沪科数学七下期中复习卷
- 格式:doc
- 大小:202.50 KB
- 文档页数:4
沪科版七年级下册数学期中考试试题及答案上海市科技版七年级下册数学期中考试试卷2020年4月一、单选题1.6根是()A。
4B。
±4C。
8D。
±82.在实数-6,9,π,-25中,无理数的个数是()A。
7B。
2C。
3D。
43.下列各式中,正确的是()A。
4=±2B。
±9=3C。
(-3)2=-3D。
3-27=-244.已知a>b,则下列不等式中,不成立的是() A。
a+3>b+3B。
(a+2)/(b+3)<2/3C。
-3a>-3bD。
5a>5b5.下列计算正确的是()A。
b3×b3=2b6B。
ab2×(ab)3=ab5C。
a5÷a3=a2D。
y3+y3=2y36.不等式2x+2≤6的解集在数轴上表示正确的是() A。
B。
C。
D。
7.不等式组x<-1的解集为()A。
x>-2B。
x<-1C。
-2<x<-1D。
无解8.下列因式分解正确的是()A。
6x+9y+3=3(2x+3y+1)B。
x2+2x+1=(x+1)2C。
x2-2xy-y2=(x-y)2D。
x2+4=(x+2)29.已知a+2+|b-1|=,那么(a+b)2019的值为() A。
-1B。
1C。
D。
-10.某商店将定价为3元的商品,按下列方式优惠销售:若购买不超过5件,按原价付款;若一次性购买5件以上,超过部分打八折。
小聪有27元钱想购买该种商品,那么最多可以购买多少件呢?若设小聪可以购买该种商品x件,则根据题意,可列不等式为()A。
3×5+3×0.8x≤27B。
3×5+3×0.8x≥27C。
3×5+3×0.8(x-5)≤27D。
3×5+3×0.8(x-5)≥27二、填空题11.计算2x4×x3的结果等于__________。
答案:2x712.分解因式:x2-4x=______.答案:x(x-4)13.已知关于x的不等式2x-m+3>0的最小整数解为1,则实数m的取值范围是_____。
七年级(下)数学期中考试试卷(1)满分:150 时间:100分钟一、选择题(本大题10小题,每小题4分,共40分)1、下列各数:有理数722、9、2π、12、121、 101001.0(每两个1之间的0逐 渐增加一个)中,无理数有................................................( ) A 、3 B 、4 C 、2 D 、12、PM2.5是指大气中直径小于或等于0.0000025m 的颗粒物,将0.0000025用科学计数法表示为..................................................................( ) A 、51025.0-⨯ B 、61025.0-⨯ C 、5105.2-⨯ D 、6105.2-⨯ 3、已知y x >,则下列不等式不成立的是................................( ) A 、66->-y x B 、y x 33> C 、y x 22-<- D 、6363+->+-y x 4、不等式062>+-x 的正数解有.........................................( ) A 、无数个 B 、0个 C 、1个 D 、2个5、不等式152≤+x 的解在数轴上表示正确的是..............................( ) A 、 B 、C 、D 、6、已知252++mx x 是完全平方式,则m 的值为.............................( ) A 、10 B 、10± C 、20 D 、20±7、下列运算正确的是....................................................( ) A 、1243)(x x =- B 、248x x x =÷ C 、642x x x =+ D 、xx 1)(1=-- 8、下列说法:①有理数和数轴上的点一一对应;②不带根号的数一定是有理数;③负数没有立方根;④17- 是17的平方根.其中正确的有. .....................( ) A 、0个 B 、1个 C 、2个 D 、3个9、如图,是关于x 的不等式12-≤-a x 的解集,则a 的取值是.................( ) A 、1-≤a B 、2-≤a C 、1-=a D 、2-=a10、我国从2011年5月1日起在公共场所实行“禁烟”.为配合“禁烟”,某校组织开展了“吸烟有害健康”的知识竞赛,共有20道题.答对一题记10分,答错(或不答)一题记-5分.小明参加本次竞赛得分要超过100分,他至少要答对多少道题.................( ) A .13 B .14C .15D .16二、填空题(4小题,每小题5分,共20分)11、算术平方根等于它本身的数是 ; 12、如果===+nm nm10,310,1210那么 ;13、210的整数数部分是 ;14、定义:对于实数a ,符号[]a 表示不大于a 的最大整数.例如:[]57.5=,[],55=[]4-=-π.如果[]2-=a ,则a 的取值范围是 。
沪科版七年级下册数学期中考试试卷一、单选题1.下列实数中,无理数是()A .BC .3.1415926D .237-2.在实数0,−3,−23,−2中,最小的是()A .−23B .−3C .0D .−23.下列运算正确的是()A .(﹣x 3)4=x 12B .x 8÷x 4=x 2C .x 2+x 4=x 6D .(﹣x )﹣1=1x4.冠状病毒,其直径为750纳米至1000纳米,750纳米即0.0000075米,数据0.0000075用科学记数法表示正确的是()A .67.510⨯B .57.510⨯C .67.510-⨯D .57.510-⨯5.已知a <b ,则下列不等式一定成立的是()A .a +5>b +5B .-2a <-2bC .32a >32b D .7a -7b <06.不等式72x -+1<322x -的负整数解有()A .1个B .2个C .3个D .4个71-的相反数是1-;②算术平方根等于它本身的数只有零;③数轴上的点不是表示有理数,就是表示无理数;④若a ,b 都是无理数,则||||a b +一定是无理数.