高考数学解题的几个原则
- 格式:doc
- 大小:15.00 KB
- 文档页数:4
2019高考数学解题技巧与规范答题为了使同学们更好的复习数学,小编整理了2019高考数学解题技巧与规范答题,供同学们参考。
一、调整好状态,控制好自我。
(1)保持清醒。
数学的考试时间在下午,建议同学们中午最好休息半个小时或一个小时,其间尽量放松自己,从心理上暗示自己:只有静心休息才能确保考试时清醒。
(2)提前进入角色,考前做好准备.按清单带齐一切用具,提前半小时到达考区,一方面可以消除紧张、稳定情绪、从容进场,另一方面也留有时间提前进入角色让大脑开始简单的数学活动,进入单一的数学情境。
如:1.清点一下用具是否带齐(笔、橡皮、作图工具、身份证、准考证等)。
2.把一些基本数据、常用公式、重要定理在脑子里过过电影。
3.最后看一眼难记易忘的知识点。
4.互问互答一些不太复杂的问题。
5.注意上厕所。
(3)按时到位。
今年的答题卡不再单独发放,要求答在答题卷上,但发卷时间应在开考前5分钟内。
建议同学们提前15~20分钟到达考场。
二、浏览试卷,确定考试策略一般提前5分钟发卷,涂卡、填密封线内部分和座号后浏览试卷:试卷发下后,先利用23分钟时间迅速把试卷浏览一遍,检查试卷有无遗漏或差错,了解考题的难易程度、分值等概况以及试题的数目、类型、结构、占分比例、哪些是难题,同时根据考试时间分配做题时间,做到心中有数,把握全局,做题时心绪平定,得心应手。
三、巧妙制定答题顺序在浏览完试卷后,对答题顺序基本上做到心中有数,然后尽快做出答题顺序,排序要注意以下几点:1.根据自己对考试内容所掌握的程度和试题分值来确定答题顺序。
2.根据自己认为的难易程度,按先易后难先小后大先熟后生的原则排序。
四、提高解选择题的速度、填空题的准确度。
数学选择题是知识灵活运用,解题要求是只要结果、不要过程。
因此,逆代法、估算法、特例法、排除法、数形结合法尽显威力。
12个选择题,若能把握得好,容易的一分钟一题,难题也不超过五分钟。
由于选择题的特殊性,由此提出解选择题要求快、准、巧,忌讳小题大做。
高考数学答题原那么小题讲究“巧”相比拟而言,选择题和填空题应该算得上是数学学科的小题。
所占的分值大约是70分。
虽然没有占大头,但是应该没有人会忽略这70分,因为数学成绩的好坏从某种角度上来说就是由这局部分数决定。
小题的解题策略实际上非常重要,一定要充分利用题目中给出的有效信息进行“巧算”。
倘假设能够做到数形结合,这样将会更加巧妙,并使答题一目了然;倘假设采取归纳类比、合情猜测的方法,那将会更快的梳理出解题思路;倘假设你有能力采取特殊化方法的话,那你的优势势必会更加明显。
大题讲究“稳”如果说小题是分数的根底,那么大题就是提高的保障。
只有大题拿的分数多,才有可能拿到更高的总分。
所以,在解答这些问题的时候一定要稳扎稳打,尽可能的拿到所有该拿的分数。
那么如何做到“稳”呢?以下五点值得我们关注:1、审题要慢、做题要快。
审题非常关键,不管是简单题还是难题,都需要你对题目要求有非常透彻的了解。
并且,因为前三道大题是中低档的题目,所以应该尽快的准确完成,以拿出更多的时间来给后面的难题。
因为只有前面有了保障,攻克后面高档题的时候才会有更多的信心,也才会更加放得开。
2、先易后难、分段得分。
每年数学得总分值的考生少之又少,所以,你不要梦想着在高考时数学能够拿总分值。
换个角度思考,学习再好的学生也会出现一些错误,所以,遇到难题感到做不下去实际上很正常,就看你如何能够从这些难题上尽可能多的争到分数。
在这个时候,分段得分就很重要了。
一定要把每个能想到的与题目考查范围相关的步骤都在试卷上写清楚,不管你是否确定就一定是这些步骤,也要写出来努力赢得步骤分。
既然高考是分段给分,那么我们的对策也就是分段得分。
3、灵活处理、有所取舍。
数学题需要一步一步的进行推导,在某一个环节当中出现意外很正常,在这个时候,我们不能死钻牛角尖,而是要灵活处理。
比方,可以先从中间的问题做起,进一步开拓思路;将上一个问题的结论作为下一个问题的条件;先把后面的题目解答出来再思考前面的题目……要有所取舍,不要在同一道题目上花费太多的时间,这样势必影响后面的答题。
数学考试答题技巧与方法数学考试答题技巧与方法一、“六先六后”,因人因卷制宜。
考生可依自己的解题习惯和基本功,选择执行“六先六后”的战术原则。
1.先易后难。
2.先熟后生。
3.先同后异。
先做同科同类型的题目。
4.先小后大。
先做信息量少、运算量小的题目,为解决大题赢得时间。
5.先点后面。
高考数学解答题多呈现为多问渐难式的“梯度题”,解答时不必一气审到底,应走一步解决一步,步步为营,由点到面。
6.先高后低。
即在考试的后半段时间,如估计两题都会做,则先做高分题;估计两题都不易,则先就高分题实施“分段得分”。
二、一慢一快,相得益彰,规范书写,确保准确,力争对全。
审题要慢,解答要快。
在以快为上的前提下,要稳扎稳打,步步准确。
假如速度与准确不可兼得的话,就只好舍快求对了。
三、面对难题,以退求进,立足特殊,发散一般,讲究策略,争取得分。
对于一个较一般的问题,若一时不能取得一般思路,可以采取化第1页共5页一般为特殊,化抽象为具体。
对不能全面完成的题目有两种常用方法: 1.缺步解答。
将疑难的问题划分为一个个子问题或一系列的步骤,每进行一步就可得到一步的分数。
2.跳步解答。
若题目有两问,第一问做不上,可以第一问为“已知”,完成第二问。
四、执果索因,逆向思考,正难则反,回避结论的肯定与否定。
对一个问题正面思考受阻时,就逆推,直接证有困难就反证。
对探索性问题,不必追求结论的“是”与“否”、“有”与“无”,可以一开始,就综合所有条件,进行严格的推理与讨论,则步骤所至,结论自明。
