是正多边形,这两个条件必须同时具备;如菱形虽然四条边都相等,但它不是正多边形;(3)不正确,如长方形四个角都是直角,都相等,但边不一定相等,所以不是正多边形.3.如图所示,在一个圆中任意画4条半径,可以把这个圆分成几个扇形?OBA分析:除了图中一目了然的4个小扇形外,由相邻两个扇形组成的扇形有4个,由相邻三个扇形组成的扇形还有4个,因而共12个.解:共12个扇形.4.填空:(1)十边形有________个顶点,________个内角,从一个顶点出发可画________条对角线,它共有________条对角线.(2)从多边形一个顶点出发画对角线将它分成了四个三角形,这个多边形是________边形.解析:(1)一个n边形有n个顶点,n个角,从一个顶点能画出(n-3)条对角线,共有()32n n-条对角线;(2)一个n边形从一个顶点可以引(n-3)条对角线,把n边形分成(n-2)个三角形,所以n-2=4,n=6,这个多边形是六边形.解:(1)10;10;7;35.(2)六.5.如图,把一个圆分成四个扇形,求每个扇形的圆心角的度数.解:因为一个周角为360°,所以分成的四个扇形的圆心角分别是∠AOB=∠BOC=360°×25%=90°;∠COD=360°×30%=108°;∠DOA=360°×20%=72°.六、课堂小结1.多边形的有关知识总结;2.圆的有关知识总结.设计意图:通过小结,使学生掌握多边形的有关知识,深刻理解有关知识并为灵活运用打下知识基础.七、板书设计第四章基本平面图形多边形和圆初步认识一、多边形有关知识1.多边形定义:2.多边形的边、角、对角线:3.多边形对角线条数:4.正多边形定义:二圆有关知识1.圆定义:定义1.定义2.2.直径:圆心角:弧:扇形:OBCA。