其中正确的有()A .4个B .3个C .2个D .1个8.如图表示的是关于x 的不等式2x ﹣a <﹣1的解集,则a 的取值是()A .a ≤﹣1B .a ≤﹣2C .a =﹣1D .a =﹣29.如图,正方形卡片A 类,B 类和长方形卡片C 类若干张,如果要用A 、B 、C 三类卡片拼一个边长为(2)a b +的正方形,则需要C 类卡片的张数是().A .2B .3C .4D .610.若关于x 的不等式组0521x m x -<⎧⎨-≤⎩,整数解共有2个,则m 的取值范围是()A .3m 4<<B .3m 4<≤C .3m 4≤≤D .3m 4≤<二、填空题1125_____.12.分解因式:22ab ab a ++=__________.13.计算2313x y ⎛⎫-= ⎪⎝⎭__________.14.代数式2249x mxy y ++是完全平方式,则m =__________.15.若1523,25,2,4a b c===试写出用a ,b 的代数式表示c 为___________.16.若不等式组2322x x x m +≥-⎧⎨-≤⎩无解,则m 的取值范围是______.三、解答题17.计算.(1)1100031164( 3.14)2π-⎛⎫-+-+- ⎪⎝⎭(2)()()233222()x x x ⎡⎤-⋅-÷-⎣⎦18.先化简,再求值.2(32)(32)7(1)2(1)x x x x x +-----,其中3x =.19.解不等式组253(2)123x x x x +≤+⎧⎪-⎨<⎪⎩,并把它的解集在数轴上表示.20.已知方程组21321x y mx y m +=+⎧⎨+=-⎩的解x 、y 满足1x y +<,且m 为正数,求m 的取值范围.21.(1)如图是用4个全等的长方形拼成的一个“回形”正方形,图中阴影部分面积用2种方法表示可得一个等式,这个等式为;(2)若2(2)9x y -=,2(2)169x y +=,求xy的值.22.观察下列关于自然数的等式:222915-⨯=-①2259211-⨯=-②2289317-⨯=-③…根据上述规律,解决下列问题:(1)完成第5个等式:2149-⨯=;(2)根据上面的规律写出你猜想的第n 个等式(用含n 的等式表示),并验证其正确性.23.某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒售价比乙种羽毛球每筒的售价多15元,健民体育活动中心从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.(1)该网店甲、乙两种羽毛球每筒的售价各是多少元?(2)根据健民体育活动中心消费者的需求量,活动中心决定用不超过2625元钱购进甲、乙两种羽毛球共50筒,那么最多可以购进多少筒甲种羽毛球?24.分别计算下列各式的值:(1)填空:(1)(1)x x -+=;()2(1)1x x x -++=;()32(1)1x x x x -+++=;…由此可得()98765432(1)1x x x x x x x x x x -+++++++++=;(2)求237891012222222++++++++…的值;(3)根据以上结论,计算:239798991333333+++++++….参考答案1.B 【分析】根据无理数的定义逐一判断即可.【详解】解:无理数是无限不循环小数,所以23.0.8,.3.1415926,.7A C D =--都是有理数,只故选.B 【点睛】本题考查的是无理数的识别,掌握无理数的定义是解题的关键.2.B【分析】按照实数比较大小的法则进行比较即可.【详解】解:∵−3<-1<−23,−2=2,∴−3<−23<0<−2.∴最小的数是−3,故选B.【点睛】本题考查实数的大小比较,熟知负数比较大小的方法是解题的关键.3.A 【分析】A 、根据积的乘方法则进行计算;B 、根据同底数幂的除法法则进行计算;C 、不是同类项,不能合并;D 、根据负整数指数幂的法则进行计算.【详解】解:A 、(﹣x 3)4=x 12,所以此选项正确;B 、x 8÷x 4=x 4,所以此选项不正确;C 、x 2与x 4不是同类顶,不能合并,所以此选项不正确;D 、(﹣x )﹣1=111(x x-=-,所以此选项不正确;故选:A .【点睛】本题考查了幂的乘方和积的乘方等知识点,能求出每个式子的值是解题的关键.4.C 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a ⨯,其中1a ≤<10,n 为负整数,指数的绝对值由原数左边起第一个不为零的数字前面的0的个数所决定.解:60.00000757.510.-=⨯故选.C 【点睛】本题考查的是用科学记数法表示绝对值较小的数,掌握科学记数法是解题的关键.5.D 【详解】分析:根据不等式的性质判断即可.详解:A .∵a <b ,∴a +5<b +5,故本选项错误;B .∵a <b ,∴﹣2a >﹣2b ,故本选项错误;C .∵a <b ,∴32a <32b ,故本选项错误;D .∵a <b ,∴7a <7b ,∴7a ﹣7b <0,故本选项正确.故选D .点睛:本题考查了对不等式性质的应用,注意:不等式的性质有①不等式的两边都加上或减去同一个数或整式,不等号的方向不变,②不等式的两边都乘以或除以同一个正数,不等号的方向不变,③不等式的两边都乘以或除以同一个负数,不等号的方向改变.6.A 【分析】先求出不等式组的解集,再求不等式组的整数解.【详解】去分母得:x ﹣7+2<3x ﹣2,移项得:﹣2x <3,解得:x 32->.故负整数解是﹣1,共1个.故选A.【点睛】本题考查了不等式的解法,并会根据未知数的范围确定它所满足的特殊条件的值.一般方法是先解不等式,再根据解集求其特殊值.7.D 【分析】由相反数的定义判断①,由算术平方根的含义判断②,由数轴上的点与实数一一对应判断③,举反例,4, 4.a b a b ππ==-+=判断④.【详解】1-的相反数是1,所以①错误,算术平方根等于它本身的数有0,1.所以②错误,数轴上的点与实数一一对应,所以数轴上的数不是有理数就是无理数,所以③正确,a b + 一定是个非负数,所以当a ,b 都是无理数时,||||a b +一定是无理数是错误的,比如:,4, 4.a b a b ππ==-+=故选.D 【点睛】本题考查命题的真假,掌握命题的真假的判断与基础知识是解题关键.8.C 【分析】先解不等式,再由不等式的解集得到方程可得答案.