数学考试答题技巧(总结)1.对于会做的题目,要解决会而不对,对而不全这个老大难问题.有的考生拿到题目,明明会做,但最终答案却是错的--会而不对.有的考生答案虽然对,但中间有逻辑缺陷或概念错误,或缺少关键步骤--对而不全.因此,会做的题目要特别注意高考数学解答题答题技巧及题型特点,防止被分段扣点分.(经验)表明,对于考生会做的题目,阅卷老师则更注意找其中的合理成分,分段给点分,所以做不出来的题目得一二分易,做得出来的题目得满分难.2.对绝大多数考生来说,更为重要的是如何从拿不下来的题目中分段得点分.我们说,有什么样的解题策略,就有什么样的得分策略.把你解题的真实过程原原本本写出来,就是分段得分的全部秘密。
数学高考注意事项1. 注意审题:高考数学题目通常包含大量的文字描述,正确理解题意是解题的关键。
仔细阅读题目,确保理解每一个细节和条件,避免因为理解错误而做错题。
2. 熟悉考纲:高考数学的内容范围通过考纲明确规定,了解考纲可以帮助你确定需要掌握的知识和技能。
在备考过程中,根据考点有针对性地进行复习,提高解题能力。
3. 基础知识的掌握:数学考试是建立在数学基础知识上的,良好的基础知识掌握是解题的前提。
记住公式、定理、规律,多做一些基础题目加强记忆和理解。
4. 理论与实际的结合:高考数学不仅要求掌握理论知识,还需要能够将理论应用到实际问题中。
在解题过程中,要善于用数学模型来描述实际问题,进行分析和求解。
5. 多做真题和模拟题:通过做真题和模拟题,可以熟悉考试的题型和命题风格,找到解题方法和策略。
同时,可以评估自己的备考效果,及时发现并纠正自己的不足之处。
6. 注意计算和表达准确性:高考数学中的计算和表达要求非常严格,一丝一毫的差错可能导致答案完全错误。
在解题过程中,要注意计算过程的准确性和逻辑性,同时,要注意语言和符号的准确使用。
7. 做好时间管理:高考数学的时间通常是相对紧张的,要合理安排时间,控制好做题的速度。
对于每个题目,要根据题目难度合理安排时间,避免因为某个题目花费过多时间而导致其他题目无法完成。
8. 考前复习和放松:考试前要进行适当的复习,回顾和巩固知识点,但也不要忽视休息和放松。
良好的身体和心理状态对于发挥最佳水平至关重要,适当的休息可以让大脑更好地运转。
9. 注意答题技巧:在解答选择题时,可运用排除法、代数法、几何法等答题技巧,提高正确率。
在解答主观题时,要注重解题思路的清晰和表达的规范。
10. 保持自信:高考数学是一个综合能力的考察,要相信自己的实力,保持积极乐观的心态。
在解题过程中,遇到困难也要保持冷静和耐心,相信自己一定能够找到正确的解决方法。
高考重要数学答题技巧归纳高中数学常考题型答题技巧1、解决绝对值问题主要包括化简、求值、方程、不等式、函数等题,基本思路是:把含绝对值的问题转化为不含绝对值的问题。
具体转化方法有:①分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。
②零点分段讨论法:适用于含一个字母的多个绝对值的情况。
③两边平方法:适用于两边非负的方程或不等式。
④几何意义法:适用于有明显几何意义的情况。
2、因式分解根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。
因式分解的一般步骤是:提取公因式选择用公式十字相乘法分组分解法拆项添项法3、配方法利用完全平方公式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。
配方法的主要根据有:4、换元法解某些复杂的特型方程要用到“换元法”。
换元法解方程的一般步骤是:设元→换元→解元→还元5、待定系数法待定系数法是在已知对象形式的条件下求对象的一种方法。
适用于求点的坐标、函数解析式、曲线方程等重要问题的解决。
其解题步骤是:①设②列③解④写6、复杂代数等式复杂代数等式型条件的使用技巧:左边化零,右边变形。
①因式分解型:(-----)(----)=0两种情况为或型②配成平方型:(----)2+(----)2=0两种情况为且型7、数学中两个最伟大的解题思路(1)求值的思路列欲求值字母的方程或方程组(2)求取值范围的思路列欲求范围字母的不等式或不等式组8、化简二次根式基本思路是:把√m化成完全平方式。
即:9、观察法10、代数式求值方法有:(1)直接代入法(2)化简代入法(3)适当变形法(和积代入法)注意:当求值的代数式是字母的“对称式”时,通常可以化为字母“和与积”的形式,从而用“和积代入法”求值。
11、解含参方程方程中除过未知数以外,含有的其它字母叫参数,这种方程叫含参方程。
解含参方程一般要用‘分类讨论法’,其原则是:(1)按照类型求解(2)根据需要讨论(3)分类写出结论12、恒相等成立的有用条件(1)ax+b=0对于任意x都成立关于x的方程ax+b=0有无数个解a=0且b=0。
高三数学春季班(教师版)数学解答题是高考数学试卷中的一类重要题型,通常是高考的把关题和压轴题,具有较好的区分层次和选拔功能.目前的高考解答题已经由单纯的知识综合型转化为知识、方法和能力的综合型解答题.要求考生具有一定的创新意识和创新能力等特点,解答题综合考查运算能力、逻辑思维能力、空间想象能力和分析问题、解决问题的能力.针对不少学生答题格式不规范,出现“会而不对,对而不全”的问题,必须要规范每种题型的答题方式,按照规范的解题程序和答题格式分步解答,实现答题步骤的最优化.解解答题的过程中,要以数学方法为载体,清晰梳理解题思路,完美展现解题程序,整个解答过程必要要有合理的逻辑性、缜密的严谨性,得到的答案也必须是可逆推的,解题并不需要做到每一步都计算出来,但对于解题格式的规范,是在高考中拿到高分的基础。
一、复数方程在复数集C 中的一元二次方程的求根公式和韦达定理仍适用,但根的判别式“∆”仅在实数集上有效,实系数一元二次方程在复数集中一定有根,若是虚根则一定成对出现,且不论是实根还是虚根,一定要注意判别式“∆”的的范围以及最后所求值的检验。
【例1】关于x 的方程()0113222=++--m x m x 的两根为α、β,且3=+βα,求实数m 的值。
