离散数学形成性考核作业
- 格式:doc
- 大小:120.64 KB
- 文档页数:7
最新国家开放大学电大《离散数学》形考任务1试题及答案最新国家开放大学电大《离散数学》形考任务1试题及答.形考任务1(集合论部分概念及性质)单项选择.题目.若集合A=.a, {a}, {1, 2}}, 则下列表述正确的是().选择一项:A.{a, {a}}.B..C.{1, 2..D.{a..题目.设函数f: N→N, f(n)=n+1, 下列表述正确的是.).选择一项: A.f是满射.B.f存在反函.C.f是单射函.D.f是双射.题目.设集合A={1, 2, 3, 4, 5}, 偏序关系是A上的整除关系, 则偏序集<A, >上的元素5是集合A的.).选择一项:A.极小.B.极大.C.最大.D.最小.题目.设A={a, b}, B={1, 2}, C={4, 5}, 从A到B的函数f={<a,1>.<b, 2>}, 从B到C的函数g={<1, 5>.<2, 4>}, 则下列表述正确的是.).选择一项:A.g..={<a, 5>.<b, 4>.B.g..={<5, .>.<4, .>.C.f°.={<5, .>.<4, .>.D.f°.={<a, 5>.<b, 4>.题目.集合A={1.2.3.4}上的关系R={<x, y>|x=y且x.yA}, 则R的性质为.).选择一项:A.传递.B.不是对称.C.反自.D.不是自反.题目.设集合..{1..}, 则P(A...).选择一项:A.{{1}.{a}.{1..}.B.{{1}.{a}.C.{,{1}.{a}.D.{,{1}.{a}.{1..}.题目.若集合A={1, 2}, B={1, 2, {1, 2}},则下列表述正确的是.).选择一项:A.AB, 且A.B.AB, 且A.C.BA, 且A.D.AB, 且A.题目.设集合A={1.2.3}, B={3.4.5}, C={5.6.7},则A∪B–.=.).选择一项:A.{1.2.3.4.B.{4.5.6.7.C.{2.3.4.5.D.{1.2.3.5.题目.设集合..{1.2.3.4.5}上的偏序关系的哈斯图如右图所示, 若A的子集..{3.4.5}, 则元素3为B的.).选择一项:A.最小上.B.下.C.最大下.D.最小.题目1.如果R1和R2是A上的自反关系, 则R1∪R2, R1∩R2, R1-R2中自反关系有.)个.选择一项:A..B..C..D..以下资料为赠送资料:《滴水之中见精神》主题班会教案活动目的: 教育学生懂得“水”这一宝贵资源对于我们来说是极为珍贵的, 每个人都要保护它, 做到节约每一滴水, 造福子孙万代。
国开形成性考核《离散数学(本)》形考任务(1-3)试题及答案(课程ID:50501,整套相同,如遇顺序不同,Ctrl+F查找,祝同学们取得优异成绩!)形考任务1 集合论部分概念及性质一、单项选择题题目:1、设A={a,b},B={1,2},C={4,5},从A到B的函数f={<a,1>, <b,2>},从B到C的函数g={<1,5>, <2,4>},则下列表述正确的是()。
【A】:f°g ={<5,a >, <4,b >}【B】:g°f ={<a,5>, <b,4>}【C】:f°g ={<a,5>, <b,4>}【D】:g°f ={<5,a >, <4,b >}答案:g°f ={<a,5>, <b,4>}题目:2、设A={1, 2, 3, 4, 5, 6, 7, 8},R是A上的整除关系,B={2, 4, 6},则集合B的最大元、最小元、上界、下界依次为()。
【A】:8、1、6、1【B】:无、2、无、2【C】:8、2、8、2【D】:6、2、6、2答案:无、2、无、2题目:3、设集合A={2, 4, 6, 8},B={1, 3, 5, 7},A到B的关系R={<x, y>| y = x +1},则R= ()。
【A】:{<2, 1>, <4, 3>, <6, 5>}【B】:{<2, 1>, <3, 2>, <4, 3>}【C】:{<2, 3>, <4, 5>, <6, 7>}【D】:{<2, 2>, <3, 3>, <4, 6>}答案:{<2, 3>, <4, 5>, <6, 7>}题目:4、设集合A ={1 , 2, 3}上的函数分别为:()。
离散数学(本)一、单项选择题1.集合A={1, 2, 3, 4, 5, 6, 7, 8}上的关系R={<x,y>|x+y=10且x, yA},则R的性质为().A.自反的B.对称的C.传递且对称的D.反自反且传递的正确答案: B2.如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有()个.A.0B.2C.1D.3正确答案: B3.设集合A={1, 2, 3},B={3, 4, 5},C={5, 6, 7},则A∪B–C =( ).A.{1, 2, 3, 4}B.{1, 2, 3, 5}C.{2, 3, 4, 5}D.{4, 5, 6, 7}正确答案: A4.若集合A={ a,{a},{1,2}},则下列表述正确的是().A.{a,{a}}AB.{1,2}AC.{a}AD.A正确答案: C5.若集合A的元素个数为10,则其幂集的元素个数为().A.1024B.10C.100D.1正确答案: A6.设函数f:N→N,f(n)=n+1,下列表述正确的是().A.f存在反函数B.f是双射的C.f是满射的D.f是单射函数正确答案: D7.设集合A = {1, 2, 3, 4, 5}上的偏序关系的哈斯图如图所示,若A的子集B = {3, 4, 5},则元素3为B的().A.