当前位置:文档之家› 2020—2021年人教版九年级数学下册中考模拟试题及答案(基础提分试卷).doc

2020—2021年人教版九年级数学下册中考模拟试题及答案(基础提分试卷).doc

2020—2021年人教版九年级数学下册中考模拟试题及答案(基础提分试卷).doc
2020—2021年人教版九年级数学下册中考模拟试题及答案(基础提分试卷).doc

中考数学试卷

一、选择题:本大题共12小题,每小题3分,共36分

1.计算(﹣2)﹣5的结果等于()

A.﹣7 B.﹣3 C.3 D.7

2.sin60°的值等于()

A.B.C.D.

3.下列图形中,可以看作是中心对称图形的是()

A.B. C. D.

4.2016年5月24日《天津日报》报道,2015年天津外环线内新栽植树木6120000株,将6120000用科学记数法表示应为()

A.0.612×107B.6.12×106C.61.2×105D.612×104

5.如图是一个由4个相同的正方体组成的立体图形,它的主视图是()

A.B.C.D.

6.估计的值在()

A.2和3之间B.3和4之间C.4和5之间D.5和6之间

7.计算﹣的结果为()

A.1 B.x C.D.

8.方程x2+x﹣12=0的两个根为()

A.x1=﹣2,x2=6 B.x1=﹣6,x2=2 C.x1=﹣3,x2=4 D.x1=﹣4,x2=3

9.实数a,b在数轴上的对应点的位置如图所示,把﹣a,﹣b,0按照从小到大的顺序排列,正确的是()

A.﹣a<0<﹣b B.0<﹣a<﹣b C.﹣b<0<﹣a D.0<﹣b<﹣a

10.如图,把一张矩形纸片ABCD沿对角线AC折叠,点B的对应点为B′,AB′与DC相交于点E,则下列结论一定正确的是()

A.∠DAB′=∠CAB′B.∠ACD=∠B′CD C.AD=AE D.AE=CE

11.若点A(﹣5,y1),B(﹣3,y2),C(2,y3)在反比例函数y=的图象上,则y1,y2,y3的大小关系是()

A.y1<y3<y2B.y1<y2<y3 C.y3<y2<y1D.y2<y1<y3

12.已知二次函数y=(x﹣h)2+1(h为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最小值为5,则h的值为()

A.1或﹣5 B.﹣1或5 C.1或﹣3 D.1或3

二、填空题:本大题共6小题,每小题3分,共18分

13.计算(2a)3的结果等于.

14.计算(+)(﹣)的结果等于.

15.不透明袋子中装有6个球,其中有1个红球、2个绿球和3个黑球,这些球除颜色外无其他差别,从袋子中随机取出1个球,则它是绿球的概率是.

16.若一次函数y=﹣2x+b(b为常数)的图象经过第二、三、四象限,则b的值可以是(写出一个即可).

17.如图,在正方形ABCD中,点E,N,P,G分别在边AB,BC,CD,DA上,点M,F,Q都在对角线BD上,且四边形MNPQ和AEFG均为正方形,则的值等

于.

18.如图,在每个小正方形的边长为1的网格中,A,E为格点,B,F为小正方形边的中点,C为AE,BF的延长线的交点.

(Ⅰ)AE的长等于;

(Ⅱ)若点P在线段AC上,点Q在线段BC上,且满足AP=PQ=QB,请在如图所示的网格中,用无刻度的直尺,画出线段PQ,并简要说明点P,Q的位置是如何找到的(不要求证明).

三、综合题:本大题共7小题,共66分

19.解不等式,请结合题意填空,完成本题的解答.

(Ⅰ)解不等式①,得;

(Ⅱ)解不等式②,得;

(Ⅲ)把不等式①和②的解集在数轴上表示出来;

(Ⅳ)原不等式组的解集为.

20.在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m),绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:

(Ⅰ)图1中a的值为;

(Ⅱ)求统计的这组初赛成绩数据的平均数、众数和中位数;

(Ⅲ)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65m的运动员能否进入复赛.

21.在⊙O中,AB为直径,C为⊙O上一点.

(Ⅰ)如图1.过点C作⊙O的切线,与AB的延长线相交于点P,若∠CAB=27°,求∠P

的大小;

(Ⅱ)如图2,D为上一点,且OD经过AC的中点E,连接DC并延长,与AB的延长线相交于点P,若∠CAB=10°,求∠P的大小.

22.小明上学途中要经过A,B两地,由于A,B两地之间有一片草坪,所以需要走路线AC,CB,如图,在△ABC中,AB=63m,∠A=45°,∠B=37°,求AC,CB的长.(结果保留小数点后一位)

参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,取1.414.

23.公司有330台机器需要一次性运送到某地,计划租用甲、乙两种货车共8辆,已知每辆甲种货车一次最多运送机器45台、租车费用为400元,每辆乙种货车一次最多运送机器30台、租车费用为280元

(Ⅰ)设租用甲种货车x辆(x为非负整数),试填写表格.

表一:

租用甲种货车的数量/辆 3 7 x

租用的甲种货车最多运送机器的数量/台135

租用的乙种货车最多运送机器的数量/台150

表二:

租用甲种货车的数量/辆 3 7 x

租用甲种货车的费用/元2800

租用乙种货车的费用/元280

(Ⅱ)给出能完成此项运送任务的最节省费用的租车方案,并说明理由.

24.在平面直角坐标系中,O为原点,点A(4,0),点B(0,3),把△ABO绕点B逆时针旋转,得△A′BO′,点A,O旋转后的对应点为A′,O′,记旋转角为α.

(Ⅰ)如图①,若α=90°,求AA′的长;

(Ⅱ)如图②,若α=120°,求点O′的坐标;

(Ⅲ)在(Ⅱ)的条件下,边OA上的一点P旋转后的对应点为P′,当O′P+BP′取得最小值时,求点P′的坐标(直接写出结果即可)

25.已知抛物线C:y=x2﹣2x+1的顶点为P,与y轴的交点为Q,点F(1,).

(Ⅰ)求点P,Q的坐标;

(Ⅱ)将抛物线C向上平移得到抛物线C′,点Q平移后的对应点为Q′,且FQ′=OQ′.

①求抛物线C′的解析式;

②若点P关于直线Q′F的对称点为K,射线FK与抛物线C′相交于点A,求点A的坐标.

中考数学试卷

参考答案与试题解析

一、选择题:本大题共12小题,每小题3分,共36分

1.计算(﹣2)﹣5的结果等于()

A.﹣7 B.﹣3 C.3 D.7

【考点】有理数的减法.

【分析】根据减去一个数等于加上这个数的相反数进行计算即可得解.

【解答】解:(﹣2)﹣5=(﹣2)+(﹣5)=﹣(2+5)=﹣7,

故选:A.

2.sin60°的值等于()

A.B.C.D.

【考点】特殊角的三角函数值.

【分析】直接利用特殊角的三角函数值求出答案.

【解答】解:sin60°=.

故选:C.

3.下列图形中,可以看作是中心对称图形的是()

A.B. C. D.

【考点】中心对称图形.

【分析】根据中心对称图形的概念求解.

【解答】解:A、不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误;

B、是中心对称图形,故此选项正确;

C、不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误;

D、不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误.

故选:B.

4.2016年5月24日《天津日报》报道,2015年天津外环线内新栽植树木6120000株,将6120000用科学记数法表示应为()

A.0.612×107B.6.12×106C.61.2×105D.612×104

【考点】科学记数法—表示较大的数.

【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.

【解答】解:6120000=6.12×106,

故选:B.

5.如图是一个由4个相同的正方体组成的立体图形,它的主视图是()

A.B.C.D.

【考点】简单组合体的三视图.

【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看易得第一层有2个正方形,第二层左边有一个正方形,第三层左边有一个正方形.

故选A.

6.估计的值在()

A.2和3之间B.3和4之间C.4和5之间D.5和6之间

【考点】估算无理数的大小.

【分析】直接利用二次根式的性质得出的取值范围.

【解答】解:∵<<,

∴的值在4和5之间.

故选:C.

7.计算﹣的结果为()

A.1 B.x C.D.

【考点】分式的加减法.

【分析】根据同分母分式相加减,分母不变,分子相加减计算即可得解.

【解答】解:﹣

=

=1.

故选A.

8.方程x2+x﹣12=0的两个根为()

A.x1=﹣2,x2=6 B.x1=﹣6,x2=2 C.x1=﹣3,x2=4 D.x1=﹣4,x2=3

【考点】解一元二次方程-因式分解法.

【分析】将x2+x﹣12分解因式成(x+4)(x﹣3),解x+4=0或x﹣3=0即可得出结论.