【难度】★★【答案】因为关于x 的方程()0113222=++--m x m x 的两根为α、β,且3=+βα,所以()92=+βα,9222=++αββα,若.α、.β为实数...,则()()1181819222+-=+--=∆m m m m ,且0≥∆,由韦达定理得()213-=+m βα,212+=m αβ,将9222=++αββα化简成高中数学解答题解题规范知识梳理例题解析()9222=+-+αβαββα,即()()911419222=+++--m m m ,解得1-=m (另舍)....;若α、β为虚数,则α、β为共轭复数,且0<∆,由3=+βα得23==βα,所以92==ααβ,解得17=m (另舍)....,综上所述....,实数m 的值是1-或17 【解析】复数方程的解答题本身难度不大,但很多学生拿不到全分,在求解的过程中,要么先是没有分类讨论,要么是在分类讨论中忘记了∆的判断和检验,而且需要注意的是,在所有分类讨论的解答题中,最后作答时一定要注意综合所有分类情况,题中打着重号的部分都是规范的格式所在。
高考数学答题原则2019在人类历史发展和社会生活中,数学发挥着不可替代的作用,小编准备了高考数学答题原则,希望你喜欢。
小题讲究“巧”相比较而言,选择题和填空题应该算得上是数学学科的小题。
所占的分值大约是70分。
虽然没有占大头,但是应该没有人会忽略这70分,因为数学成绩的好坏从某种角度上来说就是由这部分分数决定。
小题的解题策略实际上非常重要,一定要充分利用题目中给出的有效信息进行“巧算”。
倘若能够做到数形结合,这样将会更加巧妙,并使答题一目了然;倘若采取归纳类比、合情猜想的方法,那将会更快的梳理出解题思路;倘若你有能力采取特殊化方法的话,那你的优势势必会更加明显。
大题讲究“稳”如果说小题是分数的基础,那么大题就是提高的保障。
只有大题拿的分数多,才有可能拿到更高的总分。
所以,在解答这些问题的时候一定要稳扎稳打,尽可能的拿到所有该拿的分数。
那么如何做到“稳”呢?以下五点值得我们关注:1、审题要慢、做题要快。
审题非常关键,不管是简单题还是难题,都需要你对题目要求有非常透彻的了解。
并且,因为前三道大题是中低档的题目,所以应该尽快的准确完成,以拿出更多的时间来给后面的难题。
因为只有前面有了保障,攻克后面高档题的时候才会有更多的信心,也才会更加放得开。
2、先易后难、分段得分。
每年数学得满分的考生少之又少,所以,你不要幻想着在高考时数学能够拿满分。
换个角度思考,学习再好的学生也会出现一些错误,所以,遇到难题感到做不下去实际上很正常,就看你如何能够从这些难题上尽可能多的争到分数。
在这个时候,分段得分就很重要了。
一定要把每个能想到的与题目考查范围相关的步骤都在试卷上写清楚,不管你是否确定就一定是这些步骤,也要写出来努力赢得步骤分。
既然高考是分段给分,那么我们的对策也就是分段得分。
3、灵活处理、有所取舍。
数学题需要一步一步的进行推导,在某一个环节当中出现意外很正常,在这个时候,我们不能死钻牛角尖,而是要灵活处理。
比如,可以先从中间的问题做起,进一步开拓思路;将上一个问题的结论作为下一个问题的条件;先把后面的题目解答出来再思考前面的题目……要有所取舍,不要在同一道题目上花费太多的时间,这样势必影响后面的答题。
高考数学小题解题技巧高考数学小题解题技巧(1)概念性强:数学中的每个术语、符号,乃至习惯用语,往往都有明确具体的含义,这个特点反映到选择题中,表现出来的就是试题的概念性强,试题的陈述和信息的传递,都是以数学的学科规定与习惯为依据,决不标新立异。
(2)量化突出:数量关系的研究是数学的一个重要的组成部分,也是数学考试中一项主要的内容,在高考的数学选择题中,定量型的试题所占的比重很大,而且许多从形式上看为计算定量型选择题,其实不是简单或机械的计算问题,其中往往蕴含了对概念、原理、性质和法则的考查,把这种考查与定量计算紧密地结合在一起,形成了量化突出的试题特点。
(3)充满思辨性:这个特点源于数学的高度抽象性、系统性和逻辑性。
作为数学选择题,尤其是用于选择性考试的高考数学试题,只凭简单计算或直观感知便能正确作答的试题不多,几乎可以说并不存在,绝大多数的选择题,为了正确作答,或多或少总是要求考生具备一定的观察、分析和逻辑推断能力。
思辨性的要求充满题目的字里行间。
(4)形数兼备:数学的研究对象不仅是数,还有图形,而且对数和图形的讨论与研究,不是孤立开来分割进行,而是有分有合,将它们辩证统一起来。
这个特色在高中数学中已经得到充分的显露。
因此,在高考的数学选择题中,便反映出形数兼备这一特点,其表现是几何选择题中常常隐藏着代数问题,而代数选择题中往往又寓有几何图形的问题。
因此,数形结合与形数分离的解题方法是高考数学选择题的一种重要且有效的思想方法与解题方法。
(5)解法多样化:以其他学科比较,一题多解的现象在数学中表现突出,尤其是数学选择题由于它有备选项,给试题的解答提供了丰富的有用信息,有相当大的提示性,为解题活动展现了广阔的天地,大大地增加了解答的途径和方法。
常常潜藏着极其巧妙的解法,有利于对考生思维深度的考查,学习方法。
解题策略:(1)注意审题。
把题目多读几遍,弄清这个题目求什么,已知什么,求、知之间有什么关系,把题目搞清楚了再动手答题。
高考数学选择题十大解题法则高考数学选择题一直是考生最为头疼的问题之一。
其实,只要掌握了一些解题方法,就可以在考场上游刃有余地处理这些题目。
以下是高考数学选择题十大解题法则,希望对考生们备考有所帮助。
一、审题认真,确保理解清题目要求。
在解题之前,一定要仔细阅读题目,看懂题目的意思和要求,不要匆忙从题目中得出结论。
有时候,题目中的条件可能相对比较复杂,需要我们通读各项条件,理清思路。
二、逐一排除错误选项。
一般来说,高考数学选择题答案选项只有四个,其中必有三个是错误的,一个是正确答案。
考生可以通过排除错误的答案,缩小范围,提高答题效率。
三、找寻规律,依据题目特点处理。