下界B.最小上界C.最大下界D.最小元正确答案: B8.设集合A={1,2,3,4,5},偏序关系是A上的整除关系,则偏序集<A,>上的元素5是集合A的().A.最大元B.最小元C.极大元D.极小元正确答案: C9.设集合A={1 , 2 , 3 , 4}上的二元关系R={<1, 1>,<2, 2>,<2, 3>,<4, 4>},S={<1,1>,<2, 2>,<2, 3>,<3, 2>,<4, 4>},则S是R的()闭包.A.自反B.传递C.对称D.自反和传递正确答案: C10.集合A={1, 2, 3, 4}上的关系R={<x,y>|x=y且x, yA},则R的性质为().A.不是自反的B.不是对称的C.传递的D.反自反正确答案: C11.图G如图三所示,以下说法正确的是 ( ).A.a是割点B.{b,c}是点割集C.{b, d}是点割集D.{c}是点割集正确答案: B12.设G是连通平面图,有v个结点,e条边,r个面,则r= ( ).A.e-v+2B.v+e-2C.e-v-2D.e+v+2正确答案: A13.图G如图四所示,以下说法正确的是 ( ) .A.{(a, d)}是割边B.{(a, d)}是边割集C.{(a, d) ,(b, d)}是边割集D.{(b, d)}是边割集正确答案: C14.设无向图G的邻接矩阵为,则G的边数为( ).A.6B.5C.4D.3正确答案: B15.无向图G存在欧拉回路,当且仅当().A.G中所有结点的度数全为偶数B.G中至多有两个奇数度结点C.G连通且所有结点的度数全为偶数D.G连通且至多有两个奇数度结点正确答案: C16.无向完全图K4是().A.欧拉图B.汉密尔顿图C.非平面图D.树正确答案: B17.无向树T有8个结点,则T的边数为( ).A.6B.7C.8D.9正确答案: B18.若G是一个汉密尔顿图,则G一定是( ).A.平面图B.对偶图C.欧拉图D.连通图正确答案: D19.若G是一个欧拉图,则G一定是( ).A.平面图B.汉密尔顿图C.连通图D.对偶图正确答案: C20.设有向图(a)、(b)、(c)与(d)如图五所示,则下列结论成立的是( ).图五A.(a)是强连通的B.(b)是强连通的C.(c)是强连通的D.(d)是强连通的正确答案: A21.命题公式为( )A.矛盾式B.可满足式C.重言式D.合取范式正确答案: B22.设个体域为整数集,则公式的解释可为( ).A.存在一整数x有整数y满足x+y=0B.任一整数x对任意整数y满足x+y=0C.对任一整数x存在整数y满足x+y=0D.存在一整数x对任意整数y满足x+y=0正确答案: C23.设命题公式G:,则使公式G取真值为1的P,Q,R赋值分别是 ( ).A.0, 0, 0B.0, 0, 1C.0, 1, 0D.1, 0, 0正确答案: D24.设A(x):x是人,B(x):x是教师,则命题“有人是教师”可符号化为().A.B.C.D.正确答案: D25.下列公式 ( )为重言式.A.┐P∧┐Q↔P∨QB.(Q→(P∨Q)) ↔(┐Q∧(P∨Q))C.Q→(P∨(P∧Q))↔Q →PD.(┐P∨(P∧Q)) ↔Q正确答案: C26.下列等价公式成立的为( ).A.┐P∧P┐Q∧QB.┐Q→P P→QC.P∧Q P∨QD.┐P∨P Q正确答案: A27.谓词公式(x)(A(x)→B(x)∨C(x,y))中的()。
离散数学作业4离散数学图论部分形成性考核书面作业本课程形成性考核书面作业共3次,内容主要分别是集合论部分、图论部分、数理逻辑部分的综合练习,基本上是按照考试的题型(除单项选择题外)安排练习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握.本次形考书面作业是第二次作业,大家要认真及时地完成图论部分的综合练习作业.要求:学生提交作业有以下三种方式可供选择:1. 可将此次作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,完成作业后交给辅导教师批阅.2. 在线提交word 文档3. 自备答题纸张,将答题过程手工书写,并拍照上传. 一、填空题1.已知图G 中有1个1度结点,2个2度结点,3个3度结点,4个4度结点,则G 的边数是 15 .2.设给定图G (如右由图所示),则图G 的点割集是 { f }和{ e,c } .3.设G 是一个图,结点集合为V ,边集合为E ,则 G 的结点 的度数之和 等于边数的两倍.4.无向图G 存在欧拉回路,当且仅当G 连通且 不存在奇数度的结点 . 5.设G=<V ,E >是具有n 个结点的简单图,若在G 中每一对结点度数之和大于等于 n ,则在G 中存在一条汉密尔顿路.6.若图G=<V , E>中具有一条汉密尔顿回路,则对于结点集V 的每个非空子集S ,在G 中删除S 中的所有结点得到的连通分支数为W ,则S 中结点数|S|与W 满足的关系式为 W ≤|S| .7.设完全图K n 有n 个结点(n 2),m 条边,当 n 为奇数 时,K n 中存在欧拉回路.8.结点数v 与边数e 满足 e = v-1 关系的无向连通图就是树. 9.设图G 是有6个结点的连通图,结点的总度数为18,则可从G 中删去 4 条边后使之变成树.10.设正则5叉树的树叶数为17,则分支数为i = 4 .二、判断说明题(判断下列各题,并说明理由.)1.如果图G 是无向图,且其结点度数均为偶数,则图G 存在一条欧拉回路..答:不正确。