【详解】解:21x a -<- ,21x a ∴<-,12a x -∴<, 不等式的解集是1x <-,112a -∴=-,12a ∴-=-,1a ∴=-.故选:C .【点睛】本题考查含参数的不等式的解法,利用不等式的解集列方程,掌握相关的知识点是解题的关键.9.C 【分析】利用拼接前后面积不变可得结论.【详解】解:222(2)44,a b a ab b +=++ C ∴类卡片需要4张,故选.C 【点睛】本题考查的是乘法公式的实际应用,掌握乘法公式是解题关键.10.B 【分析】首先解不等式组,利用m 表示出不等式组的解集,然后根据不等式组有2个整数解,即可确定整数解,进而求得m 的范围.【详解】解:0521x m x -<⎧⎨-≤⎩①②,解①得x m <,解②得2x ≥.则不等式组的解集是2x m ≤<.不等式组有2个整数解,∴整数解是2,3.则34m <≤.故选B .【点睛】本题考查了不等式组的整数解,求不等式组的解集应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.11【详解】试题解析:5,=25,=∴512.2(1)a b +【分析】先提公因式,再套公式分解因式即可.【详解】解:2222(21)(1),ab ab a a b b a b ++=++=+故答案为:2(1)a b +.【点睛】本题考查的是因式分解,掌握提公因式法与公式法分解因式是解题关键.13.6219x y【分析】按积的乘方法则,把每个因式分别乘方再把所得的幂相乘可得答案.【详解】解:2332262111().399x y x y x y ⎛⎫-== ⎪⎝⎭故答案为:6219x y .【点睛】本题考查的是积的乘方,掌握积的乘方的法则是解题关键.14.12±【分析】利用完全平方公式的特点直接得到答案.【详解】解:2222(2),49(3)x x mxy mxy y y =++++ 223,mxy x y ∴=±∙∙12.m ∴=±故答案为:12.±【点睛】本题考查的是完全平方公式,掌握完全平方公式的特点是解题关键.15.2a b c +-=【分析】根据15=3×5=222a b a b +⨯=,4=22,再运用同底数幂的乘除法进行求解即可.【详解】∵23a=,25b =∴2223515a b a b +⨯==⨯=∴221522242a bca b ++-===∴2c a b =+-故答案为:2c a b =+-.【点睛】此题主要考查了运用同底数幂的乘除法运算法则的应用,熟练掌握运用同底数幂的乘除法是解题的关键.16.m <-4【分析】先求出每个不等式的解集,再根据已知条件得出关于m 的不等式,求出不等式的解集即可.【详解】解:2322x x x m +≥-⎧⎨-≤⎩①②∵解不等式①得:x≥-2,解不等式②得:x≤2+m ,又∵不等式组无解,∴-2>2+m ,解得:m <-4,故答案为m <-4.【点睛】本题考查了解一元一次不等式组和解一元一次不等式,能得出关于m 的不等式是解此题的关键.17.(1)2;(2)24x -【分析】(1)根据实数的运算法则直接进行计算即可得到答案,(2)按从左至右的顺序进行运算即可.【详解】解:(1)1100011( 3.14)2π-⎛⎫-++- ⎪⎝⎭1421=-+-+2.=(2)()()233222()x x x ⎡⎤-⋅-÷-⎣⎦6264()x x x =∙-÷864x x =-÷24.x =-【点睛】本题考查的是实数的运算,整式乘法中的幂的运算中的混合运算,掌握运算法则是解题关键.18.116x -,27【分析】先计算整式的乘法,再合并同类项,代入求值即可.【详解】解:原式2229477242116x x x x x x =--+-+-=-,当3x =时,原式27=【点睛】本题考查的是整式的化简求值,掌握整式的混合运算是解题关键.19.13x -≤<,见解析【分析】分别解不等式组中的两个不等式,再取解集的公共部分即可.【详解】解:253(2)123x x x x +≤+⎧⎪⎨-<⎪⎩①②解不等式①得1x ≥-;解不等式②得3x <.∴不等式组的解集为13x -≤<.不等式组的解集在数轴上表示如下图,【点睛】本题考查的是解不等式组,掌握解不等式组的方法是解题关键.20.102m <<【分析】先把m 看成常数解方程组,再代入不等式求范围即可.【详解】解:21321x y m x y m +=+⎧⎨+=-⎩ ①②①×2-②,得317x m=+173mx +=,把173m x +=代入①得172133my m +⨯+=+,153my -=,∵1x y +<,1715133mm+-+<12m <.∵0m >,∴102m <<.【点睛】本题考查的是方程组与不等式的联系,掌握其解题方法是解题关键.21.(1)22()()4a b a b ab +--=;(2)20【分析】(1)利用阴影部分的面积的不同计算方法得到答案,(2)利用两个完全平方公式之间的关系可建立方程可得答案.【详解】解:(1)22()()4a b a b ab +--=,故答案为:22()()4a b a b ab +--=.(2)222222(2)(2)4444x y x y x xy y x xy y +--=++-+-Q 8xy=8160xy ∴=20xy ∴=【点睛】本题考查利用等积变形来证明整式运算公式,以及利用得到的公式解决实际问题,掌握等积变形是解题关键.22.(1)25,29-;(2)见解析【分析】(1)根据题意可以发现等式左边的第一个数由上到下都相差3,第二个数字都是9,第三个数字依次是2221,2,3,…,等号右边的数字由上到下都相差-6,可以写出第五个等式;(2)同理根据题目中的例子,发现等式左边的第一个数由上到下都相差3,第二个数字都是9,第三个数字依次是2221,2,3,…,等号右边的数字由上到下都相差-6,从而可以写出第n 个等式,进而加以证明.【详解】解:(1)由①②③总结规律可得:22149529,-⨯=-故答案为:25,29-(2)猜想:22(31)916n n n--=-验证:2222(31)9961916n n n n n n--=-+-=-【点睛】本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化规律,写出相应的等式,并加以证明.23.