许多高考数学选择题存在一定的规律性,通过发掘它们的规律结构、有效运用规律特性,就能够比较容易地得出答案。
四、借助代数化解,缩短计算时间。
有时候,高考数学选择题很难逐一计算,这时候可以借助代数化解,使用公式计算,从而缩短计算时间,提高答题速度。
五、运用图形分析,直观理解。
很多高考数学选择题与图形有关,考生可以通过画图直观理解问题,从而更好地解答问题。
有时候,在视觉上感受一下,可能会比进行大量计算要更高效。
六、用逆向思维,解决复杂难题。
很多时候,高考数学选择题非常复杂,脑力负担不能直接计算解答。
这时候,可以尝试逆向思维,从答案出发,结合题目条件,寻找能够满足题目要求的解法。
七、根据已知要求,寻找相似问题解法。
有一些高考数学选择题可能与以前做过的题目相似,考生可以通过对比和寻找相同之处,极大地提高解题效率。
在备考期间,做一些类似题目的练习是非常有必要的。
八、关注题干变动,注意细节问题。
有时候,高考数学选择题中出现的区别可能会非常细小,要求考生格外谨慎,一定要仔细审查,不要失之交臂。
九、合理估计数值,选择较接近的答案。
在考试过程中,考生可能无法得到准确的答案。
此时,可以通过合理的数值估测,尽可能选出一个比较接近的答案。
十、巧用三角变形,利用几何常识推荐答案。
高考数学之牢记6个拿高分的原则高考考场答题规范能够得到更高的分数。
高考数学该如何答题才能拿高分呢?那个地点分享六个答题原则给大伙儿,通过把握这些答题规范,期望大伙儿在答题的时候能尽可能的拿到高分。
专家对高考数学科目的作答给出以下六个原则,期望能够关心考生取得理想成绩:1.先易后难。
要力求有效,防白费时刻、损害情绪;2.审题要稳,解答要快,审题时整个解题过程的基础工程,题目本领是如何样解题的信息源,必须充分弄明白题意,综合所有条件,提炼解题线索,形成整体认识,思路一旦显现,则尽量快速完成,防止超时失分。
3.要力求运算准确,争取一次成功。
还要稳扎稳打,层层有据,步步准确,不能为追求速度而丢掉准确度,或是丢掉重要的得分步骤。
4.讲究规范书写,力争既对又全考试的有一个特点确实是以卷面为依据,这就要求不但要会而且要对、对而且要全、全而且要规范。
5.小题小做巧做,注重思想方法.小题切勿大做,不在一道题上蛮缠,选择题即使是蒙,也有25%的胜率。
死记硬背是一种传统的教学方式,在我国有悠久的历史。
但随着素养教育的开展,死记硬背被作为一种僵化的、阻碍学生能力进展的教学方式,慢慢为人们所摒弃;而另一方面,老师们又为提高学生的语文素养煞费苦心。
事实上,只要应用得当,“死记硬背”与提高学生素养并不矛盾。
相反,它恰是提高学生语文水平的重要前提和基础。
6.遇到难题不弃,寻求策略得分.即使一点思路都没有,我们不妨排列一些相关的重要步骤和公式,也许不觉中已找到了解题的思路。
以上确实是查字典数学网的编辑为各位考生带来的高考数学之牢记6个拿高分的原则,期望给各位考生带来关心。
要练说,得练听。
听是说的前提,听得准确,才有条件正确仿照,才能不断地把握高一级水平的语言。
我在教学中,注意听说结合,训练幼儿听的能力,课堂上,我专门重视教师的语言,我对幼儿说话,注意声音清晰,高低起伏,抑扬有致,富有吸引力,如此能引起幼儿的注意。
当我发觉有的幼儿不用心听别人发言时,就随时夸奖那些静听的幼儿,或是让他重复别人说过的内容,抓住教育时机,要求他们用心听,用心记。
20XX 年高考数学答题规范与技巧高考答题的规范化要求有好多方面:答题工具、答题规则与程序、答题地点、答题过程及书写格式要求等。
养成优秀的答题习惯,能够帮助考生多得分,最少不会失掉一些应得分。
1.答题工具①答选择题时,一定用合格的 2B 铅笔填涂,如需要对答案进行改正,应使用画图橡皮轻擦洁净,注意不要擦破答题卡。
②严禁使用涂改液、修正带或透明胶带改错。
③非选择题一定用 0.5 毫米黑色墨水署名笔作答,作图题可先用铅笔绘出,确认后,再用 0.5 毫米黑色墨水署名笔描清楚。
2.答题规则与程序⑴先选择题、填空题,再做解答题;⑵先填涂再解答;⑶先易后难。
3.答题地点按题号在指定的答题地区内作答,切不行高出黑色边框,高出黑色边框的答案无效。
如需对答案进行改正,可将需改正的内容划去,而后紧挨在其上方或其下方写出新的答案,改正部分在书写时与正文同样,不可以超出该题答题地区的黑色矩形边框,不然改正的答案无效。
一般先紧后松。
4.解题过程及书写格式要求⑴选择题的填涂⑵填空题的规范对于填空题,只需填写结果,省掠过程,并且所填结果应力求精练、归纳的正确。
常有错误或不规范的答卷方式有:笔迹不工整、不清楚、字符书写不规范或不正确、分式写法不规范、通项和函数表达式书写不规范、函数分析式书写正确但不注明定义域、要求结果写成会合的不用会合表示、会合的对象属性描绘不正确。
⑶解答题的规范第一,解答题应答时,考生不单要供给出最后的结论,还得写出或说出解答过程的主要步骤,供给合理、合法的说明。
答题过程要整齐雅观、逻辑思路清楚、观点表达正确、答出重点语句和重点词。
比方要将你的解题过程转变为得分点,主要靠正确完好的数学语言表述,这一点常常被一些考生忽略,所以,卷面上大批出现“会而不对”“对而不全”的状况。
如立体几何论证中的“跳步”,使好多人丢掉得分,代数论证中的“以图代证”,只管解题思路正确甚至很奇妙,可是因为不擅长把“图形语言”正确地转移为“文字语言”,只管考生“成竹在胸”却说不清楚,所以得分少。
高考数学选择题的解题技巧归纳高考数学选择题蒙题技巧数量原则理想状态:15道题,每题5个选项,A、B、C、D、E平均每个选项共出现3次。
答案排列:3、3、3、3、3实际状态:每个选项在2——4的范围内。
选项排列:3、3、3、2、4(此种状态略多呈现)或3、2、4、2、4。
即某一个选项为2个,某一个选项为4个三不相同原则即连续三个问题不会连续出现相同答案答案排列不会出现ABCDE的英文字母排列顺序中庸之道即数值优先选择“中间量”选项,选项优先考虑BCD。