离散数学形成性考核作业(一)集合论部分分校_________ 学号____________ 姓名___________ 分数___________本课程形成性考核作业共4次,内容由中央电大确定、统一布置。
本次形考作业是第一次作业,大家要认真及时地完毕集合论部分旳形考作业,字迹工整,抄写题目,解答题有解答过程。
第1章 集合及其运算1.用列举法体现 “不不大于2而不不不大于等于9旳整数” 集合.2.用描述法体现 “不不不大于5旳非负整数集合” 集合.3.写出集合B={1, {2, 3 }}旳所有子集.4.求集合A={∅∅,{}}旳幂集.5.设集合A={{a }, a },命题:{a }⊆P (A ) 与否对旳,阐明理由.6.设A B C ==={,,},{,,},{,,},123135246求(1)A B ⋂ (2)A B C ⋃⋃⊕(3)C-A(4)A B7.化简集合体现式:((A⋃B )⋂B)- A⋃B.8.设A, B,C是三个任意集合,试证: A- (B⋃C)= (A-B)-C.9.填写集合{4, 9} {9,10,4}之间旳关系.10.设集合A= {2,a, {3},4},那么下列命题中错误旳是().A.{a}∈A B.{a,4, {3}}⊆AC.{a}⊆A D.∅⊆A11.设B={{a},3, 4, 2},那么下列命题中错误旳是( ).A.{a}∈B B.{2, {a}, 3, 4}⊆BC.{a}⊆BD.{∅}⊆B第2章关系与函数1.设集合A = {a, b},B= {1,2,3},C={3, 4},求A⨯(B⋂C),(A⨯B)⋂(A⨯C),并验证A⨯(B⋂C) =(A⨯B)⋂(A⨯C ).2.对任意三个集合A, B和C,若A⨯B⊆A⨯C,与否一定有B⊆C?为何?3.对任意三个集合A,B和C,试证若A⨯B = A⨯C,且A≠∅,则B =C.4.写出从集合A={a,b,c }到集合B = {1}旳所有二元关系.5.设集合A = {1,2,3,4,5,6 },R是A上旳二元关系,R ={<a , b>⎢a,b∈A,且a+b= 6}写出R旳集合体现式.6.设R从集合A= {a,b,c,d}到B={1,2,3}旳二元关系,写出关系R={<a, 1>,<a , 3>,<b,2>,<c,2>,<c, 3>}旳关系矩阵,并画出关系图.7.设集合A={a,b,c , d},A上旳二元关系R ={<a,b>,<b ,d>,<c, c>,<c , d>},S={<a ,c>,<b, d>,<d,b>,<d,d>}.求R⋃S,R⋂S,R-S,~(R⋃S),R⊕S.8.设集合A={1, 2 },B = { a , b , c},C={α , β},R是从A到B旳二元关系,S是从B到C旳二元关系,且R = {<1 , a>,<1 , b>,<2 , c>}, S= {<a ,β>,<b,β>},用关系矩阵求出复合关系R·S.9.设集合A={1, 2 , 3,4}上旳二元关系R = {<1, 1>,<1 , 3>,<2,2>,<3,1>,<3,3>,<3,4>,<4 ,3>,<4, 4>},判断R具有哪几种性质?10.设集合A={a , b,c,d }上旳二元关系R={<a,a>,<a ,b>,<b , b>,<c , d>},求r(R),s (R),t(R).11.设集合A= {a, b,c,d},R,S是A上旳二元关系,且R={<a ,a>,<a , b>, <b ,a> , <b , b>,<c , c> ,<c , d>, <d ,c>, <d , d>}S = {<a, b> ,<b , a> ,<a , c>,<c, a> ,<b ,c>, <c,b>,<a,a>, <b, b> ,<c, c>}试画出R和S旳关系图,并判断它们与否为等价关系,若是等价关系,则求出A中各元素旳等价类及商集.12.图1.1所示两个偏序集<A ,R >旳哈斯图,试分别写出集合A和偏序关系R 旳集合体现式.13.画出各偏序集<A ,≤1>旳哈斯图,并指出集合A 旳最大元、最小元、极大元和极小元.其中:A ={a , b , c , d , e },≤1 = {<a , b >,<a , c >,<a , d >,<a , e >,<b , e >,<c , e >,<d , e >}⋃I A ;14.下列函数中,哪些是满射旳?那些是单射旳?那些是双射旳?a g(1)a (2)图1.1 题12哈斯图(1) f 1 :R →R ,f (a ) = a3 + 1;(2) f 4 :N →{0 , 1},f (a) = ⎩⎨⎧为偶数为奇数a a ,1,0 .15.设集合A = {1, 2 },B = {a , b , c},则B ⨯A = .16.设集合A = {1,2,3,4},A上旳二元关系R ={<1 , 2>,<1 , 4>,<2 , 4>,<3 , 3>}, S ={<1 , 4>,<2 , 3>,<2 , 4>,<3 , 2>},则关系( )= {<1 , 4>,<2 , 4>}.A.R ⋃SB.R⋂S C.R - S D .S - R17.设集合A ={1 , 2 , 3 , 4}上旳二元关系R = {<1 , 1>,<2 , 3>,<2 ,4>,<3 , 4>},则R 具有( ).A .自反性 B.传递性C .对称性 D.反自反性18.设集合A ={ a , b , c , d , e }上旳偏序关系旳哈斯 图如图1.2所示.则A 旳极大元为 , 极小元为 .图1.2 题18哈斯图19.设R为实数集,函数f:R R,f(a)= -a2+2a -1,则f是( ).A.单射而非满射 B.满射而非单射C.双射D.既不是单射也不是满射。