【解答】解:x2+x﹣12=(x+4)(x﹣3)=0,

则x+4=0,或x﹣3=0,

解得:x1=﹣4,x2=3.

故选D.

9.实数a,b在数轴上的对应点的位置如图所示,把﹣a,﹣b,0按照从小到大的顺序排列,正确的是()

A.﹣a<0<﹣b B.0<﹣a<﹣b C.﹣b<0<﹣a D.0<﹣b<﹣a

【考点】实数大小比较;实数与数轴.

【分析】根据数轴得出a<0<b,求出﹣a>﹣b,﹣b<0,﹣a>0,即可得出答案.

【解答】解:∵从数轴可知:a<0<b,

∴﹣a>﹣b,﹣b<0,﹣a>0,

故选C.

10.如图,把一张矩形纸片ABCD沿对角线AC折叠,点B的对应点为B′,AB′与DC相交于点E,则下列结论一定正确的是()

A.∠DAB′=∠CAB′B.∠ACD=∠B′CD C.AD=AE D.AE=CE

【考点】翻折变换(折叠问题).

【分析】根据翻折变换的性质可得∠BAC=∠CAB′,根据两直线平行,内错角相等可得∠BAC=∠ACD,从而得到∠ACD=∠CAB′,然后根据等角对等边可得AE=CE,从而得解.

【解答】解:∵矩形纸片ABCD沿对角线AC折叠,点B的对应点为B′,

∴∠BAC=∠CAB′,

∵AB∥CD,

∴∠BAC=∠ACD,

∴∠ACD=∠CAB′,

∴AE=CE,

所以,结论正确的是D选项.

故选D.

11.若点A(﹣5,y1),B(﹣3,y2),C(2,y3)在反比例函数y=的图象上,则y1,y2,y3的大小关系是()

A.y1<y3<y2B.y1<y2<y3 C.y3<y2<y1D.y2<y1<y3

【考点】反比例函数图象上点的坐标特征.

【分析】直接利用反比例函数图象的分布,结合增减性得出答案.

【解答】解:∵点A(﹣5,y1),B(﹣3,y2),C(2,y3)在反比例函数y=的图象上,∴A,B点在第三象限,C点在第一象限,每个图象上y随x的增大减小,

∴y3一定最大,y1>y2,

故选:D.

12.已知二次函数y=(x﹣h)2+1(h为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最小值为5,则h的值为()

A.1或﹣5 B.﹣1或5 C.1或﹣3 D.1或3

【考点】二次函数的最值.

【分析】由解析式可知该函数在x=h时取得最小值1、x>h时,y随x的增大而增大、当x <h时,y随x的增大而减小,根据1≤x≤3时,函数的最小值为5可分如下两种情况:①若h<1≤x≤3,x=1时,y取得最小值5;②若1≤x≤3<h,当x=3时,y取得最小值5,分别列出关于h的方程求解即可.

【解答】解:∵当x>h时,y随x的增大而增大,当x<h时,y随x的增大而减小,

∴①若h<1≤x≤3,x=1时,y取得最小值5,

可得:(1﹣h)2+1=5,

解得:h=﹣1或h=3(舍);

②若1≤x≤3<h,当x=3时,y取得最小值5,

可得:(3﹣h)2+1=5,

解得:h=5或h=1(舍).

综上,h的值为﹣1或5,

故选:B.

二、填空题:本大题共6小题,每小题3分,共18分

13.计算(2a)3的结果等于8a3.

【考点】幂的乘方与积的乘方.

【分析】根据幂的乘方与积的乘方运算法则进行计算即可.

【解答】解:(2a)3=8a3.

故答案为:8a3.

14.计算(+)(﹣)的结果等于 2 .

【考点】二次根式的混合运算.

【分析】先套用平方差公式,再根据二次根式的性质计算可得.

【解答】解:原式=()2﹣()2

=5﹣3

=2,

故答案为:2.

15.不透明袋子中装有6个球,其中有1个红球、2个绿球和3个黑球,这些球除颜色外无其他差别,从袋子中随机取出1个球,则它是绿球的概率是.

【考点】概率公式.

【分析】由题意可得,共有6种等可能的结果,其中从口袋中任意摸出一个球是绿球的有2种情况,利用概率公式即可求得答案.

【解答】解:∵在一个不透明的口袋中有6个除颜色外其余都相同的小球,其中1个红球、2个绿球和3个黑球,

∴从口袋中任意摸出一个球是绿球的概率是=,

故答案为:.

16.若一次函数y=﹣2x+b(b为常数)的图象经过第二、三、四象限,则b的值可以是﹣1 (写出一个即可).

【考点】一次函数图象与系数的关系.

【分析】根据一次函数的图象经过第二、三、四象限,可以得出k<0,b<0,随便写出一个小于0的b值即可.

【解答】解:∵一次函数y=﹣2x+b(b为常数)的图象经过第二、三、四象限,

∴k<0,b<0.

故答案为:﹣1.

17.如图,在正方形ABCD中,点E,N,P,G分别在边AB,BC,CD,DA上,点M,F,Q都在对角线BD上,且四边形MNPQ和AEFG均为正方形,则的值等于.

【考点】正方形的性质.

【分析】根据辅助线的性质得到∠ABD=∠CBD=45°,四边形MNPQ和AEFG均为正方形,推出△BEF与△BMN是等腰直角三角形,于是得到FE=BE=AE=AB,BM=MN=QM,同理DQ=MQ,即可得到结论.

【解答】解:在正方形ABCD中,

∵∠ABD=∠CBD=45°,

∵四边形MNPQ和AEFG均为正方形,

∴∠BEF=∠AEF=90°,∠BMN=∠QMN=90°,

∴△BEF与△BMN是等腰直角三角形,

∴FE=BE=AE=AB,BM=MN=QM,

同理DQ=MQ,

∴MN=BD=AB,

∴==,

故答案为:.

18.如图,在每个小正方形的边长为1的网格中,A,E为格点,B,F为小正方形边的中点,C为AE,BF的延长线的交点.

(Ⅰ)AE的长等于;

(Ⅱ)若点P在线段AC上,点Q在线段BC上,且满足AP=PQ=QB,请在如图所示的网格中,用无刻度的直尺,画出线段PQ,并简要说明点P,Q的位置是如何找到的(不要求证明)AC与网格线相交,得到P,取格点M,连接AM,并延长与BC交予Q,连接PQ,则线段PQ即为所求.

【考点】作图—应用与设计作图;勾股定理.

【分析】(Ⅰ)根据勾股定理即可得到结论;

(Ⅱ)取格点M,连接AM,并延长与BC交予Q,连接PQ,则线段PQ即为所求.

【解答】解:(Ⅰ)AE==;

故答案为:;

(Ⅱ)如图,AC与网格线相交,得到P,取格点M,连接AM,并延长与BC交予Q,连接PQ,则线段PQ即为所求.

故答案为:AC与网格线相交,得到P,取格点M,连接AM,并延长与BC交予Q,连接PQ,则线段PQ即为所求.

三、综合题:本大题共7小题,共66分

19.解不等式,请结合题意填空,完成本题的解答.

(Ⅰ)解不等式①,得x≤4 ;

(Ⅱ)解不等式②,得x≥2 ;

(Ⅲ)把不等式①和②的解集在数轴上表示出来;

(Ⅳ)原不等式组的解集为2≤x≤4 .

【考点】解一元一次不等式组;在数轴上表示不等式的解集.

【分析】分别求出各不等式的解集,再在数轴上表示出来即可.

【解答】解:(I)解不等式①,得x≤4.

故答案为:x≤4;

(II)解不等式②,得x≥2.

故答案为:x≥2.

(III)把不等式①和②的解集在数轴上表示为:

(IV)原不等式组的解集为:.

故答案为:2≤x≤4.

20.在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m),绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:

(Ⅰ)图1中a的值为25 ;

(Ⅱ)求统计的这组初赛成绩数据的平均数、众数和中位数;

(Ⅲ)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65m的运动员能否进入复赛.

【考点】众数;扇形统计图;条形统计图;加权平均数;中位数.

【分析】(Ⅰ)用整体1减去其它所占的百分比,即可求出a的值;

(Ⅱ)根据平均数、众数和中位数的定义分别进行解答即可;

(Ⅲ)根据中位数的意义可直接判断出能否进入复赛.

【解答】解:(Ⅰ)根据题意得:

1﹣20%﹣10%﹣15%﹣30%=25%;

则a的值是25;

故答案为:25;

(Ⅱ)观察条形统计图得:

==1.61;

∵在这组数据中,1.65出现了6次,出现的次数最多,

∴这组数据的众数是1.65;

将这组数据从小到大排列为,其中处于中间的两个数都是1.60,

则这组数据的中位数是1.60.