(1)该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元;(2)最多可以购进25筒甲种羽毛球【分析】(1)设该网店甲种羽毛球每筒的售价为x 元,乙种羽毛球每筒的售价为y 元,找出相等关系列方程组即可,(2)最多体现的是不等关系,设购进甲种羽毛球m 筒,根据题意列出不等式即可.【详解】解:(1)设该网店甲种羽毛球每筒的售价为x 元,乙种羽毛球每筒的售价为y 元,依题意,得:1523255x y x y -=⎧⎨+=⎩解得:6045x y =⎧⎨=⎩答:该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元.(2)设购进甲种羽毛球m 筒,则购进乙种羽毛球(50)m -筒,依题意,得6045(50)2625m m +-≤解得:25m ≤答:最多可以购进25筒甲种羽毛球.【点睛】本题考查的二元一次方程组与一元一次不等式的应用,掌握列方程解应用题与列不等式解应用题的步骤是解题关键.24.(1)21x -,31x -,41x -,101x -;(2)1121-;(3)100312-【分析】(1)利用多项式乘以多项式的法则分别进行计算,利用发现的规律得到答案,(2)利用(1)的规律把237891012222222++++++++…乘以(21)-,可得答案,(3)利用(1)的规律把239798991333333+++++++…乘以1(31)2-,可得答案,【详解】解:(1)(1)(1)x x -+=21x -,()2322(1)11x x x x x x x x -++=++---=31x -,()3243232(1)11x x x x x x x x x x x -+++=+++----=41x -,根据以上计算得:()98765432(1)1x x x x x x x x x x -+++++++++=101x -,故答案为:21x -,31x -,41x -,101x -;(2)237891012222222++++++++…(21)=-2378910(12222222)++++++++ (1121)=-(3)239798991333333+++++++…()239798991(31)13333332=⨯-⨯++++⋯+++100312-=【点睛】本题考查的是多项式乘法中的规律题,根据已有的计算方法与结果得出规律是解题关键.。
沪科版数学七年级下册期中考试试题一、选择题(本大题共10小题,每小题4分,满分40分)1.计算22-的结果是()A.-4B.4C.14-D.142.下列运算中,正确的是()A.2242a a a += B.235235a b a a b -⋅=-C.()624()a a a -÷-=- D.222()a b a b -=-3.若a b >,则下列变形正确的是()A.22ac bc > B.57a b -+<-+ C.11a b> D.22a b >4.不等式2(1)11x x -->的解集在数轴上表示正确的是()A.B.C.D.5.颗粒污染物对人体的危害程度与其直径大小有关.研究表明:直径在0.42m μ()61m 10m μ-=左右的微尘可以直接到达肺细胞而沉积.这里“0.42m μ”用科学记数法表示为()A.74.210m-⨯ B.64.210m-⨯ C.84210m-⨯ D.60.4210m-⨯6.计算:()326123(3)x x x x --÷-的结果是()A.224x x-+ B.2241x x -- C.2241x x -++ D.2241x x ---7.下列因式分解正确的是()A.223(3)xy x y xy xy y x -+=- B.()2422211x x x -+=-C.2(3)(4)12x x x x -+=+- D.2321142x x x x x ⎛⎫-+=- ⎪⎝⎭8.1+的整数部分是a ,小数部分是b ,则a b -的值是()7- B.1- C.5- D.7-9.计算()()()242018(21)212121++++ 的结果是()A.403621+ B.403621- C.201821- D.4036210.为推进义务教育的均衡发展,某校计划购买教师专用电脑和学生专用电脑共100台,购买资金不超过20万元,若每台教师专用电脑2900元,每台学生专用电脑1600元,则教师专用电脑最多购买()A.30台B.31台C.69台D.70台二、填空题(本大题共4小题,每小题5分,满分20分)的相反数是________.12.若6m x =,2n x =-,则m n x -=________.13.我们规定一种运算“★”,其意义为2a b a ab =-★,如2232232=-⨯=-★.若实数x 满足(2)(3)5x x +-=★,则x 的值为________.14.a ,-8的立方根是b ,则a b +的值是________.三、(本大题共2小题,每小题8分,满分16分)15.计算:301(2018)2π-⎛⎫--+- ⎪⎝⎭16.解不等式组52,1211,23x x x -<-⎧⎪+-⎨-≤⎪⎩并求出不等式组的整数解.四、(本大题共2小题,每小题8分,满分16分)17.解不等式:2(2)(2)(1)3x x x +--+≥-18.观察下列等式:22-⨯=+,①3411422-⨯=+,②4422422-⨯=+,③54334……(1)请直接写出第四个等式:________________;(2)根据上述等式的排列规律,猜想第n个等式(用含n的式子表示,n是正整数),并说明你猜想的正确性.五、(本大题共2小题,每小题10分,满分20分)19.如图,长方形ABCD的长为2cm,宽为1cm.(1)将长方形ABCD进行适当的分割(画出分割线),使分割后的图形能拼成一个正方形,并画出所拼的正方形;(标出关键点和数据)(2)求所拼正方形的边长.20.如图,某校有一块长为(2)a b+米的长方形空地,现准备在中心位置修a b+米,宽为()建一个边长为()-米的正方形花坛,并把其余的地方(阴影部分)种上草皮进行绿化.a b(1)用代数式表示绿化部分(阴影部分)的面积S ;(2)当10a =,4b =时,且每平方米的草皮的价格是70元,求绿化所需的费用.六、(本题满分12分)21.已知:5x y +=,3xy =-.(1)①求22x y +的值;②求22x y xy +的值.(2)利用已知条件和(1)的计算结果,你能求出x y -的值吗?