姓名:学号: 离散数学集合论部分形成性考核书面作业本课程形成性考核书面作业共3次, 内容主要分别是集合论部分、图论部分、数理逻辑部分的综合练习, 基本上是按照考试的题型安排练习题目, 目的是经过综合性书面作业, 使同学自己检验学习成果, 找出掌握的薄弱知识点, 重点复习, 争取尽快掌握。
本次形考书面作业是第一次作业, 大家要认真及时地完成集合论部分的综合练习作业。
要求: 将此作业用A4纸打印出来, 手工书写答题, 字迹工整,解答题要有解答过程, 完成并上交任课教师( 不收电子稿) 。
并在03任务界面下方点击”保存”和”交卷”按钮, 以便教师评分。
一、单项选择题1.若集合A={2, a, {a}, 4}, 则下列表述正确的是( ).A.{a, {a }}A B.{ a }A C.{2}AD. A答 B2.设B = { {2}, 3, 4, 2}, 那么下列命题中错误的是( ) .A.{2}∈B B.{2, {2}, 3, 4}B C.{2}B D.{2, {2}}B答 B3.若集合A={a, b, {1, 2 }}, B={1, 2}, 则( ) .A.B A B.A B C.B A D.BA答 D4.设集合A = {1, a }, 则P(A) = ( ).A.{{1}, {a}} B.{∅,{1}, {a}}C.{∅,{1}, {a}, {1, a}} D.{{1}, {a}, {1, a }}答 C5.设集合A = {1, 2, 3}, R是A上的二元关系,R ={<a , b>a∈A, b∈ A且1=a}-b则R具有的性质为( ) .A.自反的 B.对称的 C.传递的 D.反对称的答 B6.设集合A = {1, 2, 3, 4, 5, 6 }上的二元关系R ={<a , b>a , b∈A, 且a =b }, 则R具有的性质为( ) .A.不是自反的 B.不是对称的 C.反自反的D.传递的答 D7.设集合A={1 , 2 , 3 , 4}上的二元关系R = {<1 , 1>, <2 , 2>, <2 , 3>, <4 , 4>},S = {<1 , 1>, <2 , 2>, <2 , 3>, <3 , 2>, <4 , 4>}, 则S是R的( ) 闭包.A.自反 B.传递 C.对称 D.以上都不对答 C8.设集合A={a, b}, 则A上的二元关系R={<a, a>, <b, b>}是A上的( )关系.A.是等价关系但不是偏序关系 B.是偏序关系但不是等价关系C.既是等价关系又是偏序关系 D.不是等价关系也不是偏序关系答 C9.设集合A = {1 , 2 , 3 , 4 , 5}上的偏序关系的哈斯图如右图所示,若A的子集B5元素3为B的( ) .A.下界 B.最大下界C.最小上界 D.以上答案都不对答 C10.设集合A ={1 , 2, 3}上的函数分别为:f = {<1 , 2>, <2 , 1>, <3 , 3>},g = {<1 , 3>, <2 , 2>, <3 , 2>},h = {<1 , 3>, <2 , 1>, <3 , 1>},则h =( ) .A.f◦g B.g◦f C.f◦f D.g◦g 答 A二、填空题1.设集合{1,2,3},{1,2}==, 则A BA⋃B= , A⋂B= .答{1,2,3}, {1,2}2.设集合{1,2,3},{1,2}==, 则A BP(A)-P(B )= , AB= .解(){,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}}P A=∅P B=∅(){,{1},{2},{1,2}}答{{3},{1,3},{2,3},{1,2,3}}{<1,1>,<1,2>,<2,1>,<2,2>,<3,1>,<3,2>}3.设集合A有10个元素, 那么A的幂集合P(A)的元素个数为.答2104.设集合A = {1, 2, 3, 4, 5 }, B = {1, 2, 3}, R从A到B的二元关系,R ={<a , b>a∈A, b∈B且2≤a + b≤4}则R的集合表示式为.答{1,1,1,2,1,3,2,1,2,2,3,1}R=<><><><><><>5.设集合A={1, 2, 3, 4 }, B={6, 8, 12}, A到B的二元关系R=}yyx∈=<>x∈A,,2,y{Bx那么1R-=解{3,6,4,8}R=<><>答{6,3,8,4}<><>6.设集合A={a, b, c, d}, A上的二元关系R={<a, b>, <b, a>, <b, c>, <c, d>}, 则R具有的性质是.答反自反7.设集合A={a, b, c, d}, A上的二元关系R={<a, b>, <b, a>, <b, c>, <c, d>}, 若在R中再增加两个元素 , 则新得到的关系就具有对称性.答<c, b>, <d, c>8.设A={1, 2}上的二元关系为R={<x, y>|x A, y A, x+y =10}, 则R的自反闭包为.答 {<1,1>,<2,2>}9.设R是集合A上的等价关系, 且1 , 2 , 3是A中的元素, 则R中至少包含等元素.答<1,1>, <2,2>, <3,3>。