(Ⅲ)能;

∵共有20个人,中位数是第10、11个数的平均数,

∴根据中位数可以判断出能否进入前9名;

∵1.65m>1.60m,

∴能进入复赛.

21.在⊙O中,AB为直径,C为⊙O上一点.

(Ⅰ)如图1.过点C作⊙O的切线,与AB的延长线相交于点P,若∠CAB=27°,求∠P 的大小;

(Ⅱ)如图2,D为上一点,且OD经过AC的中点E,连接DC并延长,与AB的延长线相交于点P,若∠CAB=10°,求∠P的大小.

【考点】切线的性质.

【分析】(Ⅰ)连接OC,首先根据切线的性质得到∠OCP=90°,利用∠CAB=27°得到∠COB=2∠CAB=54°,然后利用直角三角形两锐角互余即可求得答案;

(Ⅱ)根据E为AC的中点得到OD⊥AC,从而求得∠AOE=90°﹣∠EAO=80°,然后利用圆周角定理求得∠ACD=∠AOD=40°,最后利用三角形的外角的性质求解即可.

【解答】解:(Ⅰ)如图,连接OC,

∵⊙O与PC相切于点C,

∴OC⊥PC,即∠OCP=90°,

∵∠CAB=27°,

∴∠COB=2∠CAB=54°,

在Rt△AOE中,∠P+∠COP=90°,

∴∠P=90°﹣∠COP=36°;

(Ⅱ)∵E为AC的中点,

∴OD⊥AC,即∠AEO=90°,

在Rt△AOE中,由∠EAO=10°,

得∠AOE=90°﹣∠EAO=80°,

∴∠ACD=∠AOD=40°,

∵∠ACD是△ACP的一个外角,

∴∠P=∠ACD﹣∠A=40°﹣10°=30°.

22.小明上学途中要经过A,B两地,由于A,B两地之间有一片草坪,所以需要走路线AC,CB,如图,在△ABC中,AB=63m,∠A=45°,∠B=37°,求AC,CB的长.(结果保留小数点后一位)

参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,取1.414.

【考点】解直角三角形的应用.

【分析】根据锐角三角函数,可用CD表示AD,BD,AC,BC,根据线段的和差,可得关于CD的方程,根据解方程,可得CD的长,根据AC=CD,CB=,可得答案.

【解答】解:过点C作CD⊥AB垂足为D,

在Rt△ACD中,tanA=tan45°==1,CD=AD,

sinA=sin45°==,AC=CD.

在Rt△BCD中,tanB=tan37°=≈0.75,BD=;

sinB=sin37°=≈0.60,CB=.

∵AD+BD=AB=63,

∴CD+=63,

解得CD≈27,

AC=CD≈1.414×27=38.178≈38.2,

CB=≈=45.0,

答:AC的长约为38.2cm,CB的长约等于45.0m.

23.公司有330台机器需要一次性运送到某地,计划租用甲、乙两种货车共8辆,已知每辆甲种货车一次最多运送机器45台、租车费用为400元,每辆乙种货车一次最多运送机器30台、租车费用为280元

(Ⅰ)设租用甲种货车x辆(x为非负整数),试填写表格.

表一:

租用甲种货车的数量/辆 3 7 x

租用的甲种货车最多运送机器的数量/台135 315 45x

租用的乙种货车最多运送机器的数量/台150 30 ﹣30x+240

表二:

租用甲种货车的数量/辆 3 7 x

租用甲种货车的费用/元1200 2800 400x

租用乙种货车的费用/元1400 280 ﹣280x+2240

(Ⅱ)给出能完成此项运送任务的最节省费用的租车方案,并说明理由.

【考点】一次函数的应用.

【分析】(Ⅰ)根据计划租用甲、乙两种货车共8辆,已知每辆甲种货车一次最多运送机器45台、租车费用为400元,每辆乙种货车一次最多运送机器30台、租车费用为280元

,可以分别把表一和表二补充完整;

(Ⅱ)由(Ⅰ)中的数据和公司有330台机器需要一次性运送到某地,可以解答本题.【解答】解:(Ⅰ)由题意可得,

在表一中,当甲车7辆时,运送的机器数量为:45×7=315(台),则乙车8﹣7=1辆,运送的机器数量为:30×1=30(台),

当甲车x辆时,运送的机器数量为:45×x=45x(台),则乙车(8﹣x)辆,运送的机器数量为:30×(8﹣x)=﹣30x+240(台),

在表二中,当租用甲货车3辆时,租用甲种货车的费用为:400×3=1200(元),则租用乙种货车8﹣3=5辆,租用乙种货车的费用为:280×5=1400(元),

当租用甲货车x辆时,租用甲种货车的费用为:400×x=400x(元),则租用乙种货车(8﹣x)辆,租用乙种货车的费用为:280×(8﹣x)=﹣280x+2240(元),

故答案为:表一:315,45x,30,﹣30x+240;

表二:1200,400x,1400,﹣280x+2240;

(Ⅱ)能完成此项运送任务的最节省费用的租车方案是甲车6辆,乙车2辆,

理由:当租用甲种货车x辆时,设两种货车的总费用为y元,

则两种货车的总费用为:y=400x+(﹣280x+2240)=120x+2240,

又∵45x+(﹣30x+240)≥330,解得x≥6,

∵120>0,

∴在函数y=120x+2240中,y随x的增大而增大,

∴当x=6时,y取得最小值,

即能完成此项运送任务的最节省费用的租车方案是甲种货车6辆,乙种货车2辆.

24.在平面直角坐标系中,O为原点,点A(4,0),点B(0,3),把△ABO绕点B逆时针旋转,得△A′BO′,点A,O旋转后的对应点为A′,O′,记旋转角为α.

(Ⅰ)如图①,若α=90°,求AA′的长;

(Ⅱ)如图②,若α=120°,求点O′的坐标;

(Ⅲ)在(Ⅱ)的条件下,边OA上的一点P旋转后的对应点为P′,当O′P+BP′取得最小值时,求点P′的坐标(直接写出结果即可)

【考点】几何变换综合题.

【分析】(1)如图①,先利用勾股定理计算出AB=5,再根据旋转的性质得BA=BA′,∠ABA′=90°,则可判定△ABA′为等腰直角三角形,然后根据等腰直角三角形的性质求AA′的长;(2)作O′H⊥y轴于H,如图②,利用旋转的性质得BO=BO′=3,∠OBO′=120°,则∠HBO′=60°,再在Rt△BHO′中利用含30度的直角三角形三边的关系可计算出BH和O′H的长,然后利用坐标的表示方法写出O′点的坐标;

(3)由旋转的性质得BP=BP′,则O′P+BP′=O′P+BP,作B点关于x轴的对称点C,连结O′C交x轴于P点,如图②,易得O′P+BP=O′C,利用两点之间线段最短可判断此时O′P+BP 的值最小,接着利用待定系数法求出直线O′C的解析式为y=x﹣3,从而得到P(,0),则O′P′=OP=,作P′D⊥O′H于D,然后确定∠DP′O′=30°后利用含30度的直角三角形三边的关系可计算出P′D和DO′的长,从而可得到P′点的坐标.

【解答】解:(1)如图①,

∵点A(4,0),点B(0,3),

∴OA=4,OB=3,

∴AB==5,

∵△ABO绕点B逆时针旋转90°,得△A′BO′,

∴BA=BA′,∠ABA′=90°,

∴△ABA′为等腰直角三角形,

∴AA′=BA=5;

(2)作O′H⊥y轴于H,如图②,

∵△ABO绕点B逆时针旋转120°,得△A′BO′,

∴BO=BO′=3,∠OBO′=120°,

∴∠HBO′=60°,

在Rt△BHO′中,∵∠BO′H=90°﹣∠HBO′=30°,

∴BH=BO′=,O′H=BH=,

∴OH=OB+BH=3+=,

∴O′点的坐标为(,);

(3)∵△ABO绕点B逆时针旋转120°,得△A′BO′,点P的对应点为P′,∴BP=BP′,

∴O′P+BP′=O′P+BP,

作B点关于x轴的对称点C,连结O′C交x轴于P点,如图②,

则O′P+BP=O′P+PC=O′C,此时O′P+BP的值最小,

∵点C与点B关于x轴对称,

∴C(0,﹣3),

设直线O′C的解析式为y=kx+b,

把O′(,),C(0,﹣3)代入得,解得,∴直线O′C的解析式为y=x﹣3,

当y=0时,x﹣3=0,解得x=,则P(,0),

∴OP=,

∴O′P′=OP=,

作P′D⊥O′H于D,

∵∠BO′A=∠BOA=90°,∠BO′H=30°,

∴∠DP′O′=30°,

∴O′D=O′P′=,P′D=O′D=,

∴DH=O′H﹣O′D=﹣=,

∴P′点的坐标为(,).