若能,请写出解答过程;若不能,请说明理由.七、(本题满分12分)22.“小麦绕村苗郁郁,柔桑满陌椹累累”宋朝诗人陆游在《闲咏》诗中咏诵的“小麦”是我省北方地区种植的重要经济作物.据相关部门公布的信息:我省2018年种植“专用品种小麦”和“一般品种小麦”共2600万亩,其中“一般品种小麦”的种植面积比“专用品种小麦”的种植面积的3倍还多200万亩.请回答下列问题:(1)求我省2018年“专用品种小麦”和“一般品种小麦”的种植面积.(2)若我省“专用品种小麦”每亩产量是300千克,要保证我省小麦的总产量不低于1100万吨,则“一般品种小麦”的亩产量至少是多少千克?八、(本题满分14分)23.阅读下列材料,解答后面的问题:材料:求代数式225x x -+的最小值.小明同学的解答过程:222252115(1)4x x x x x -+=-+-+=-+……我们把这种解决问题的方法叫做“配方法”.问题:(1)请按照小明的解题思路,写出完整的解答过程;(2)请运用“配方法”解决问题:①若22610340x y x y +-++=,求y x -的立方根;②分解因式:441x +.参考答案及评分标准一、选择题(本大题共10小题,每小题4分,满分40分)题号12345678910答案DC B B A CD D B A二、填空题(本大题共4小题,每小题5分,满分20分)-12.-313.-114.0或-4三、(本大题共2小题,每小题8分,满分16分)15.解:31(2018)2π-⎛⎫--+-⎪⎝⎭3181(2)644=----+=-.16.解:解不等式52x-<-,得3x<,解不等式121123x x+--≤,得1x≥-,把它们在数轴上表示出来为,所以原不等式组的解集为13x-≤<,它的整数解是-1,0,1,2.四、(本大题共2小题,每小题8分,满分16分)17.解:()224213x x x--++≥-,去括号得224213x x x----≥-,移项合并同类项得22x-≥,系数化为1得1x≤-.18.解:(1)2264444-⨯=+;(2)22(2)44n n n+-=+;说理:∵左边222(2)44444n n n n n n =+-=++-=+=右边,∴猜想成立.五、(本大题共2小题,每小题10分,满分20分)19.解:(1)分割方法不唯一,如图,(2)设拼成的正方形边长为cm x ,根据题意得2122x =⨯=,由平方根概念得x =长是正数)..20.解:(1)2(2)()()S a b a b a b =++--()2222222a ab ab b a ab b =+++--+2222222a ab ab b a ab b =+++-+-25a ab =+;(2)当10a =,4b =时,2105104300S =+⨯⨯=(平方米)绿化所需的费用为3007021000⨯=(元).六、(本题满分12分)21.解:(1)①解法1:22222222()252(3)31x y x xy y xy x y xy +=++-=+-=-⨯-=;解法2:因为5x y +=,所以22()5x y +=,22225x xy y ++=,22252252(3)31x y xy +=-=-⨯-=;②22()3515x y xy xy x y +=+=-⨯=-.(2)能.解:因为222()2x y x xy y -=-+,又2231x y +=,3xy =-,所以222()2312(3)37x y x y xy -=+-=-⨯-=,所以x y -=七、(本题满分12分)22.解:(1)设我省2018年“专用品种小麦”的种植面积为x 万亩,“一般品种小麦”的种植面积为y 万亩.根据题意,得2600,3200,x y x y +=⎧⎨+=⎩解得600,2000.x y =⎧⎨=⎩答:我省2018年“专用品种小麦”的种植面积为600万亩,“一般品种小麦”的种植面积为2000万亩.(2)设“一般品种小麦”的亩产量是a 千克,根据题意得6003002000110010001000a⨯+≥,解得460a ≥.答:“一般品种小麦”的亩产量至少是460千克.八、(本题满分14分)23.解:(1)无论x 为何值,2(1)0x -≥,所以2(1)44x -+≥,即当1x =时,2(1)4x -+有最小值4,故代数式225x x -+的最小值是4;(2)①因为22610340x y x y +-++=,所以226910250x x y y -++++=,22(3)(5)0x y -++=,由于2(3)0x -≥,2(5)0y +≥,所以30x -=且50y +=,即3x =,5y =-,所以538y x -=--=-,所以y x -2==-.②4422414414x x x x +=++-()()()2222221(2)221221x x x x x x =+-=++-+.。
沪科版数学七年级下册期中考试试题一.选择题(每小题3分,满分30分)1、下列各数中,无理数的个数有()12,0.·2·3,4,327,-23,π2,0.131331333······(相邻两个1之间3的个数依次增加1)A.1个B.2个C.3个D.4个2、下列各式中正确的是()A.49144=±712B.-3-278=-32C.-9=-3D.3(-8)2=43、下列从左到右边的变形,是因式分解的是()A.(3-x )(3+x )=9-x 2B.(y +1)(y -3)=-(3-y )(y+1)C.4yz -2y 2z +z =2y (2z -yz )+zD.-8x 2+8x -2=-2(2x -1)24、不等式x ≤2x +1的解集在数轴上表示正确的是()5、若关于x x -2m<0x+m>2有解,则m 的取值范围是()A.m >-23B.m ≤23C.m >23D.m ≤-236、若a>b ,则下列不等式一定成立的是()A.c -a>c -bB.ac>bcC.a -c>b -cD.-a c <-b c7、下列多项式的乘法中,能使用平方差公式计算的有()①(m -n )(-m +n )②(-a -b )(a -b )③(x+y )(-x -y )④(x +3y -z )(x +z -3y )A.1个B.2个C.3个D.4个8、下列运算正确的是()A.2x-2=12x2B.a6÷a3=a2C.(a2)3=a5D.a3·a=a49x+2y=4k2x+y=2k+1的解满足0<y-x<1,则k的取值范围是()A.-1<k<1B.