在同一道题中优先考虑数值的“中间量”后考虑选项BCD。
(如E选项对应数值为中间量时,优先从数值入手考虑)出现诸如“以上结果都不对”的选项不予考虑由提干给定信息入手,通过选项特征排除错误选项选项基本特征如下:单值与多值(例如提干出现“偶次方、绝对值、对称性”等结果出现多值) 正值与负值(考前冲刺P12/25题根据提干排除负值)有零与无零区间的开与闭(看极端情况能否取等号)正无穷与负无穷(通过极限考虑)整数与小数(分数)质数与合数大于与小于整除与不能整除带符号与不带符号(例如根号、平方号等等)少数服从多数原则即看选项特征,具有同一特征多的选项优先考虑。
复杂表达式化简题一般情况下选项出现1、2、0、-1、-2的情况比较多前后无定位,连续几道题均不会都需猜蒙答案的情况观察已做完的选项情况,哪个选项少就将这几道题全写成这个选项。
答案往往出现在互为相反数、互为倒数、相加为一(概率题)的几个选项。
高考数学选择题解题技巧高考数学选择题解题技巧一、排除法所谓排除法,就是经过判断推理,将四个备选答案中的三个迷惑答案一一排除,剩下一个正确答案.排除法也叫筛选法.例1 若a b,且c为实数,则下列各式中正确的是( ).A.ac bcB.acbc2 D.ac2≥bc2解析:由于c为实数,所以c可能大于0、小于0、也可能等于0.当c=0时,显然A、B、C均不成立,故应排除A、B、C.对于D来说,当c 0,c 0,c=0时,ac2≥bc2都成立,故应选D.例2 在Rt△ABC中,∠C=90°,AC=15,BC=8,则sinA+sinB+sinC=( ). A. B. C. D.解析:由∠C=90°可得 sinC=1. 又因为∠A、∠B均为锐角,所以sinA、sinB均为正数,从而 sinA+sinB+sinC 1.而A、B、C三个选项中的值均小于1,于是排除A、B、C ,故选 D.高考数学选择题解题技巧二、特殊值法当某些题目比较抽象,难以对其作出判断时,我们可以在符合题目条件的`范围内,用某些特殊值代替题目中的字母,然后作出判断.我们将这种解题的方法称为特殊值法.例3 若二次方程x2+2px+2q=0有实数根,其中p,q为奇数,那么它的根一定为( ).A.奇数B.偶数C.分数D.无理数解析:此题关于x的方程的系数为字母p、q,虽然知道p、q为奇数,但仍比较抽象,我们可以根据题设条件赋予未知字母特定的值,然后再去解这个一元二次方程,它的根的情况便一目了然了.不妨设p=3,q=1,则原方程变为x2+6x+2=0解得x=± -3,显然这是一个无理数,故应选择D.例4 若a、b、c都不为零,但a+b+c=0,则 + + 的值( ).A.正数B.零C.负数D.不能确定解析:此题若按传统方法进行通分将非常麻烦且不易求解,若采用特殊值法,则能化繁为简.令a=1、b=1、c=-2,代入原式得 + + = + - =0,故选B. 高考数学选择题解题技巧三、代入检验法当某些问题(如方程、函数等)解起来比较麻烦时,可以换一个角度进行分析判断,即把给出的根、给出的点或给出的值代入方程或函数式中进行验证,从而使问题得以简化.这类处理问题的方法被称为代入法,又叫验证法.例5 若最简根式和是同类根式,则a、b的值为( ).A.a=1 b=1B.a=1 b=-1C.a=-1 b=-1D.a=-1 b=1解析:由同类根式的定义可知根指数相同,被开方数也相同,这样便可列出一个二元一次方程组,再解这个二元一次方程组,用求出的解去检验给出的a、b的值,显然比较麻烦,如采用将给出的a、b的值分别代入最简根式中,再作出判断便容易多了.当把a=1、b=1代入根式后分别得出和,显然它们为同类根式,故应选A. 例6 若△ABC的三边长分别为整数,周长为11,且一边长为4,则这个三角形的最大边长为( ).A.7B.6C.5D.4解析:(1)若最大边为7,7+4=11,两边长就等于周长显然不行;(2)若最大边为6,则另一边只能为1,1、4、6无法构成三角形;(3)若最大边为5,且一边长为4.则第三边为2,因此5为最大边,无需再考虑4的情况.故选C.高考数学选择题解题技巧四、估算法估算法是一种粗略的计算方法,实质上是一种快速的近似计算方法,即对题目所给条件或信息作适当的变形与整理,从而对结果确定出一个范围或作出一个估计.例7 已知地球的表面积约等于5.1亿平方千米,其中水面面积约等于陆地面积的倍,则陆地面积约等于( )亿平方千米(精确到0.1).数学高考选择答题技巧一、按部就班的解题方法。
高考数学的解题思路技巧高考数学的解题思路指导(一)选择题对选择题的审题,主要应清楚:是单选还是多选,是选择正确还是选择错误?答案写在什么地方,等等。
做选择题有四种基本方法:1 回忆法。
直接从记忆中取要选择的内容。
2 直接解答法。
多用在数理科的试题中,根据已知条件,通过计算、作图或代入选择依次进行验证等途径,得出正确答案。
3 淘汰法。
把选项中错误中答案排除,余下的便是正确答案。
4 猜测法。
(二) 应用性问题的审题和解题技巧解答应用性试题,要重视两个环节,一是阅读、理解问题中陈述的材料;二是通过抽象,转换成为数学问题,建立数学模型。
函数模型、数列模型、不等式模型、几何模型、计数模型是几种最常见的数学模型,要注意归纳整理,用好这几种数学模型。
(三) 最值和定值问题的审题和解题技巧最值和定值是变量在变化过程中的两个特定状态,最值着眼于变量的最大/小值以及取得最大/小值的条件;定值着眼于变量在变化过程中的某个不变量。
近几年的数学高考试题中,出现过各种各样的最值问题和定值问题,选用的知识载体多种多样,代数、三角、立体几何、解析几何都曾出现过有关最值或定值的试题,有些应用问题也常以最大/小值作为设问的方式。
分析和解决最值问题和定值问题的思路和方法也是多种多样的。
命制最值问题和定值问题能较好体现数学高考试题的命题原则。
应对最值问题和定值问题,最重要的是认真分析题目的情景,合理选用解题的方法。