初三数学中考模拟试题(带答案)

2020年九年级中考模拟考试 数学试题 一.选择题(共12小题,满分36分,每小题3分) 1.下列说法正确的是() A.一个有理数的平方根有两个,它们互为相反数 B.负数没有立方根 C.无理数都是开不尽的方根数 D.无理数都是无限小数 2.下列调查中,适合采用全面调查(普查)方式的是() A.对长江水质情况的调查 B.对端午节期间市场上粽子质量情况的调查 C.对某班40名同学体重情况的调查 D.对某类烟花爆竹燃放安全情况的调查 3.下列图形中,既是轴对称图形又是中心对称图形的是() A.B.C.D. 4.一次函数y=(m﹣2)x+(m﹣1)的图象如图所示,则m的取值范围是() A.m<2B.1<m<2C.m<1D.m>2 5.将一条两边沿平行的纸带如图折叠,若∠1=62°,则∠2等于() A.62°B.56°C.45°D.30°

6.将一副三角板(∠A=30°)按如图所示方式摆放,使得AB∥EF,则∠1等于() A.75°B.90°C.105°D.115° 7.如图,在△ABC中,∠BAC=90°,AB=8cm,AC=6cm,动点P从点C出发沿CB方向以3cm/s 的速度向点B运动,同时动点Q从点B出发沿BA方向以2cm/s的速度向点A运动,将△APQ沿直线AB翻折得△AP′Q,若四边形APQP′为菱形,则运动时间为() A.1s B.s C.s D.s 8.若关于x的一元二次方程(x﹣2)(x﹣3)=m有实数根x1、x2,且x1≠x2,有下列结论: ①x1=2,x2=3;②m>﹣;③二次函数y=(x﹣x1)(x﹣x2)+m的图象与x轴交点的坐标 为(2,0)和(3,0). 其中,正确结论的个数是() A.0B.1C.2D.3 9.在一次训练中,甲、乙、丙三人各射击10次的成绩(单位:环)如图,在这三人中,此次射击成绩最稳定的是() A.甲B.乙C.丙D.无法判断

历年全国中考数学试题及答案

班级 姓名 学号 成绩 一、精心选一选 1.下列运算正确的是( ) A.()11a a --=-- B.( ) 2 3624a a -= C.()2 22a b a b -=- D.3 2 5 2a a a += 2.如图,由几个小正方体组成的立体图形的左视图是( ) 3.下列事件中确定事件是( ) A.掷一枚均匀的硬币,正面朝上 B.买一注福利彩票一定会中奖 C.把4个球放入三个抽屉中,其中一个抽屉中至少有2个球 D.掷一枚六个面分别标有1,2,3,4,5,6的均匀正方体骰子,骰子停止转动后奇数点朝上 4.如图,AB CD ∥,下列结论中正确的是( ) A.123180++=o ∠ ∠∠ B.123360++=o ∠ ∠∠ C.1322+=∠∠∠ D.132+=∠ ∠∠ 5.已知24221 x y k x y k +=??+=+?,且10x y -<-<,则k 的取值范围为( ) A.112 k -<<- B.102 k << C.01k << D. 1 12 k << 6.顺次连接矩形各边中点所得的四边形( ) A.是轴对称图形而不是中心对称图形 B.是中心对称图形而不是轴对称图形 C.既是轴对称图形又是中心对称图形 D.没有对称性 7.已知点()3A a -,,()1B b -,,()3C c ,都在反比例函数4 y x = 的图象上,则a ,b ,c 的大小关系为( ) A.a b c >> B.c b a >> C.b c a >> D.c a b >> 8.某款手机连续两次降价,售价由原来的1185元降到580元.设平均每次降价的百分率为x ,则下面列出的方程中正确的是( ) A.2 1185580x = B.()2 11851580x -= C.( )2 11851580x -= D.()2 58011185x += 9.如图,P 是Rt ABC △斜边AB 上任意一点(A ,B 两点除外),过P 点作一直线,使截得的三角形与Rt ABC △相似,这样的直线可以作( ) A.1条 B.2条 C.3条 D.4A. B. C. D. A B D C 3 2 1 第4题图 P 第9题图

2019年九年级数学中考模拟试卷(人教版含答案)

2B.x≥ 2 C.x≤ 2 D.x≠- 5B. 3 C. 4 D. 2019年初三中考水平测试数学模拟试题 说明:1.全卷共4页,考试用时100分钟,满分为120分. 2.答案必须写在答题卡各题目指定区域内相应位置上,不按以上要求作答的答案无效. 3.考试结束时,将答题卡上交,试卷自己妥善保管,以便老师讲评. 一、单项选择题(每小题3分) 1.–-3是() A.-3B.3C.1 3 D.- 1 3 2.下列运算正确的是() A.x·x2=x2 B.(xy)2=xy2 C.(x2)3=x6 D.x2+x2=x4 3.下列左图是由5个相同大小的正方体搭成的几何体,则它的俯视图是() 第3题图 A.B.C.D.4.在下列图形中,既是轴对称图形,又是中心对称图形的是() 5.若代数式2x-1有意义,则x的取值范围是() A.x≠1111 2A 6.在△Rt ABC中,∠C=90,AC=3,BC=4,则sin A的值为() A.4433C B 5 7..如图,△ABC内接于⊙O,AD是⊙O的直径,∠ABC=25°,则∠CAD的度数是() A.25°B.60°C.65°D.75°D O C ?3x+2>5 8.不等式组? ?5-2x≥1的解在数轴上表示为() B A 012 A.012 B. 01 C. 2012 D.

, 2 = . 17.计算: 12 + ? - π - 3.14)0 - tan 60? . 18.先化简 ( 1 ,然后从 2 ,1,-1 中选取一个你认为合适的数作为 x 的值代入求 9.为了参加市中学生篮球运动会,一支校篮球队准备购买 10 双运动鞋,各种尺码统计如下表: 尺码(厘米) 购买量(双) 25 1 25.5 2 26 3 26.5 2 27 2 则这 10 双运动鞋尺码的众数和中位数分别为( ) A.25.5 厘米,26 厘米 B.26 厘米,25.5 厘米 C.25.5 厘米,25.5 厘 米 D.26 厘米,26 厘米 10.如图, DE 与 △ A BC 的边 AB ,AC 分别相交于 D ,E 两点,且 A DE ∥ BC .若 A D :BD=3:1, DE=6,则 BC 等于( ). D E A. 8 B. 9 2 5 C. D. 2 3 B C 二、填空题(每小题 4 分,满分 20 分) 11.小明在“百度”搜索引擎中输入“钓鱼岛最新消息” 能搜索到与之相关的结果个数约为 5640000,这 个数用科学记数法表示为 . 12.已知反比例函数 y = m - 5 x 的图象在第二、四象限,则 m 取值范围是__________ 13.若方程 x 2 - 2 x - 1 = 0 的两个实数根为 x , x ,则 x 12 + x 1 2 2 14.小红要过生日了,为了筹备生日聚会,准备自己动手用纸板制作一个底面半径为 9cm ,母线长为 30cm 的圆锥形生日礼帽,则这个圆锥形礼帽的侧面积为________cm 2.(结果保留 π ) 15.如图,小聪用一块有一个锐角为 30? 的直角三角板测量树高,已知小聪和树都与地面垂直,且相距 3 3 米,小聪身高 AB 为 1.7 米,则这棵树的高度= 米 C 16.如果函数 f ( x ) = 1 x + 2 ,那么 f ( 5) = 三、解答题(共 3 个小题,每小题 5 分,满分 15 分) ? 1 ?-1 ( ? 3 ? A B D E 值. 1 x - ) ÷ x - 1 x + 1 2 x 2 - 2 ..