-1<k<-12C.0<k<1 D.12<k<110、任何一个正整数n都可以进行这样的分解:n=p×q(p,q都是正整数,且p≤q),如果p×q在n的所有分解中两个因数之差的绝对值最小,我们就称p×q是n的黄金分解,并规定:F(n)=pq,例如:18可以分解为1×18;2×9;3×6这三种,这时F(18)=36=12,现给出下列关于F(n)的说法:①F(2)=12,②F(24)=38,③F(27)=3,④若n是一个完全平方数,则F(n)=1.其中说法正确的个数有()A.1个B.2个C.3个D.4个二.填空题(每小题4分,满分28分)11、因式分解:a2-b2+2b-1=_______________________.12、若关于x的方程x+3=3x-m的解是正数,则m的取值范围是_________.13、用科学计数法表示-0.00001059=__________________.14、已知一种水果的进价为每千克3.8元,在正常的销售过程中,估计有5%的水果损耗,为保证此次销售不亏本,商家要把水果的单价至少定为_______元.15、已知2a=5,2b=10,2c=50,那么a、b、c之间满足的等量关系是____________.16、已知a-b=9,ab=-14,则a2+b2的值为_____________.17、在学习对二次三项式x2+ax+b进行因式分解时,粗心的小明由于看错了a,而分解的结果是(x+4)(x-3),小红看错b而分解的结果是(x+1)(x-5).相信聪明的你能写出正确的分解结果是______________________.三.解答题(满分62分)18、(7分)计算:-14+|3-2|+(12)-1-4×(2015-π)019、(7x-2≥3x-523(x-1)<4(x-1)20、(8分)先化简,再求值.(2x-12y)(2x+12y)-(2x-12y)2,其中x=14,y=-1.21、(8分)在学习因式分解的拓展知识时,老师让各学习小组先阅读以下材料:若m2+2mn+2n2-6n+9=0,求m,n的值.解:因为m2+2mn+2n2-6n+9=0所以(m²+2mn+n²)+(n²-6n+9)=0即:(m+n)²+(n-3)²=0所以(m+n)2=0,(n-3)2=0解得n=3,m=-3请你根据以上解题思路,发挥你的聪明才智,解决下列问题:求当a,b取何值时,代数式a²+b²-3a-4b+8的值最小,最小值多少?22、(10分)观察下列各式:(x-1)(x+1)=x2-1(x-1)(x2+x+1)=x3-1(x-1)(x3+x2+x+1)=x4-1······(1)根据以上规律,则(x-1)(x6+x5+x4+x3+x2+x+1)=__________________.(2)你能否由此归纳出一般性规律(x-1)(x n+x n-1+x n-2+···+x+1)=____________.(3)根据以上规律求1+3+32+···+349+350的结果.23、(10分)阅读材料并回答问题:我们已经知道,完全平方公式,平方差公式可以用几何图形的面积来表示,实际上还有一些代数恒等式也可以用这种形式表示,比如图②可以解释为:(a+2b)(a+b)=a2+3ab+2b2①②③(1)请写出图③可以解释的代数等式:____________________________;(2)在下面虚线框中用图①中的基本图形若干块,拼成一个长方形(每种至少用一次,卡片之间不能有缝隙或重叠),使拼出的长方形面积为3a2+7ab+2b2,并写出这个长方形的长和宽是________________________.24、(12分)甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市一次累计购买商品超出300元,超出部分按原价的8折优惠;在乙超市一次累计购买商品超出200元,超出部分按原价的8.5折优惠.设顾客预计一次累计购物x元(x>300).(1)请用含x的式子分别表示顾客在两家超市购物所付的费用;(2)试比较顾客到哪家超市购物更优惠?说明你的理由.答案四.选择题(每小题3分,满分30分)3、下列各数中,无理数的个数有(C )12,0.·2·3,4,327,-23,π2,0.131331333······(相邻两个1之间3的个数依次增加1)B.1个B.2个C.3个D.4个4、下列各式中正确的是(D )B.49144=±712B.-3-278=-32C.-9=-3D.3(-8)2=43、下列从左到右边的变形,是因式分解的是(D )B.(3-x )(3+x )=9-x 2B.(y +1)(y -3)=-(3-y )(y+1)C.4yz -2y 2z +z =2y (2z -yz )+zD.-8x 2+8x -2=-2(2x -1)24、不等式x ≤2x +1的解集在数轴上表示正确的是(B)18、若关于x x -2m<0x+m>2有解,则m 的取值范围是(C )B.m >-23B.m ≤23C.m >23D.m ≤-2319、若a>b ,则下列不等式一定成立的是(C )B.c -a>c -bB.ac>bcC.a -c>b -cD.-a c <-b c20、下列多项式的乘法中,能使用平方差公式计算的有(B)①(m -n )(-m +n )②(-a -b )(a -b )③(x+y )(-x -y )④(x +3y -z )(x +z -3y )B.1个B.2个C.3个D.4个21、下列运算正确的是(D)A.2x -2=12x 2B.a 6÷a 3=a 2C.(a 2)3=a 5D.a 3·a =a 422x+2y=4k2x+y=2k +1的解满足0<y -x <1,则k 的取值范围是(D)A.-1<k <1B.-1<k <-12C.0<k<1D.12<k <123、任何一个正整数n 都可以进行这样的分解:n =p×q(p,q 都是正整数,且p≤q ),如果p×q 在n 的所有分解中两个因数之差的绝对值最小,我们就称p×q 是n 的黄金分解,并规定:F(n )=pq,例如:18可以分解为1×18;2×9;3×6这三种,这时F(18)=36=12,现给出下列关于F(n )的说法:①F(2)=12,②F(24)=38,③F(27)=3,④若n 是一个完全平方数,则F(n )=1.其中说法正确的个数有(B )B.1个B.2个C.3个D.4个五.