(四) 计算证明题解答这种题目时,审题显得极其重要。
只有了解题目提供的条件和隐含的信息,确定具体解题步骤,问题才能解决。
在做这种题时,有一些共同问题需要注意:1 注意完成题目的全部要求,不要遗漏了应该解答的内容。
2 在平时练习中要养成规范答题的习惯。
3 不要忽略或遗漏重要的关键步骤和中间结果,因为这常常是题答案的采分点。
4 注意在试卷上清晰记录细小的步骤和有关的公式,即使没能获得最终结果,写出这些也有助于提高你的分数。
5 保证计算的准确性,注意物理单位的变换。
高考学生必备数学答题技巧总结高考数学是难度比较大的,对于数学并不是十分擅长的考生,如何尽可能多得几分呢?需要掌握哪些答题技巧?下面是为大家整理的关于高考学生必备数学答题技巧,欢迎大家来阅读。
高考数学的答题技巧一、你需要了解的答题顺序其实很多同学平时并没有注意答题顺序,大部分人都是试卷发下来后采用从头到尾的顺序去答题;但是今天我想告诉各位考生,其实答题顺序很重要,很多人就因为从头到尾在前面浪费了很多时间,导致后面大题会的也没有做出来,结果就白白浪费了机会。
为此,我建议大家按照以下顺序进行答题:1.做选择题前10个或前11个首先做选择题前10个或前11个,做完后就开始涂答题卡,一定要做完选择题就涂答题卡,我见过太多的同学因为做完选择题、填空题没有及时涂答题卡,导致后面做大题没有时间涂答题卡,考试时间到还未来得及涂卡在考场苦苦哀求监考老师给一分钟机会,可是高考对每个人而言都是公平的,监考老师也不可能为了你的痛哭流涕就心软给你额外一分钟的时间,所以最后一般都是会无情的收走试卷,如果你真的将答案做出来写在了试卷上,却未来得及涂卡,那么你是不是要后悔一辈子了?所以,尽可能做完选择题前11个就涂答题卡。
一第1页共7页般而言,最后一个选择题较难,大部分人做五分钟如果还做不出来就先放弃,选择B或者C,大概率显示高考数学选择题近几年的答案一般都是B或者C。
节约时间在后面的部分,不要为了一棵树而放弃整片森林,不然得不偿失。
2.做填空题前三个高考数学中,填空题前三个一般情况下难度适中,你尽量用最短的时间作出后就填在答题纸上,避免后续时间紧张而来不及填写,最后一个填空题你先看一遍题目,倘若看完题目毫无思绪的话,暂且放弃,留到最后,倘若有时间就再回过头来看看,如果没有时间就随便填蒙一个,一般情况下都是特殊数字,比如0、1等。
3.做你会做的大题在做大题的过程中,一定要先做你会做的题目,以防万一后续由于过度紧张或时间紧张来不及做会做的题目,你先保证你能拿到的分数,再去挑战有难度的题目。
一、历年高考数学试卷的启发1.试卷上有参考公式,80%是有用的,它为你的解题指引了方向;2.解答题的各小问之间有一种阶梯关系,通常后面的问要使用前问的结论。
如果前问是证明,即使不会证明结论,该结论在后问中也可以使用。
当然,我们也要考虑结论的独立性;3.注意题目中的小括号括起来的部分,那往往是解题的关键。
二、解题策略选择1.先易后难是所有科目应该遵循的原则,而表现在数学试卷上显得更为重要。
一般来说,选择题的后两题,填空题的后一题,旧高考解答题的20和21题是难题,22和23是二选一的题目,相对比较容易,新高考解答题的后两题是难题(一般是入口容易,拿高分难,所以也不能完全放弃,应该是争取多拿分)。
当然,对于不同的学生来说,有的简单题目也可能是自己的难题,有的难题却可能是自己的容易题。
所以题目的难易只能由自己确定。
一般来说,小题思考1分钟还没有建立解答方案,则应采取“暂时性放弃”,把自己可做的题目做完再回头解答。
2.选择题有其独特的解答方法,首先重点把握选择项也是已知条件,利用选择项之间的关系可能使你的答案更准确。
切记不要“小题大做”。
注意解答题按步骤给分,根据题目的已知条件与问题的联系写出可能用到的公式、方法、或是判断。
虽然不能完全解答,但是也要把自己的想法与做法写到答题卷上。
多写不会扣分,写了就可能得分。
(1)直接法直接法在选择题中的具体应用就是直接从题设条件出发,利用已知条件、相关概念、性质、公式、公理、定理、法则等基础知识,通过严谨推理、准确运算、合理验证,从而直接得出正确结论,然后对照题目所给出的选项“对号入座”,从而确定正确的选择支.这类选择题往往是由计算题、应用题或证明题改编而来,其基本求解策略是由因导果,直接求解.由于填空题和选择题相比,缺少选择项的信息,所以常用到直接法进行求解.直接法是解决选择、填空题最基本的方法,适用范围广,只要运算正确必能得到正确答案,解题时要多角度思考问题,善于简化运算过程,快速准确得到结果.直接法具体操作起来就是要熟悉试题所要考查的知识点,从而能快速找到相应的定理、性质、公式等进行求解,比如,数列试题,很明显能看到是等差数列还是等比数列或是两者的综合,如果是等差数列或等比数列,那就快速将等差数列或等比数列的定义(或)、性质(若,则或)、通项公式(或)、前n 项和公式(等差数列、,等比数列)等搬出来看是否适用;如果不能直接看出,只能看出是数列试题,那就说明,需要对条件进行化简或转化了,也可快速进入状态.(2)排除法排除法是一种间接解法,也就是我们常说的筛选法、代入验证法,其实质就是舍弃不符合题目要求的选项,找到符合题意的正确结论.也即通过观察、分析或推理运算各项提供的信息,对于错误的选项,逐一剔除,从而获得正确的结论。