初中数学中考模拟试卷

初中数学中考模拟试卷 一、选择题(本题满分24分,共有8道小题,每小题3分) 1.(3分)﹣的相反数是() A.8 B.﹣8 C.D.﹣ 2.(3分)下列四个图形中,是轴对称图形,但不是中心对称图形的是() A.B.C.D. 3.(3分)小明家1至6月份的用水量统计如图所示,关于这组数据,下列说法中错误的() A.众数是6吨 B.平均数是5吨C.中位数是5吨D.方差是 4.(3分)计算6m6÷(﹣2m2)3的结果为() A.﹣m B.﹣1 C.D.﹣ 5.(3分)如图,若将△ABC绕点O逆时针旋转90°,则顶点B的对应点B 的坐 1 标为()

A.(﹣4,2)B.(﹣2,4)C.(4,﹣2)D.(2,﹣4) 6.(3分)如图,AB是⊙O的直径,点C,D,E在⊙O上,若∠AED=20°,则∠BCD的度数为() A.100°B.110°C.115°D.120° 7.(3分)如图,?ABCD的对角线AC与BD相交于点O,AE⊥BC,垂足为E,AB=,AC=2,BD=4,则AE的长为() A. B.C.D. 8.(3分)一次函数y=kx+b(k≠0)的图象经过A(﹣1,﹣4),B(2,2)两点,P为反比例函数y=图象上一动点,O为坐标原点,过点P作y轴的垂线,垂足为C,则△PCO的面积为() A.2 B.4 C.8 D.不确定 二、填空题(本题满分18分,共有6道小题,每小题3分) 9.(3分)近年来,国家重视精准扶贫,收效显著,据统计约65000000人脱贫,

65000000用科学记数法可表示为. 10.(3分)计算:(+)×= . 11.(3分)若抛物线y=x2﹣6x+m与x轴没有交点,则m的取值范围是.12.(3分)如图,直线AB,CD分别与⊙O相切于B,D两点,且AB⊥CD,垂足为P,连接BD,若BD=4,则阴影部分的面积为. 13.(3分)如图,在四边形ABCD中,∠ABC=∠ADC=90°,E为对角线AC的中点,连接BE,ED,BD.若∠BAD=58°,则∠EBD的度数为度. 14.(3分)已知某几何体的三视图如图所示,其中俯视图为正六边形,则该几何体的表面积为. 三、作图题(本题满分4分) 15.(4分)已知:四边形ABCD. 求作:点P,使∠PCB=∠B,且点P到边AD和CD的距离相等.

2020年中考数学试题含答案 (69)

2020学年中考数学试卷 一、选择题:本大题共12小题,每小题3分,满分36分,在每小题所给出的四个选项中,只有一项是符合题目要求的 1.(3分)|﹣5|的相反数是() A.﹣5 B.5 C.D.﹣ 2.(3分)在下列图案中,既是轴对称又是中心对称图形的是() A.B.C.D. 3.(3分)下列各式中,运算正确的是() A.(a3)2=a5B.(a﹣b)2=a2﹣b2 C.a6÷a2=a4D.a2+a2=2a4 4.(3分)若式子有意义,则实数m的取值范围是() A.m>﹣2 B.m>﹣2且m≠1 C.m≥﹣2 D.m≥﹣2且m≠1 5.(3分)某校为了解学生的课外阅读情况,随机抽取了一个班级的学生,对他们一周的读书时间进行了统计,统计数据如下表所示: 则该班学生一周读书时间的中位数和众数分别是() A.9,8 B.9,9 C.9.5,9 D.9.5,8 6.(3分)如图,将一副直角三角板按图中所示位置摆放,保持两条斜边互相平行,则∠1=() A.30°B.25°C.20°D.15° 7.(3分)计算:()﹣1+tan30°?sin60°=()

A.﹣ B.2 C.D. 8.(3分)如图,在四边形ABCD中,对角线AC,BD相交于点O,AO=CO,BO=DO.添加下列条件,不能判定四边形ABCD是菱形的是() A.AB=AD B.AC=BD C.AC⊥BD D.∠ABO=∠CBO 9.(3分)已知反比例函数y=﹣,下列结论:①图象必经过(﹣2,4);②图象在二,四象限内;③y随x的增大而增大;④当x>﹣1时,则y>8.其中错误的结论有()个 A.3 B.2 C.1 D.0 10.(3分)如图,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O 在格点上,则∠BED的正切值等于() A.B.C.2 D. 11.(3分)已知二次函数y=ax2+bx+c(a≠0)图象如图所示,下列结论: ①abc<0;②2a﹣b<0;③b2>(a+c)2;④点(﹣3,y1),(1,y2)都在抛物线上,则有y1>y2. 其中正确的结论有() A.4个 B.3个 C.2个 D.1个

2018初中数学中考模拟试卷

. . 绝密★启用前 2018年04月21日lht112的初中数学组卷 试卷副标题 考试范围:xxx ;考试时间:100分钟;命题人:xxx 注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上 第Ⅰ卷(选择题) 请点击修改第I 卷的文字说明 一.选择题(共6小题) 1.如图.将矩形ABCD 绕点A 旋转至矩形AEFG 的位置.此时点D 恰好与AF 的中点重合.AE 交CD 于点H.若BC=.则HC 的长为( ) A . 4 B . C . D .6 2.在△ABC 中.∠BAC=90°.AB=2AC.点A (2.0)、B (0.4).点C 在第一象限内.双曲线y=(x >0)经过点C .将△ABC 沿y 轴向上平移m 个单位长度.使点A 恰好落在双曲线上.则m 的值为( )

A.2 B .C.3 D . 3.如图.四边形ABCD中.AB=4.BC=6.AB⊥BC.BC⊥CD.E为AD的中点.F为线段BE上的点.且FE=BE.则点F到边CD的距离是() A.3 B .C.4 D . 4.如图.正方形ABCD中.点E.F分别在BC.CD上.△AEF是等边三角形.连 接AC交EF于点G.过点G作GH⊥CE于点H.若S △EGH =3.则S △ADF =() A.6 B.4 C.3 D.2 5.如图.若抛物线y=﹣x2+3与x轴围成封闭区域(边界除外)内整点(点的横、纵坐标都是整数)的个数为k.则反比例函数y=(x>0)的图象是() A . B . C . . .

D . 6.已知正方形MNOK和正六边形ABCDEF边长均为1.把正方形放在正六边形中.使OK边与AB边重合.如图所示.按下列步骤操作: 将正方形在正六边形中绕点B顺时针旋转.使KM边与BC边重合.完成第一次旋转;再绕点C顺时针旋转.使MN边与CD边重合.完成第二次旋转;…在这样连续6次旋转的过程中.点B.M间的距离可能是() A.1.4 B.1.1 C.0.8 D.0.5 . .

中考数学试卷含答案

扬州市初中毕业、升学统一考试数学试题 第Ⅰ卷(共24分) 一、 选择题:(本大题共8个小题,每小题3分,共24分.) 二、 1.若数轴上表示1-和3的两点分别是点A 和点B ,则点A 和点B 之间的距离是( ) A .4- B .2- C .2 D .4 2.下列算式的运算结果为4a 的是( ) A .4a a ? B .()22a C .33a a + D .4a a ÷ 3.一元二次方程2720x x --=的实数根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .没有实数根 D .不能确定 4.下列统计量中,反映一组数据波动情况的是( ) A .平均数 B .众数 C.频率 D .方差 5.经过圆锥顶点的截面的形状可能是( ) A . B . C. D . 6.若一个三角形的两边长分别为2和4,则该三角形的周长可能是( ) A .6 B .7 C. 11 D .12 7.在一列数:1a ,2a ,3a ,???,n a 中,13a =,27a =,从第三个数开始,每一个数都等于它前两个数之积的个位数字,则这一列数中的第2017个数是( ) A .1 B .3 C.7 D .9 8.如图,已知C ?AB 的顶点坐标分别为()0,2A 、()1,0B 、()C 2,1,若二次函数21y x bx =++的图象与 阴影部分(含边界)一定有公共点,则实数b 的取值范围是( ) A .2b ≤- B .2b <- C. 2b ≥- D .2b >- 第Ⅱ卷(共126分) 二、填空题(每题3分,满分30分,将答案填在答题纸上) 9.2017年5月18日,我国在南海北部神弧海域进行的可燃冰试开采成功,标志着 我国成为全球第一个在海域可燃冰开采中获得连续稳定的国家.目前每日的天然气 试开采量约为16000立方米,把16000立方米用科学记数法表示为 立方米. 10.若2a b =,6b c =,则a c = .11.因式分解:2327x -= .