填空题(每小题4分,满分28分)24、因式分解:a 2-b 2+2b -1=_______________________.25、若关于x 的方程x +3=3x -m 的解是正数,则m 的取值范围是____________.26、用科学计数法表示-0.00001059=__________________.27、已知一种水果的进价为每千克3.8元,在正常的销售过程中,估计有5%的水果损耗,为保证此次销售不亏本,商家要把水果的单价至少定为_______元.28、已知2a =5,2b =10,2c =50,那么a 、b 、c 之间满足的等量关系是____________.29、已知a -b =9,ab=-14,则a 2+b 2的值为_____________.30、在学习对二次三项式x 2+ax +b 进行因式分解时,粗心的小明由于看错了a ,而分解的结果是(x +4)(x -3),小红看错b 而分解的结果是(x +1)(x -5).相信聪明的你能写出正确的分解结果是______________________.六.解答题(满分62分)(a+b -1)(a -b +1)m >-3-1.059×10-54a+b=c53(x+2)(x -6)18、(7分)计算:-14+|3-2|+(12)-1-4×(2015-π)0解:原式=-1+2-3+2-4=-1-3.19、(7x-2≥3x-52①3(x-1)<4(x-1)②解:解不等式①得x≤1解不等式②得x>1∴不等式组无解.25、(8分)先化简,再求值.(2x-12y)(2x+12y)-(2x-12y)2,其中x=14,y=-1.解:原式=4x2-14y2-(4x2-2xy+14y2)=4x2-14y2-4x2+2xy-14y2=2xy-12y2当x=14,y=-1时,原式=2×14×(-1)-12×(-1)2=-1.26、(8分)在学习因式分解的拓展知识时,老师让各学习小组先阅读以下材料:若m2+2mn+2n2-6n+9=0,求m,n的值.解:因为m2+2mn+2n2-6n+9=0所以(m²+2mn+n²)+(n²-6n+9)=0即:(m+n)²+(n-3)²=0所以(m+n)2=0,(n-3)2=0解得n=3,m=-3请你根据以上解题思路,发挥你的聪明才智,解决下列问题:求当a,b取何值时,代数式a²+b²-3a-4b+8的值最小,最小值多少?解:a²+b²-3a-4b+8=a²-3a+(32)2+b²-4b+4+74=(a-32)2+(b-2)2+74当a-32=0且b-2=0时,代数式有最小值,即a=32,b=2时,a²+b²-3a-4b+8的值最小,最小值是74.27、(10分)观察下列各式:(x-1)(x+1)=x2-1(x-1)(x2+x+1)=x3-1(x-1)(x3+x2+x+1)=x4-1······(4)根据以上规律,则(x-1)(x6+x5+x4+x3+x2+x+1)=__________________.(5)你能否由此归纳出一般性规律(x-1)(x n+x n-1+x n-2+···+x+1)=____________.(6)根据以上规律求1+3+32+···+349+350的结果.解:1+3+32+···+349+350=12(3-1)(1+3+32+···+349+350)=351-12x7-1x n+1-128、(10分)阅读材料并回答问题:我们已经知道,完全平方公式,平方差公式可以用几何图形的面积来表示,实际上还有一些代数恒等式也可以用这种形式表示,比如图②可以解释为:(a+2b )(a +b )=a 2+3ab +2b 2.(3)请写出图③可以解释的代数等式:____________________________;(4)在下面虚线框中用图①中的基本图形若干块,拼成一个长方形(每种至少用一次,卡片之间不能有缝隙或重叠),使拼出的长方形面积为3a 2+7ab +2b 2,并写出这个长方形的长和宽是________________________.①②③(a+2b )(2a +b )=2a 2+5ab +b 2a+2b,3a +b29、(12分)甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市一次累计购买商品超出300元,超出部分按原价的8折优惠;在乙超市一次累计购买商品超出200元,超出部分按原价的8.5折优惠.设顾客预计一次累计购物x元(x>300).(3)请用含x的式子分别表示顾客在两家超市购物所付的费用;(4)试比较顾客到哪家超市购物更优惠?说明你的理由.解:(1)在甲超市购物所付的费用是:300+0.8(x-300)=(0.8x+60)元,在乙超市购物所付的费用是:200+0.85(x-200)=(0.85x+30)元;(2)①当0.8x+60=0.85x+30时,解得x=600.∴当顾客购物600元时,到两家超市购物所付费用相同;②当0.8x+60>0.85x+30时,解得x<600,而x>300,∴300<x<600.即顾客购物超过300元且不满600元时,到乙超市更优惠;③当0.8x+60<0.85x+30时,解得x>600,即当顾客购物超过600元时,到甲超市更优惠.第11页。
沪科版数学七年级下册期中考试试题一、选择题(本大题共10小题,每小题4分,共40分)1.81的平方根是()A.9B.9或-9C.3D.3或-32.已知a >b ,则下列不等式变形正确的是()A.-2a >-2bB.a +-3>b +3C.ba 44< D.ac >bc3.下列运算中,计算结果正确的是()A.a 4·a =a 4B.a 6÷a 3=a 2C.(a 3)2=a 6D.(ab )3=a 3b4.如图,数轴上点P 表示的数可能是()A.10B.5C.3D.25.把不等式组⎪⎩⎪⎨⎧+≤-12141<x x 中两个不等式的解集在数轴上表示出来,正确的是()6.面积为3的正方形的边长范围在()A.0和1之间B.1和2之间C.2和3之间D.3和4之间7.下列分解因式正确的是()A.x 3-x =x (x 2-1)B.(a +3)(a -3)=a 2-9.C.a 2-9=(a +3)(a -3)D.x 2+y 2=(x +y )(x -y ).8.不等式组⎩⎨⎧+12m x x >>的解集是x >-1,则m 的值是()A.-1B.-2C.1D.29.如图①,边长为a 的大正方形中有四个边长均为b 的小正方形,小华将阴影部分拼成一个长方形,(如图②)则这个长方形的面积为()A.