离散数学数理逻辑部分形成性考核书面作业本课程形成性考核书面作业共3次,内容主要分别是集合论部分、图论部分、数理逻辑部分的综合练习,基本上是按照考试的题型(除单项选择题外)安排练习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握.本次形考书面作业是第三次作业,大家要认真及时地完成数理逻辑部分的综合练习作业.要求:学生提交作业有以下三种方式可供选择:1. 可将此次作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,完成作业后交给辅导教师批阅.2. 在线提交word文档3. 自备答题纸张,将答题过程手工书写,并拍照上传.一、填空题1.命题公式()→∨的真值是1或T .P Q P2.设P:他生病了,Q:他出差了.R:我同意他不参加学习.则命题“如果他生病或出差了,我就同意他不参加学习”符号化的结果为.3.含有三个命题变项P,Q,R的命题公式P∧Q的主析取范式是(P∧Q∧R) ∨(P∧Q∧﹁R) .4.设P(x):x是人,Q(x):x去上课,则命题“有人去上课.”可符号化为∃∧Q(x)) .5.设个体域D={a, b},那么谓词公式)x∨∃消去量词后的等值式为xA∀yB()(y(A(a) ∨A(b)) ∨((B(a) ∧B(b)) .6.设个体域D={1, 2, 3},A(x)为“x大于3”,则谓词公式(∃x)A(x) 的真值为0(F) .7.谓词命题公式(∀x)((A(x)∧B(x)) ∨C(y))中的自由变元为y .8.谓词命题公式(∀x)(P(x) →Q(x) ∨R(x,y))中的约束变元为x .三、公式翻译题1.请将语句“今天是天晴”翻译成命题公式.设P:今天是晴天。
则﹁P。
2.请将语句“小王去旅游,小李也去旅游.”翻译成命题公式.设P:小王去旅游。
Q:小李去旅游。
则P∧Q3.请将语句“他去旅游,仅当他有时间.”翻译成命题公式.设P:他去旅游。
离散数学形成性考核作业〔三〕集合论与图论综合练习本课程形成性考核作业共4次,内容由中心电大确定、统一布置。
本次形考作业是第三次作业,大伙儿要认真及时地完成图论局部的形考作业,字迹工整,抄写题目,解答题有解答过程。
一、单项选择题1.假设集合A ={2,a ,{a },4},那么以下表述正确的选项是(B). A .{a ,{a }}∈A B .{a }⊆A C .{2}∈A D .∅∈A2.设B ={{2},3,4,2},那么以下命题中错误的选项是〔B 〕.A .{2}∈B B .{2,{2},3,4}⊂BC .{2}⊂BD .{2,{2}}⊂B3.假设集合A ={a ,b ,{1,2}},B ={1,2},那么〔B 〕. A .B ⊂A ,且B ∈A B .B ∈A ,但B ⊄A C .B ⊂A ,但B ∉A D .B ⊄A ,且B ∉A4.设集合A ={1,a },那么P (A )=(C). A .{{1},{a }}B .{∅,{1},{a }}C .{∅,{1},{a },{1,a }}D .{{1},{a },{1,a }}5.设集合A ={1,2,3,4,5,6}上的二元关系R ={<a ,b >⎢a ,b ∈A ,且a +b =8},那么R 具有的性质为〔B 〕. A .自反的B .对称的C .对称和传递的D .反自反和传递的6.设集合A ={1,2,3,4,5},B ={1,2,3},R 从A 到B 的二元关系,R ={<a ,b >⎢a ∈A ,b ∈B 且1=-b a } 那么R 具有的性质为〔〕.A .自反的B .对称的C .传递的D .反自反的[注重]:此题有误!自反性、反自反性、对称性、反对称性以及传递性指 某一个集合上的二元关系的性质。
7.设集合A ={1,2,3,4}上的二元关系R ={<1,1>,<2,2>,<2,3>,<4,4>},S ={<1,1>,<2,2>,<2,3>,<3,2>,<4,4>}, 那么S 是R 的〔C 〕闭包.A .自反B .传递C .对称D .以上都不对8.非空集合A 上的二元关系R ,满足(A),那么称R 是等价关系. A .自反性,对称性和传递性B .反自反性,对称性和传递性 C .反自反性,反对称性和传递性 D .自反性,反对称性和传递性9.设集合A ={a ,b },那么A 上的二元关系R={<a ,a >,<b ,b >}是A 上的(C)关系.A .是等价关系但不是偏序关系B .是偏序关系但不是等价关系C .既是等价关系又是偏序关系D .不是等价关系也不是偏序关系10.设集合A ={1,2,3,4,5}上的偏序关系的哈斯图如右图所示,假设A 的子集B ={3,4,5}, 那么元素3为B 的〔C 〕.A .下界B .最大下界C .最小上界D .以上答案都不对11.设函数f :R →R ,f (a )=2a +1;g :R →R ,g (a )=a 2.那么〔C 〕有反函数. A .g •f B .f •g C .f D .g12.设图G 的邻接矩阵为 那么G 的边数为(D). A .5B .6C .3D .413.以下数组中,能构成无向图的度数列的数组是(C). A .(1,1,2,3)B .(1,2,3,4,5)C .(2,2,2,2)D .(1,3,3) 14.设图G =<V ,E >,那么以下结论成立的是(C). A .deg(V )=2∣E ∣B .deg(V )=∣E ∣C .E v Vv 2)deg(=∑∈D .E v Vv =∑∈)deg(解;C 为握手定理。