九年级数学中考模拟试题(含答案)

九年级数学中才模拟试题2018.05 一、选择题(每小题3分,共24分,下列四个选项中,只有一项是符合题目要求的.) 1、16的算术平方根是( ) A 、-2 B 、2 C 、- 21 D 、2 1 2、下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为中心对称图形的是( ) 3、如表是某校合唱团成员的年龄分布 年龄/岁 13 14 15 16 频数 5 15 x x -10 对于不同的x ,下列关于年龄的统计量不会发生改变的是( ) A 、平均数、中位数 B 、 众数、中位数 C 、平均数、方差 D 、中位数、方差 4、 ABC Rt ?中,9=AB ,6=BC ,?=∠90B ,将ABC ?折叠,使A 点与BC 的中点D 重合,折痕为MN ,则线段BN 的长为 ( ) A 、 B 、 C 、 4 D 、5 5、某电子元件厂准备生产4600个电子元件,甲车间独立生产一半后,由于要尽快投入市场,乙车间也加入了该电子元件的生产,若乙车间每天生产的电子元件个数是甲车间的1.3倍,结果用33天完成任务,问甲车间每天生产电子元件多少个?在这个问题中设甲车间每天生产电子元件x 个,根据题意可得方程为( ) A 、 333.123002300=+x x B 、333.12300 2300=++x x x C 、333.146002300=++x x x D 、333.123004600=++x x x 6.如图,在等边三角形ABC 中,D 为AC 的中点,3 1 =EB AE ,则和AED ? (不包含AED ?)相似的三角形有( ) A .1个 B .2个 C .3个 D .4个

九年级数学教学计划(冀教版)

九年级数学教学计划 一、指导思想 通过数学课的教学,使学生切实学好从事现代化建设和进一步学习现代化科学技术所必需的数学基本知识和基本技能;努力培养学生的运算能力、逻辑思维能力,以及分析问题和解决问题的能力。 二、学情分析 九年级是初中学习过程中最关键时期,马上就要面临中考,学生的学习任务比较重。如果学生在九年级第一学期抓得比较紧,那么系统复习时才能稳扎稳打,稳步提升成绩。否则,新知识没学会老知识也记不住,成绩自然高不了。我所任教的两个班是112,113.其中112班两级分化较严重,中间势力较差,有待于加强。113班没有学的特别好的,学生程度普遍较差。平均成绩112班较强于113班。整体上,学生单纯,有少数同学基础特差,问题较严重。要在本学期获得理想成绩,老师和学生都要付出努力,查漏补缺,充分发挥学生是学习的主体,教师是教的主体作用,注重方法,培养能力。 三、教学目标 1、知识与技能目标 学会如何对数据进行分析,掌握一元二次方程和反比例函数的解法。了解图形相似和圆的有关概念和应用,并能进行有关运算。 2、过程与方法目标 掌握提取实际问题中的数学信息的能力,并学会对数据的收集和整理。初步建立数形结合的思维模式,学会观察、分析、归纳、总结几何图形的内在特点,学会使用数学语音表示数学关系。 3、情感与态度目标 通过对数学知识的探究,进一步认识数学与生活的密切联系,明确学习数学的意义,并用数学知识去解决实际问题,获得成功的体验,树立学好数学的信心。体会到数学是解决实际问题的重要工具,了解数学对促进社会进步和发

展的重要作用。认识数学学习是一个充满观察、实践、探究、归纳、类比、推理和创造性的过程。养成独立思考和合作交流相结合的良好思维品质。了解我国数学家的杰出贡献,增强民族的自豪感,增强爱国主义。 四、教材分析 冀教版九年级上册数学共六章,其中,第二十三章是数据分析,主要学习平均数、中位数和众数的意义和作用,方差即如果估计总体方差。第二十四章是一元二次方程,主要是学习它的定义、解法及应用。第二十五章是图形的相似,主要是探究相似三角形的判定、性质和应用。第二十六章为解直角三角形,主要是学会解直角三角形及其应用。第二十七章是反比例函数,主要是学习反比例函数的图像和性质及其应用。第二十八章是圆,深入的认识圆的概念及有关性质与计算。 五、方法措施 1、作好课前准备。认真钻研教材教法,仔细揣摩教学内容与新课程教学目标,充分考虑教材内容与学生的实际情况,精心设计探究示例,为不同层次的学生设计练习和作业,作好教具准备工作,写好教案。 2、营造课堂气氛。利用现代化教学设施和准备好教具,创设良好的教学情境,营造温馨、和谐的课堂教学气氛,调动学生学习的积极性和求知欲望,为学生掌握课堂知识打下坚实的基础。 3、搞好阅卷分析。在条件许可的情况下,尽可能采用当面批改的方式对学生作业进行批阅,指出学生作业中存在的问题,并进行分析、讲解,帮助学生解决存在的知识性错误。 4、完成好课后练习。课后及时做好作业、练习,对学生听课情况进行小结,总结成功的经验,找出失败的原因,并作出分析和改进措施,对于严重的问题重新进行定位,制定并实施补救方案。 5、加强课后辅导。优等生要扩展其知识面,提高训练的难度;中等生要夯实基础,发展思维,提高分析问题和解决问题的能力,后进生要激发其学习

初中数学中考模拟试卷

中考数学模拟试题 一、选择题(本题满分24分,共有8道小题,每小题3分) 1.(3分)﹣的相反数是() A.8 B.﹣8 C.D.﹣ 2.(3分)下列四个图形中,是轴对称图形,但不是中心对称图形的是() A.B.C.D. 3.(3分)小明家1至6月份的用水量统计如图所示,关于这组数据,下列说法中错误的() A.众数是6吨 B.平均数是5吨C.中位数是5吨D.方差是 4.(3分)计算6m6÷(﹣2m2)3的结果为() A.﹣m B.﹣1 C.D.﹣ 的坐标为()5.(3分)如图,若将△ABC绕点O逆时针旋转90°,则顶点B的对应点B 1 A.(﹣4,2)B.(﹣2,4)C.(4,﹣2)D.(2,﹣4)

6.(3分)如图,AB是⊙O的直径,点C,D,E在⊙O上,若∠AED=20°,则∠BCD的度数为() A.100°B.110°C.115°D.120° 7.(3分)如图,?ABCD的对角线AC与BD相交于点O,AE⊥BC,垂足为E,AB=,AC=2,BD=4,则AE的长为() A. B.C.D. 8.(3分)一次函数y=kx+b(k≠0)的图象经过A(﹣1,﹣4),B(2,2)两点,P为反比例函数y=图象上一动点,O为坐标原点,过点P作y轴的垂线,垂足为C,则△PCO的面积为() A.2 B.4 C.8 D.不确定 二、填空题(本题满分18分,共有6道小题,每小题3分) 9.(3分)近年来,国家重视精准扶贫,收效显著,据统计约65000000人脱贫,65000000用科学记数法可表示为. 10.(3分)计算:(+)×= . 11.(3分)若抛物线y=x2﹣6x+m与x轴没有交点,则m的取值范围是. 12.(3分)如图,直线AB,CD分别与⊙O相切于B,D两点,且AB⊥CD,垂足为P,连接BD,若BD=4,则阴影部分的面积为.

中考数学试题(及答案)

中考数学试题(及答案) 一、选择题 1.华为Mate20手机搭载了全球首款7纳米制程芯片,7纳米就是0.000000007米.数据 0.000000007用科学记数法表示为( ). A .7710?﹣ B .8 0.710?﹣ C .8710?﹣ D .9710?﹣ 2.下列四个实数中,比1-小的数是( ) A .2- B .0 C .1 D .2 3.在数轴上,与表示6的点距离最近的整数点所表示的数是( ) A .1 B .2 C .3 D .4 4.若一元二次方程x 2﹣2kx +k 2=0的一根为x =﹣1,则k 的值为( ) A .﹣1 B .0 C .1或﹣1 D .2或0 5.下列图形是轴对称图形的有( ) A .2个 B .3个 C .4个 D .5个 6.将两个大小完全相同的杯子(如图甲)叠放在一起(如图乙),则图乙中实物的俯视图 是( ). A . B . C . D . 7.分式方程 ()()31112x x x x -=--+的解为( ) A .1x = B .2x = C .1x =- D .无解 8.将一个矩形纸片按如图所示折叠,若∠1=40°,则∠2的度数是( ) A .40° B .50° C .60° D .70° 9.甲、乙、丙三家超市为了促销一种定价相同的商品,甲超市先降价20%,后又降价10%;乙超市连续两次降价15%;丙超市一次性降价30%.则顾客到哪家超市购买这种商品更合算( )

A .甲 B .乙 C .丙 D .一样 10.已知直线//m n ,将一块含30°角的直角三角板ABC 按如图方式放置 (30ABC ∠=?),其中A ,B 两点分别落在直线m ,n 上,若140∠=?,则2∠的度数为( ) A .10? B .20? C .30° D .40? 11.如图,在平行四边形ABCD 中,M 、N 是BD 上两点,BM DN =,连接AM 、 MC 、CN 、NA ,添加一个条件,使四边形AMCN 是矩形,这个条件是( ) A .12 OM AC = B .MB MO = C .B D AC ⊥ D .AMB CND ∠=∠ 12.cos45°的值等于( ) A .2 B .1 C . 3 D . 22 二、填空题 13.在学习解直角三角形以后,某兴趣小组测量了旗杆的高度.如图,某一时刻,旗杆AB 的影子一部分落在水平地面L 的影长BC 为5米,落在斜坡上的部分影长CD 为4米.测得斜CD 的坡度i =1: .太阳光线与斜坡的夹角∠ADC =80°,则旗杆AB 的高度 _____.(精确到0.1米)(参考数据:sin50°=0.8,tan50°=1.2, =1.732) 14.若a ,b 互为相反数,则22a b ab +=________. 15.若关于x 的一元二次方程kx 2+2(k+1)x+k -1=0有两个实数根,则k 的取值范围是 16.在Rt△ABC 中,∠C=90°,AC=6,BC=8,点E 是BC 边上的动点,连接AE ,过点E 作AE 的垂线交AB 边于点F ,则AF 的最小值为_______ 17.我国倡导的“一带一路”建设将促进我国与世界各国的互利合作,“一带一路”地区覆盖总人口约为4400000000人,将数据4400000000用科学记数法表示为______.

