直线和圆有两个公共点,这时我们就说这条直线和圆相交,这条直
线叫做圆的割线.直线和圆只有一个公共点,这时我们就说这条直
线和圆相切,这条直线叫做圆的切线.直线和圆没有公共点,这时我
们说这条直线和圆相离.
设☉O的半径为r,点O到直线l的距离为d,则直线l和☉O相交
⇔d<r;直线l和☉O相切⇔d=r;直线l和☉O相离⇔d>r.
拓展点二
综合知识拓展
拓展点三
拓展点一圆的存在性与点和圆的位置关系
例1 A,B,C是平面内的三点,AB=3,BC=3,AC=6,下列说法正确的是
(
)
A.可以画一个圆,使A,B,C都在圆上
B.可以画一个圆,使A,B在圆上,C在圆外
C.可以画一个圆,使A,C在圆上,B在圆外
D.可以画一个圆,使B,C在圆上,A在圆内
定理是由“垂直得切线”;而性质定理是由“切线得垂直”.
当已知条件中有切线,而图形中没有经过切点的半径(或直径)时,
通常作出经过切点的半径,这是解答这类问题的常规辅助线.
31
教材新知精讲
知识点一
知识点二
知识点三
知识点四
综合知识拓展
知识点五
例3 如图,P是☉O外一点,PA是☉O的切线,A为切点,PO与☉O相
又∵∠P=28°,∴∠O=180°-90°-28°=62°.
∵∠O 和∠C 对的是同一条弧,
1
1
∴∠C=2∠O=2×62°=31°.
答案:C
33
教材新知精讲
知识点一
知识点二
知识点三
知识点四
综合知识拓展
知识点五
当题目中有圆的切点,而过切点的半径又没有时,一般
作出这条半径,再利用切线的性质定理结合圆周角等其