1. 若集合A={ a,{a},{1,2}},则下列表述正确的是( ).A. {a,{a}}AB. {1,2}AC. {a}AD. A2. 设A、B是两个任意集合,侧A-B = Ø⇔( ).A. A=BB. A⊆BC. A⊇BD. B=Ø3. 集合A={1, 2, 3, 4}上的关系R={<x,y>|x<y且x, y A},则R的性质为().A. 不是自反的B. 不是对称的C. 传递的D. 反自反的4. 设集合A={1,2,3,4},R是A上的二元关系,其关系矩阵为则R的关系表达式是( ).A. {<1, 1>,<1, 4>,<2, 1>,<3, 4>,<4,1>}B. {<1, 1>,<1, 2>,<1, 4>,<4, 1>,<4, 3>}C. {<1, 1>,<2, 1>,<4, 1>,<4, 3>,<1, 4>}D. {<1, 1>,<1, 2>,<2, 4>,<4, 1>,<4, 3>}5. 设集合A={1 , 2 , 3 , 4}上的二元关系R={<1, 1>,<2, 2>,<2, 3>,<4, 4>},S={<1, 1>,<2, 2>,<2, 3>,<3, 2>,<4, 4>},则S是R的()闭包.A. 自反B. 传递C. 对称D. 自反和传递6. 设A ={1, 2, 3, 4, 5, 6, 7, 8},R是A上的整除关系,B ={2, 4, 6},则集合B的最大元、最小元、上界、下界依次为 ( ).A. 8、2、8、2B. 8、1、6、1C. 6、2、6、2D. 无、2、无、27. 若集合A={ a,{a}},则下列表述正确的是( ).A. {a}AB. {{{a}}}AC. {a,{a}}AD. A8. 若集合A的元素个数为10,则其幂集的元素个数为().A. 1024B. 10C. 100D. 19. 集合A={1, 2, 3, 4, 5, 6, 7, 8}上的关系R={<x,y>|x+y<10且x, y A},则R的性质为().A. 自反的B. 对称的C. 传递且对称的D. 反自反且传递的10. 设集合A={a},则A的幂集为( ).A. {{a}}B. {a,{a}}C. {,{a}}D. {,a}11. 设A={a, b},B={1, 2},R1,R2,R3是A到B的二元关系,且R1={<a,2>, <b,2>},R2={<a,1>, <a,2>, <b,1>},R3={<a,1>, <b,2>},则()不是从A到B的函数.A. R1B. R2C. R3D. R1和R312. 如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有()个.A. 0B. 2C. 1D. 313. 若集合A={1,2},B={1,2,{1,2}},则下列表述正确的是( ).A. A B,且A BB. B A,且A BC. A B,且A BD. A B,且A B14. 设集合A = {1, a },则P(A) = ( ).A. {{1}, {a}}B. {,{1}, {a}}C. {{1}, {a}, {1, a }}D. {,{1}, {a}, {1, a }}15. 设A ={a,b,c},B ={1,2},作f:A→B,则不同的函数个数为.A. 2B. 3C. 6D. 816. 若集合A={2,a,{ a },4},则下列表述正确的是( ).A. {a,{ a }}∈AB. Ø∈AC. {2}∈AD. { a }⊆A17. 设集合A = {1, 2, 3, 4, 5}上的偏序关系的哈斯图如右图所示,若A的子集B = {3, 4, 5},则元素3为B的().A. 下界B. 最小上界C. 最大下界D. 最小元18. 若集合A={ a,{a},{1,2}},则下列表述正确的是( ).A. {a,{a}}AB. {1,2}AC. {a}AD. A19. 设函数f:N→N,f(n)=n+1,下列表述正确的是().A. f存在反函数B. f是双射的C. f是满射的D. f是单射函数20. 设集合A ={1 , 2, 3}上的函数分别为:f = {<1, 2>,<2, 1>,<3, 3>},g = {<1, 3>,<2, 2>,<3, 2>},h = {<1, 3>,<2, 1>,<3, 1>},则h=().A. f◦gB. g◦fC. f◦fD. g◦g21. 设集合A ={1,2,3,4,5},偏序关系≤是A上的整除关系,则偏序集<A,≤>上的元素5是集合A的().A. 最大元B. 最小元C. 极大元D. 极小元。
离散数学集合论部分形成性考核书面作业本课程形成性考核书面作业共3次,内容主要分别是集合论部分、图论部分、数理逻辑部分的综合练习,基本上是按照考试的题型(除单项选择题外)安排练习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握.本次形考书面作业是第一次作业,大家要认真及时地完成集合论部分的综合练习作业.要求:学生提交作业有以下三种方式可供选择:1. 可将此次作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,完成作业后交给辅导教师批阅.2. 在线提交word文档3. 自备答题纸张,将答题过程手工书写,并拍照上传.一、填空题1.设集合{1,2,3},{1,2}A B==,则P(A)-P(B )={{1,2},{2,3},{1,3},{1,2,3}} ,A⨯B={<1,1>,<1,2>,<2,1>,<2,2>,<3,1>,<3,2>} .2.设集合A有10个元素,那么A的幂集合P(A)的元素个数为 1024 .3.设集合A={0, 1, 2, 3},B={2, 3, 4, 5},R是A到B的二元关系,则R的有序对集合为{<2,2>,<2,3>,<3,2>,<3,3>}.4.