2019届人教版九年级数学中考模拟试卷含答案

浙教版2018-2019学年度九年级中考数学模拟试卷含解析答案 题号一二三总分 得分 注意事项: 1.答题前填写好自己的、班级、考号等信息2.请将答案正确填写在答题卡上 第Ⅰ卷(选择题) 请点击修改第I卷的文字说明 评卷人得分 一.选择题(共12小题,12*3=36) 1.的值是() A.1B.﹣1C.3D.﹣3 2.已知x2﹣3x+1=0,则的值是() A.B.2C.D.3 3.如图,在数轴上表示实数的可能是() A.点P B.点Q C.点M D.点N 4.从甲、乙、丙、丁四人中选一人参加诗词大会比赛,经过三轮初赛,他们的平均成绩 都是86.5分,方差分别是S 甲2=1.5,S 乙 2=2.6,S 丙 2=3.5,S 丁 2=3.68,你认为派谁去 参赛更合适() A.甲B.乙C.丙D.丁 5.一个几何体由大小相同的小正方体搭成,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在这个位置小正方体的个数.从左面看到的这个几何体的形状图的是()

A.B.C.D. 6.计算﹣?的结果是() A.B.C.D. 7.某种长途的收费方式如下:接通的第一分钟收费a元,之后的每分钟收费b元,如果某人打一次该长途被收费m元,则这次长途的时间是() A.分钟B.分钟C.分钟D.分钟 8.如图所示,两个含有30°角的完全相同的三角板ABC和DEF沿直线l滑动,下列说法错误的是() A.四边形ACDF是平行四边形 B.当点E为BC中点时,四边形ACDF是矩形 C.当点B与点E重合时,四边形ACDF是菱形 D.四边形ACDF不可能是正方形 9.若不等式组的解集为x>3,则a的取值是() A.a≤6B.a≥6C.a<6D.a≤0 10.如图,点A、B的坐标分别为(0,2)、(2,0),⊙C的圆心坐标为(﹣1,0),半径为1,若点D为⊙O上的一个动点,线段DB与y轴交于点E,则△ABE面积的最小值为() A.1B.2C.2﹣D.4﹣

2020年山东省初中数学中考模拟试题含答案

2020最新山东省初中数学中考模拟试题 注意事项: 1.答卷前,考生务必在答题卡的规定位置将自己的学校、班级、姓名、座位号、准考证号填写准确。 2.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共120分,考试时间120分钟。 3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题用0.5mm 黑色签字笔直接答在答题卡相应区域,不能答在试卷上;解答题作图需用黑色签字笔,不能用铅笔。 4.考试结束后,试卷不交,请妥善保存,只交答题卡。 第Ⅰ卷(选择题 共36分) 一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确选项的代码涂写在答题卡上,每小题选对得3分,选错、不选或选出的答案超过一个均记零分,共36分) 1.下列运算中,正确的是 A .34=-m m B .()m n m n --=+ C . 23 6m m =() D .m m m =÷22 2.下列事件中,必然事件是 A .a 是实数,0≥a . B .掷一枚硬币,正面朝上. C .某运动员跳高的最好成绩是20 .1米. D .从车间刚生产的产品中任意抽取一个,是次品. 3.已知反比例函数x y 2 -=,下列结论不正确...的是 A .图象必经过点(-1,2) B .y 随x 的增大而增大 C .图象在第二、四象限内 D .若x >1,则y >-2 4.下列图形中,是中心对称图形的是 A B C D

5.如图,是由几个小立方块所搭几何体的俯视图,小正方形中的数字表示在该位置的小立方块的个数,这个几何体的主视图是 A B C D 6.在显微镜下,人体内一种细胞的形状可以近似地看成圆,它的半径约为0.00000078m ,这个 数据用科学记数法表示为 A .0.78×10-4 m B .7.8×10-7 m C .7.8×10-8m D .78×10-8 m 7.“只要人人都献出一点爱,世界将变成美好的人间”.在今年的慈善一日捐活动中,某中学九年级三班50名学生自发组织献爱心捐款活动.班长将捐款情况进行了统计,并绘制成了统计图.根据右图提供的信息,捐款金额.. 的众数和中位数分别是 A .20、20 B .30、20 C .30、30 D .20、30 8.二次函数c bx ax y ++=2的图象如图所示,则一次函数 ac b bx y 42-+=与反比例函数x c b a y ++=在同一坐标系内的图象大致为 9.在△ABC 中,∠BAC =90°,AB =AC =2cm ,以AB 为直径的圆交BC 于D , 则图中阴影部分的 面积为 A .0.5cm 2 B .1 cm 2 C .2 cm 2 D .4 cm 2 1 2 1 1 y x O y x O y x O y x O 1- 1 O x y B C D (第9题图) (第7题图) 10 捐款人数 5 10 15 20 613 20 8 3 20 30 50 100

【典型题】中考数学试题含答案

【典型题】中考数学试题含答案 一、选择题 1.在庆祝新中国成立70周年的校园歌唱比赛中,11名参赛同学的成绩各不相同,按照成绩取前5名进入决赛.如果小明知道了自己的比赛成绩,要判断能否进入决赛,小明需要知道这11名同学成绩的( ) A .平均数 B .中位数 C .众数 D .方差 2.已知林茂的家、体育场、文具店在同一直线上,图中的信息反映的过程是:林茂从家跑步去体育场,在体育场锻炼了一阵后又走到文具店买笔,然后再走回家.图中x 表示时间,y 表示林茂离家的距离.依据图中的信息,下列说法错误的是( ) A .体育场离林茂家2.5km B .体育场离文具店1km C .林茂从体育场出发到文具店的平均速度是50min m D .林茂从文具店回家的平均速度是60min m 3.如图,在矩形ABCD 中,AD=2AB ,∠BAD 的平分线交BC 于点E ,DH ⊥AE 于点H ,连接BH 并延长交CD 于点F ,连接DE 交BF 于点O ,下列结论:①∠AED=∠CED ;②OE=OD ;③BH=HF ;④BC ﹣CF=2HE ;⑤AB=HF ,其中正确的有( ) A .2个 B .3个 C .4个 D .5个 4.如图,在ABC V 中,90ACB ∠=?,分别以点A 和点C 为圆心,以大于 1 2 AC 的长为半径作弧,两弧相交于点M 和点N ,作直线MN 交AB 于点D ,交AC 于点E ,连接 CD .若34B ∠=?,则BDC ∠的度数是( )

A.68?B.112?C.124?D.146? 5.如图,若锐角△ABC内接于⊙O,点D在⊙O外(与点C在AB同侧),则下列三个结论:①sin∠C>sin∠D;②cos∠C>cos∠D;③tan∠C>tan∠D中,正确的结论为() A.①②B.②③C.①②③D.①③ 6.菱形不具备的性质是() A.四条边都相等 B.对角线一定相等 C.是轴对称图形 D.是中心对称图形 7.点 P(m + 3,m + 1)在x轴上,则P点坐标为() A.(0,﹣2)B.(0,﹣4)C.(4,0)D.(2,0) 8.不等式x+1≥2的解集在数轴上表示正确的是() A.B. C. D. 9.如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,边OA在x轴上, OC在y轴上,如果矩形OA′B′C′与矩形OABC关于点O位似,且矩形OA′B′C′的面积等于矩 形OABC面积的1 4 ,那么点B′的坐标是() A.(-2,3)B.(2,-3)C.(3,-2)或(-2,3)D.(-2,3)或(2,-3) 10.如图,在⊙O中,AE是直径,半径OC垂直于弦AB于D,连接BE,若7,