解排列组合问题的四大原则排列、组合是高中数学的重要内容,新教材中概率与统计的增加更突出了排列、组合的重要性.高考对排列组合的考查以两个基本原理——分类加法计数原理和分步乘法计数原理为出发点,侧重检测解题思想和解题技巧,因而对解题策略和思维模式的培养和提炼是平时训练的核心.下面通过具体的例题来解析排列组合问题的解题策略之“四大原则”.一、特殊优先原则该原则是指在有限制的排列组合问题中优先考虑特殊元素或特殊位置. 例1 (2003年北京市西城区一模题(文))甲、乙、丙三个同学在课余时间负责一个计算机房的周一至周六的值班工作,每天1人值班,每人值班2天,如果甲同学不值周一的班,则可以排出不同的值班表有( )A .90种B .89种C .60种D .59种解析:特殊元素优先考虑,甲同学不值周一的班,则先考虑甲,分步完成:①从除周一的5天中任取2天安排甲有25C 种;②从剩下的4天中选2天安排乙有24C 种;③仅剩2天安排丙有22C 种.由分步乘法计数原理可得一共有22254260C C C =··种,即选C .评注:特殊优先原则是解有限制的排列组合问题的总原则,对有限制的元素和有限制的位置一定要优先考虑.二、先取后排原则该原则充分体现了m m m n m n C A A =·的精神实质,先组合后排列,从而避免了不必要的重复与遗漏.例2 (2004年高考全国卷Ⅲ)将4名教师分配到3所中学任教,每所中学至少1名教师,则不同的分配方案共有( ).A .12种B .24种C .36种D .48种解析:先分组再排列:将4名教师分成3组有24C 种分法,再将这三组分配到三所学校有33A 种分法,由分步乘法计数原理知一共有234336C A =·种不同分配方案.评注:先取后排原则也是解排列组合问题的总原则,尤其是排列与组合的综合问题.若本例简单分步:先从4名教师中取3名教师分给3所学校有34A 种方法,再将剩下的1名教师分给3所学校有3种选择,则共有34372A =·种分配方案,则有明显重复(如:甲、乙、丙、丁和甲、乙、丁、丙).因此,处理多元素少位置问题时一般采用先取后排原则.三、正难则反原则若从正面直接解决问题有困难时,则考虑事件的对立事件,从不合题意要求的情况入手,再整体排除.例3 (2004年北京市春招卷)在100件产品中有6件次品,现从中任取3件产品,至少取到1件次品的不同取法的种数是( )A .12694C CB .12699C C C .3310094C C -D .3310094A C -解析:从100件次品中取3件产品,至少有1件次品的对立事件是取到3件全部是正品,即从94件正品中取3件正品有394C 种取法,所以满足条件的不同取法是3310094C C -,故选C .如果从正面考虑,则必须分取到1,2,3件次品这三类,没有应用排除法来得简单.而本例最易迷惑人的是B :12699C C ,即从6件次品中取1件确保了至少有1件次品,再从剩下的99件产品中任取2件即可.事实上这样分步并不相互独立,第一步对第二步有明显影响,设次品为ABCDEF ,正品为甲乙丙丁戊…则12699C C 可以是AB甲,也可能是BA甲,因而重复. 评注:正难则反原则也是解决排列组合问题的总原则,如果从正面考虑不易突破,一般寻找反面途径.利用正难则反原则的语境有其规律,如当问题中含有“至少”,“最多”等词语时,易用此原则.四、策略针对原则不同类型的排列、组合问题有着不同的应对策略,不同的限制条件要采用不同的解题方法.1.相邻问题捆绑法(整体法),相隔问题插空法例4 (2004年高考重庆卷(理))某校高三年级举行一次演讲比赛,共有10位同学参赛,其中一班有3位,二班有2位,其他班有5位.若采用抽签的方式确定他们的演讲顺序,则一班的3位同学恰好被安排到一起(演讲序号相连),而2班的2位同学没有被排在一起的概率为( )A .110B .120C .140D .1120解析:10人的全排列数是1010A ,即所有的演讲顺序有1010A 种.符合要求的演讲顺序有两个限制:一班的3位同学相邻,而2班的2位同学不相邻,因此分步完成:①把一班的3位同学看成一个整体,他们自身全排列有33A 种安排;②把这个整体当成1个元素与其他班5个元素一起排列有66A 种安排;③把这6个元素排定后有7个空位(包含两端),从这7个空位中任取2个空位安排2班的2位同学有27A 种排法(这样确保2位同学不相邻).满足条件的排列共有362367A A A ··种,即所求概率是3623671010120A A A A ··,故选B . 评注:处理相邻问题和不相邻问题时易采用整体法(确保相邻)和插空法(确保相隔),只是要注意是先整体后插空(相邻与不邻的综合问题)或先排后插(单纯的相隔问题),再就是要注意整体元素的排列顺序问题.2.合理分类直接分步法例5 (2004年高考全国卷Ⅱ)在由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23145且小于43521的数共有( )个. ( )A .56B .57C .58D .60解析:所有大于23145且小于43521的数由以下几类构成:由分类加法计数原理可得,一共有234322343212222158A A A A A ++++++=个,故选C .评注:合理分类与直接分步是两个基本原理———分类加法计数原理和分步乘法计数原理最直接的体现,是解排列组合问题的最原始的方法.诸多排列组合问题总是从合理分类,直接分步得到解决的.3.顺序一定消序法(用除法)例6 (2003年北京市春招卷)某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目,如果将这两个节目插入原节目中,那么不同插法的种数为( ).A .42B .30C .20D .12解析:新插入两个节目,而原来的5个节目顺序不变,从结果考虑,7个节目的全排列是77A ,而顺序不变的5个节目的全排列是55A ,不变的顺序是总体的551A ,则一共有775542A A =种不同的插入种数,故选A . 评注:某些元素顺序不变的排列用除法解决,即若共有n 个元素,其中m 个元素顺序不变,则其不同的排列数为.当然本题可以这样考虑:最终有7个节目位置,从7个位置中任选2个位置安排新增节目有27A 种方法,其他5个位置按原5个节目的固定顺序排列,因此共有2742A =种不同的插入方法.4.对象相同隔板法例7 (1)(2004年湖北省四校联考卷)高二年级要从3个班级抽取10人参加数学竞赛,每班至少1人,一共有______种不同的安排方法.(2)(2003年荆州市质检卷Ⅱ)10个相同的小球放到3个不同的盒中,每个盒不空,一共有______种不同的放法.解析:两例的实质一样,属于同一模型———对象相同,这类问题处理方式较多,但隔板法简单易操作:10个相同的小球有9个空档(确保盒子不空).从9个空档中选2个空档放入两块隔板,将小球分成三部分(每一种放档板的放法对应着10个小球分成3部分的分法),每部分一一对应着一个不同的小盒.因此一共有29C 种不同的放法,即2936C =种.而把10个竞赛名额分配给3个班,每班至少1个名额的方法与此一模一样.评注:研究的对象是不加区别的元素时,一般考虑隔板法.这是一个基本的数学模型,由此变形的问题是:10++=有多少组正整数解?而解法不变.x y z。