设集合A={1, 2, 3, 4 },B={6, 8, 12},A到B的二元关系R=}x∈y∈y<>=,,2x{ByxA,那么R-1= {<6,3>,<8,4>} .5.设集合A={a, b, c, d},A上的二元关系R={<a, b>, <b, a>, <b, c>,<c, d>},则R具有的性质是反自反性.6.设集合A={a, b, c, d},A上的二元关系R={<a, a>, <b, b>, <b, c>,<c, d>},若在R中再增加两个元素<c, b>, <d, c>,则新得到的关系就具有对称性.7.如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有 2个.8.设A ={1, 2}上的二元关系为R ={<x , y >|x ∈A ,y ∈A , x +y =10},则R 的自反闭包为 {<1,1>,<2,2>} .9.设R 是集合A 上的等价关系,且1 , 2 , 3是A 中的元素,则R 中至少包含 <1,1>,<2,2>,<3,3> 等元素.10.设A ={1,2},B ={a ,b },C ={3,4,5},从A 到B 的函数f ={<1, a >, <2, b >},从B 到C 的函数g ={< a ,4>, < b ,3>},则Ran(g ︒ f )= {<1,a>,<2,b>}或{<1,b>,<2,a>} .二、判断说明题(判断下列各题,并说明理由.)1.若集合A = {1,2,3}上的二元关系R ={<1, 1>,<2, 2>,<1, 2>},则(1) R 是自反的关系; (2) R 是对称的关系.解:(1) 结论不成立.因为关系R 要成为自反的,其中缺少元素<3, 3>. (2) 结论不成立.因为关系R 中缺少元素<2, 1>2.设A ={1,2,3},R ={<1,1>, <2,2>, <1,2> ,<2,1>},则R 是等价关系.解:(1) 结论不成立.因为关系R 要成为自反的,其中缺少元素<3, 3>. (2) 结论不成立.因为关系R 中缺少元素<2, 1>3.若偏序集<A ,R >的哈斯图如图一所示, 则集合A 的最大元为a ,最小元不存在.答: 错误,按照定义,图中不存在最大元和最小元。
离散数学形成性考核作业4
离散数学综合练习书面作业
要求:学生提交作业有以下三种方式可供选择:
1. 可将此次作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,完成作业后交给辅导教师批阅.
2. 在线提交word文档.
3. 自备答题纸张,将答题过程手工书写,并拍照上传.
一、公式翻译题
1.请将语句“小王去上课,小李也去上课.”翻译成命题公式.设P:小王去上课。
Q: 小李去上课。
则P^Q
2.请将语句“他去旅游,仅当他有时间.”翻译成命题公式.
设P:他去旅游。
Q: 他有时间。
则P→Q
3.请将语句“有人不去工作”翻译成谓词公式.
设A(x): x是人
B(x):去工作
∃x(A(x)^⌝B(x))
4.请将语句“所有人都努力学习.”翻译成谓词公式.
设A(x): x是人
B(x):努力工作
∀x(A(x)^B(x))
二、计算题
1.设A ={{1},{2},1,2},B ={1,2,{1,2}},试计算
(1)(A -B ); (2)(A ∩B ); (3)A ×B .
解:(1)(A -B )={{1},{2}}
(2)(A ∩B )={1,2}
(3) A ×B
{<{1},1>,<{1},2>,<{1},{1,2 }>,<{2},1>,<{2},2>,<{2},{1,2 }>,<1,1>,<1,2>,<1,{1,2 }>,<2,1>,<2,2>,<2,{1,2 }>}
2.设A ={1,2,3,4,5},R ={<x ,y >|x ∈A ,y ∈A 且x +y ≤4},S ={<x ,y >|x ∈A ,y ∈A 且x +y <0},试求R ,S ,R •S ,S •R ,R -1,S -1,r (S ),s (R ).
解:
R={<1,1>,<1,2>,<1,3>,<2,1>,<2,2>,<3,1>}
S=Φ
R •S=Φ
S •R=Φ
R -1={<1,1>,<2,1>,<3,1>,<1,2>,<2,2>,<1,3>}
S -1=Φ
r (S )= {<1,1>,<2,2>,<3,3>,<4,4>,<5,5>}
s (R )= {<1,1>,<1,2>,<1,3>,<2,1>,<2,2>,<3,1>}
3.设A ={1, 2, 3, 4, 5, 6, 7, 8},R 是A 上的整除关系,B ={2, 4, 6}.
(1) 写出关系R 的表示式; (2) 画出关系R 的哈斯图;
(3) 求出集合B 的最大元、最小元.
解:(1)
R={<1,1>,<1,2>,<1,3>,<1,4>,<1,5>,<1,6>,<1,7>,<1,8>,<2,2>,<2,4>,<2,6>,<2,8>,<3,3>,<3,6>,<4,4>,<4,8>,<5,5>,<6,6>,<7,7>,<8,8>}
(2)
(3) 集合B 没有最大元,最小元是2
7 关系R 的哈斯图
4.设G =<V ,E >,V ={ v 1,v 2,v 3,v 4,v 5},E ={ (v 1,v 3),(v 2,v 3),(v 2,v 4),(v 3,v 4),(v 3,v 5),(v 4,v 5) },试
(1) 给出G 的图形表示; (2) 写出其邻接矩阵;
(3) 求出每个结点的度数; (4) 画出其补图的图形.