人教版九年级2018年数学中考模拟考试试题

绝密☆启用并使用完毕前 试卷类型A 2018年高中阶段学校模拟考试 数学试题 注意事项: 1.本试卷分为第Ⅰ卷和第Ⅱ卷两部分,共6页.第Ⅰ卷为选择题,30分;第Ⅱ卷为非选择题,70分;共100分.考试时间为120分钟. 2.答题前,考生务必先核对条形码上的、号和座号,然后用0.5毫米黑色签字笔将本人的、号和座号填写在答题卡相应位置. 3.答第Ⅰ卷时,必须使用2B 铅笔把答题卡上相应题目的答案标号(ABCD)涂黑,如需改动,必须先用橡皮擦干净,再改涂其它答案. 4.答第Ⅱ卷时,必须使用0.5毫米黑色签字笔在答题卡上书写.务必在题号所指示的答题区域作答.答作图题时,要先用2B 铅笔试画,无误后用黑色签字笔描黑. 5.填空题请直接将答案填写在答题卡上,解答题应写出文字说明、证明过程或演算步骤. 6.考试结束后,将本试卷和答题卡一并交回. 第Ⅰ卷(选择题 共30分) 一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求. 1 . -2017的相反数是 A .2017 B-2017 C. 2017 1 D.2017 1 - 2. 下列各式中,运算正确的是 A. 235 325a a a += B.2 2 (2)4a a -=- C.22(3)9a a = D.33 a a a ÷= 3“厉行勤俭节约,反对铺浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是210000000人一年的口粮.将210000000用科学记数法表示为( ) A . 2.1×109 B . 0.21×109 C . 2.1×108 D . 21×107 4.下图是由6个相同的小立方块搭成的几何体,那么这个几何体的俯视图是 ( ) 5.世博会的某纪念品原价168元,连续两次降价a %后售价为128元. 下列所列方程中正确的是( ) A .2 168(1%)128a += B .168(12%)128a -= C .2 168(1%)128a -= D .2 168(1%)128a -= 6.小刚用一半径为24cm 的扇形纸板做一个如下图所示的圆锥形小丑帽子侧面(接缝处忽略不计),如果做成的圆锥形小丑帽子的底面半径为10cm ,那么这扇形纸板的面积是 班 级

九年级下数学教学计划(冀教版)

2015—2016学年第二学期九年级数学教学计划 永年第十三中学李美茹 一、指导思想 在深入推进和贯彻学校“新课改”的精神的前提下,以新的教育思想和课程理念实施教学,以学生发展为本,以培养学生创新精神和实践能力为重点,探索有效教学的新模式。针对近年来中考命题的变化和趋势进行研究,继续发挥数学组优良传统,加大教学研究力度,加强团队合作。努力把握中考方向,积极探索高效课堂,力求达到减负增效,做到“高效低耗”,通过数学课的教学,使学生切实学好从事现代化建设和进一步学习现代化科学技术所必需的数学基本知识和基本技能;努力培养学生的运算能力、逻辑思维能力,以及分析问题和解决问题的能力。 二、学情分析 九年级是初中学习过程中的关键时期,学生基础的好坏,直接影响到将来是否能升学。2班学生两级分化较严重,中间势力较差,有待于加强,学的好的还特不错;3班没有学的特别好的,但中间势力较大;平均成绩3班较强于2班。整体上,学生单纯,有少数同学基础特差,问题较严重。要中考获得理想成绩,老师和学生都要付出努力,查漏补缺,充分发挥学生是学习的主体,教师是教的主体作用,注重方法,培养能力。 三、教学目标 (一)第一阶段全面复习基础知识,加强基本技能训练让学生全面掌握初中数学基础知识,提高基本技能,做到全面、扎实、系统,形成知识网络。这个阶段的复习目的是让学生全面掌握初中数学基础知识,提高基本技能,做到全面、

扎实、系统,形成知识网络。 1、重视课本,系统复习。现在中考命题仍然以基础题为主,有些基础题是课本上的原题或改造,后面的大题虽是“高于教材”,但原型一般还是教材中的例题或习题,是教材中题目的引伸、变形或组合,所以第一阶段复习应以课本为主。 2、按知识板块组织复习。把知识进行归类,将全初中数学知识分为十一讲:第一讲数与式;第二讲方程与不等式;第三讲函数;第四讲统计与概率;第五讲基本图形;第六讲图形与变换;第七讲角、相交线和平行线;第八讲三角形;第九讲四边形;第十讲三角函数学;第十一讲圆 . 复习中由教师提出每个讲节的复习提要,指导学生按“提要”复习,同时要注意引导学生根据个人具体情况把遗忘了知识重温一遍,边复习边作知识归类,加深记忆,注意引导学生弄清概念的内涵和外延,掌握法则、公式、定理的推导或证明,例题的选择要有针对性、典型性、层次性,并注意分析例题解答的思路和方法。 3、重视对基础知识的理解和基本方法的指导。基础知识即初中数学课程中所涉及的概念、公式、公理、定理等。要求学生掌握各知识点之间的内在联系,理清知识结构,形成整体的认识,并能综合运用。例如一元二次方程的根与二次函数图形与x轴交点之间的关系,是中考常常涉及的内容,在复习时,应从整体上理解这部分内容,从结构上把握教材,达到熟练地将这两部分知识相互转化。又如一元二次方程与几何知识的联系的题目有非常明显的特点,应掌握其基本解法。中考数学命题除了着重考查基础知识外,还十分重视对数学方法的考查,如配方法,换元法,判别式法等操作性较强的数学方法。在复习时应对每一种方法的内涵,它所适应的题型,包括解题步骤都应熟练掌握。

初中数学中考模拟题测试卷及答案

数是( ) 6.下列函数中,自变量 x 的取值范围是x 2的函数是( 2010年中考数学模拟题 ※考试时间120分钟 试卷满分150分 编辑:陈志刚 铁岭市加速度辅导学校 电话: 一、选择题(下列各题的备选答案中,只有一个是正确的,请将正确答案的选项填在下表中 相应题号下的空格内?每小题 3分,共24分) 、选择题(本大题有 7题,每小题3分,共21分?每小题有四个选 项,其中有且只有 一个选项正确) 1 ?下面几个数中,属于正数的是( ) A. 3 1 B . C. . 2 D. 0 2 2.由四个相同的小正方体堆成的物体如图所示,它的俯视图是( A. C. D. (第 2 题) 型号 22 23 24 25 数量(双) 3 5 10 15 8 3 2 3.某鞋店试销一种新款女鞋,销售情况如下表所示: 鞋店经理最关心的是, 哪种型号的鞋销量最大. 对他来说,下列统计量中最重要的是 ( ) A.平均数 B.众数 C.中位数 D.方差 4.已知方程|x| 2,那么方程的解是( ) A. x 2 B. x 2 C. x-i 2, x 2 2 D. x 4 5、如图(3),已知 AB 是半圆O 的直径,/ BAC=32), D 是弧AC 的中点,那么/ DACf 的 度 A 25o B 、29o C 、30o D 、32 O

A.y 、、x 2 B. y1 2 7. 在平行四边形ABCD 中,B60°, A. D 60° B. A 120° C. C. y 2x 1 D. y1 ..2x 1那么下列各式中,不能成立的是()C D 180°D. C A180° &在四川抗震救灾中,某抢险地段需实行爆破?操作人员点燃导火线后,要在炸药爆炸前 跑到400米以外的安全区域?已知导火线的燃烧速度是厘米/秒,操作人员跑步的速度是5米/秒?为了保证操作人员的安全,导火线的长度要超过() A. 66厘米 B. 76厘米 C. 86厘米 D. 96厘米 二、填空题(每小题3分,共24分) 9. 2008年北京奥运圣火在厦门的传递路线长是 17400米,用科学记数法表示为 _________ 米. 10. __________________________________________ 一组数据:3, 5, 9, 12, 6的极差是. 11. 计算:.,3 .2 ________ . 2x 4 12. 不等式组的解集是 x 3 0 13. 如图,在矩形空地上铺4块扇形草地.若扇形的半径均为 圆心角均为90°,则铺上的草地共有 ___________ 平方米. (第14 题) 14.若e O的半径为5厘米,圆心O到弦AB的距离为3厘米,则 弦长AB为__________ 厘米. 15.如图,在四边形ABCD中, AD BC, PEF 18°,贝V P是对角线BD的中点, PFE的度数是 E, F分别是AB, CD的中点, (第16 题)

相关主题
相关文档 最新文档