高考数学解题的几个原那么
1.函数或方程或不等式的题目,先直接思考后建立三者的联系。
首先考虑定义域,其次使用“三合一定理”。
2.如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法;
3.面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质。
如所过的定点,二次函数的对称轴或是……;
4.选择与填空中出现不等式的题目,优选特殊值法;
5.求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择别离参数的方法;
6.恒成立问题或是它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏;
7.圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,假设与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式;
8.求曲线方程的题目,如果知道曲线的形状,那么可选择待定系数法,如果不知道曲线的形状,那么所用的步骤为建系、设点、列式、化简(注意去掉不符合条件的特殊点);
9.求椭圆或是双曲线的离心率,建立关于a、b、c之间的关系等式即可;
10.三角函数求周期、单调区间或是最值,优先考虑化为一次同角弦函数,然后使用辅助角公式解答;解三角形的题目,重视内角和定理的使用;与向量联系的题目,注意向量角的范围;
11.数列的题目与和有关,优选和通公式,优选作差的方法;注意归纳、猜测之后证明;猜测的方向是两种特殊数列;解答的时候注意使用通项公式及前n项和公式,体会方程的思想;
12.立体几何第一问如果是为建系效劳的,一定用传统做法完成,如果不是,可以从第一问开始就建系完成;注意向量角与线线角、线面角、面面角都不相同,熟练掌握它们之间的三角函数值的转化;锥体体积的计算注意系数1/3,而三角形面积的计算注意系数1/2;与球有关的题目也不得不防,注意连接“心心距”创造直角三角形解题;
13.导数的题目常规的一般不难,但要注意解题的层次与步骤,如果要用构造函数证明不等式,可从或是前问中找到突破口,必要时应该放弃;重视几何意义的应用,注意点是否在曲线上;
14.概率的题目如果出解答题,应该先设事件,然后写出使用公式的理由,当然要注意步骤的多少决定解答的详略;如果有分布列,那么概率和为1是检验正确与否的重要途径;
15.遇到复杂的式子可以用换元法,使用换元法必须注意新元的取值范围,有勾股定理型的,可使用三角换元来完成;
16.注意概率分布中的二项分布,二项式定理中的通项公式的使用与赋值的方法,排列组合中的枚举法,全称与特称命题的否认写法,取值范或是不等式的解的端点能否取到需单独验证,用点斜式或斜截式方程的时候考虑斜率是否存在等;
17.绝对值问题优先选择去绝对值,去绝对值优先选择使用定义;
18.与平移有关的,注意口诀“左加右减,上加下减”只用于函数,沿向量平移一定要使用平移公式完成;
19.关于中心对称问题,只需使用中点坐标公式就可以,关于轴对称问题,注意两个等式的运用:一是垂直,一是中点在对称轴上。
在高考时很多同学往往因为时间不够导致数学试卷不能写完,试卷得分不高,掌握解题思想可以帮助同学们快速找到解题思路,节约思考时间。
以下总结高考数学五大解题思想,帮助同学们更好地提分。
函数思想是指运用运动变化的观点,分析和研究数学中的数量关系,通过建立函数关系运用函数的图像和性质去分析问题、转化问题和解决问题;方程思想,是从问题的数量关系入手,运用数学语言将问题转化为方程或不等式模型去解决问题。
同学们在解题时可利用转化思想进行函数与方程间的相互转化。
中学数学研究的对象可分为两大局部,一局部是数,一局部是形,但数与形是有联系的,这个联系称之为数形结合或形数结合。
它既是寻找问题解决切入点的“法宝”,又是优化解题途径的“良方”,因此建议同学们在解答数学题时,能画图的尽量画出图形,以利于正确地理解题意、快速地解决问题。
用这种思想解选择题有时特别有效,这是因为一个命题在普遍意义上成立时,在其特殊情况下也必然成立,根据这一点,同学们可以直接确定选择题中的正确选项。
不仅如此,用这种思想方法去探求主观题的求解策略,也同样有用。
极限思想解决问题的一般步骤为:一、对于所求的量,先设法构思一个与它有关的变量;二、确认这变量通过无限过程的结果就是所求的量;三、构造函数(数列)并利用极限计算法那么得出结果或利用图形的极限位置直接计算结果。
同学们在解题时常常会遇到这样一种情况,解到某一步之后,不能再以统一的方法、统一的式子继续进行下去,这是因为被研究的对象包含了多种情况,这就需要对各种情况加以分类,并逐类求解,然后综合归纳得解,这就是分类讨论。
引起分类讨论的原因很多,数学概念本身具有多种情形,数学运算法那么、某些定理、公式的限制,图形位置的不确定性,变化等均可能引起分类讨论。
建议同学们在分类讨论解题时,要做到标准统一,不重不漏。
掌握数学解题思想是解答数学题时不可缺少的一步,建议同学们在做题型训练之前先了解数学解题思想,掌握解题技巧,并将做过的题目加以划分,以便在高考前一个月集中复习。