解:(1) 1v °
2v ° °3v
4v ° °5v
(2)
⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=0110010110110110110000100)(D A
(3)
=)deg(1v 1、=)deg(2v 2、=)deg(3v 4、=)deg(4v 3、=)deg(5v 2
(4)
°1v 2v ° °3v
4v ° °5v
5.图G =<V , E >,其中V ={ a , b , c , d , e },E ={ (a , b ), (a , c ), (a , e ), (b , d ), (b , e ), (c , e ), (c , d ), (d , e ) },对应边的权值依次为2、1、2、3、6、1、4及5,试
(1)画出G 的图形; (2)写出G 的邻接矩阵;
(3)求出G 权最小的生成树及其权值.
b c
解:(1) 。
。
2 1
a 。
6 4
2 1 3。
。
e 5 d
(2) ⎥⎥⎥⎥⎥⎥⎦
⎤⎢⎢⎢⎢⎢⎢⎣⎡=01111
10110
110011*********)(D A
(3) b c。
。
2 1
a 。
1
3。
。
e d
其权值为:7
6.设有一组权为2, 3, 5, 7, 17, 31,试画出相应的最优二叉树,计算该最优二叉树的权.
解: 65
17 48
5 12
17 31
2 3 5 7
权值为65。
7. 求P →Q ∨R 的析取范式,合取范式、主析取范式,主合取范式.
解:┐P ∨(Q ∨R )= ┐P ∨Q ∨R
所以合取范式和析取范式都是┐P ∨Q ∨R
所以主合取范式就是┐P ∨Q ∨R
所以主析取范式就是(⌝P ∧⌝Q ∧⌝R) ∨(⌝P ∧⌝Q ∧ R) ∨ (⌝P ∧Q ∧ ⌝R ) (⌝P ∧Q ∧R) ∨(P ∧⌝Q ∧ R) ∨ (P ∧Q ∧⌝ R ) ∨ (P ∧Q ∧ R )
8.设谓词公式()((,)()(,,))()(,)x P x y z Q y x z y R y z ∃→∀∧∀.
(1)试写出量词的辖域;
(2)指出该公式的自由变元和约束变元.
解:(1)量词∃x 的辖域为 P(x,y) →(∀z)Q(y,x,z)
量词∀z 的辖域为Q(y,x,z)
量词∀y 的辖域为R(y,x)
(2) P(x,y)中的x 是约束变元,y 是自由变元
Q(y,x,z)中的x 和z 是约束变元,y 是自由变元
R(y,x)中的x 是自由变元,y 是约束变元
9.设个体域为D ={a 1, a 2},求谓词公式(∀y )(∃x )P (x ,y )消去量词后的等值式;
解: ∀y ∃xP (x ,y )= ∃xP (x , a 1) ∧∃xP (x , a 2)
=( P (a 1, a 1) ∨ P (a 2, a 1)) ∧( P (a 1, a 2) ∨ P (a 1, a 2))
三、证明题
1.对任意三个集合A , B 和C ,试证明:若A ⨯B = A ⨯C ,且A ≠∅,则B = C . 证明:设x ∈A ,y ∈B ,则<x ,y >∈A ⨯B ,
因为A ⨯B = A ⨯C ,故<x ,y >∈ A ⨯C ,则有y ∈C ,
所以B ⊆ C .
设x ∈A ,z ∈C ,则<x ,z >∈ A ⨯C ,
因为A ⨯B = A ⨯C ,故<x ,z >∈A ⨯B ,则有z ∈B ,所以C ⊆B .
故得A=B .
2.试证明:若R 与S 是集合A 上的自反关系,则R ∩S 也是集合A 上的自反关系.
证明:
R 1和R 2是自反的,∀x ∈A ,<x , x > ∈ R 1,<x , x > ∈R 2,则<x , x > ∈ R 1∩R 2, 所以R 1∩R 2是自反的.
3.设连通图G 有k 个奇数度的结点,证明在图G 中至少要添加2
k 条边才能使其成为欧拉图.
证明:由定理推论知:在任何图中,度数为奇数的结点必是偶数个,则k 是偶数。
又由欧拉图的充要条件是图G 中不含奇数度结点。
因此,只要在每对奇数度结点间各加一条边,使图G 的所有结点的度数变为偶数,成为欧拉图。
故最少要加2
k 条边才能使其成为欧拉图。
4.试证明 (P →(Q ∨⌝R ))∧⌝P ∧Q 与⌝ (P ∨⌝Q )等价.
证:(P →(Q ∨⌝R ))∧⌝P ∧Q ⇔(⌝P ∨(Q ∨⌝R ))∧⌝P ∧Q
⇔(⌝P ∨Q ∨⌝R )∧⌝P ∧Q
⇔(⌝P ∧⌝P ∧Q )∨(Q ∧⌝P ∧Q )∨(⌝R ∧⌝P ∧Q )
⇔(⌝P ∧Q )∨(⌝P ∧Q )∨(⌝P ∧Q ∧⌝R )
⇔⌝P ∧Q (吸收律)
⇔⌝(P ∨⌝Q ) (摩根律)
5.试证明:⌝(A ∧⌝B )∧(⌝B ∨C )∧⌝C ⇒⌝A .
证明:
① c ⌝ 前提引入;
② c b ∨⌝ 前提引入; ③
b ⌝ ①② 析取三段论; ④
)(B A ⌝∧⌝ 前提引入; ⑤
B A ∨⌝ 置换;④ ⑥
B ⌝ ③⑤析取三段论。