(a +2b )(a -2b )B.(a +b )(a -b )C.(a +2b )(a -b )D.(a +b )(a -2b )10.一次智力测验,有20道选择题.评分标准是:对1题给5分,错1题扣2分,不答题不给分也不扣分,小明有五道题未答,至少答对几道题,总分才不会低于60分,则小明至少答对的题数是()A.14道B.13道C.12道D.1道二、填空题(每题5分,共20分)11.若多项式x 2-mx +9是一个完全平方式,则m =_______________.12.三个连续正整数的和不大于12.这样的正整数有_______________.13.若036.536.25=,906.156.253=,则√=253600_______________.14.在日常生活中如取款、上网等都需要密码,有一种用“因式分解法”产生的密码,方便记忆,原理是:对于多项式x 4-y 4,因式分解的结果是(x -y )(x +y )(x 2+y 2),若取x =9,y =9时,则各个因式的值是:(x +y )=18,(x -y )=0,(x 2+y 2)=162,于是就可以把“180162”作为一个六位数的密码,对于多项式16x 3-xy 2,取x =10,y =10时,用上述方法产生的密码是_______________(写出一个即可).三、(本大题共2小题,每小题8分,满分16分)15.计算或化简:(1)(-1)2012+221--)(+364-81(2)(3x 2y )2(-15xy 3)÷(-9x 4y 2)16.解方程或不等式组:(1)⎪⎩⎪⎨⎧≤-+-xx x x 322412<(2)(2x -1)2-169=0四、(本大题共2小题,每小题8分,满分16分)17.把下列各式分解因式:(1)m 2-9;(2)9a 2(x -y )+4b 2(y -x ).18.先化简,再求值:(2a -b )2-(2a +b )(b -2a ),其中a =1,b =2.五、(本大题共2小题,每小题10分,满分20分)19.小丽准备完成题目:解一元一次不等式组⎩⎨⎧+-012□>>x x 发现常数“□”印数不清楚(1)他把“□”猜成-5,请你解一元一次不等式组⎩⎨⎧--0512>>x x ;(2)张老师说:我做一下变式,若“□”表示字母a ,且⎩⎨⎧+-012□>>x x 的解集是x >3,求出字母“a”的取值范围.20.已知x -2的算术平方根是2,2x +y -1的立方根是3,求y -2x 的平方根.六、(本题满分12分)21.阅读材料,根据材料回答:例如1:(-2)3×33=(-2)×(-2)×(-2)×3×3×3=[(-2)×3]×[(-2)×3]×[(-2)×3]=[(-2)×3]3=(-6)3=-216.例如2:86×0.1256=8×8×8×8×8×8×0.125×0.125×0.125×0.125×0.125×0.125=(8×0.125)×(8x0.125)×(8×0.125)×(8×0.125)×(8x0.125)×(8×0.125)=(8×0.125)6=1.(1)仿照上面材料的计算方法计算:4452175)()(-⨯;(2)由上面的计算可总结出一个规律:(用字母表示)a n ·b n =_______________;(3)用(2)的规律计算:-0.42018×201935(-×2019)23(.七、(本题满分12分)22.2020年疫情期间,某公司为了扩大经营,决定购进6台机器用于生产口罩.现有甲、乙两种机器供选择,其中每种机器的价格和每台机器日生产口罩的数量如下表所示.经过预算,本次购买机器所耗资金不能超过36万元,(1)按该公司要求可以有几种购买方案?(2)如果该公司购进的6台机器的日生产能力不能低于42万个,那么为了节约资金应选择什么样的购买方案?甲乙价格(万元/台)75每台日产量(万个)106八、(本题满分14分)23.已知甲、乙两个长方形纸片,其边长如图所示(m >0),面积分别为S 甲和S 乙.(1)①用含m 的代数式表示S 甲=_______________,S 乙=_______________.②用“<”、“=”或“>”号填空S 甲_______________S 乙.(2)若一个正方形纸片的周长与乙的周长相等,其面积设为S 正。
一、选择题(每题4分,共40分)1.在3,227,π2,4,1.3·,2.101 001 000 1…(每两个1之间依次增加一个0)中,无理数有( )A .1个B .2个C .3个D .4个2.杨絮纤维的直径约为0.000 010 5米,0.000 010 5用科学记数法表示为( )A .0.105×10-5B .1.05×10-5C .1.05×10-4D .0.105×10-43.若实数x ,y 满足2x -1+|y -1|=0,则x +y 的值是( )A .1B .32C .2D .524.若a <b ,则下列式子中一定成立的是( )A .a +3<b +2B .2-a <2-bC .ac <bcD .a -8<b -75.计算37-2的值( )A .在1和2之间B .在2和3之间C .在3和4之间D .在4和5之间6.若x 2+2(2p -3)x +4 是完全平方式,则p 的值是( )A .52B .2C .2 或 1D .52或127.一个大长方形按如图方式分割成十二个小长方形,且只有标为A ,B ,C ,D的四个小长方形为正方形,在满足条件的所有分割中,若知道十二个小长方形中n 个小长方形的周长,就一定能算出这个大长方形的面积,则n 的最小值是( )A .2B .3C .4D .58.若关于x 的不等式组⎩⎪⎨⎪⎧x <2(x -a ),x -1≤23x 恰有3个整数解,则a 的取值范围是学校 姓名 班级___________ 座位号( )A .0≤a <12B .0≤a <1C .-12<a ≤0D .-1≤a <09.已知(x -2)x +3=1,则x 的值为( )A .3B .-2C .3或-2D .3或-3或110.某大型超市从生产基地购进一种水果,运输过程中质量损失10%,假设不计超市其他费用,如果超市要想至少获得20%的利润,那么这种水果的售价在进价的基础上应至少提高( )A .40%B .33.4%C .33.3%D .30%二、填空题(每题5分,共20分) 11.16的平方根是________;|2-3|=________.12.若3x -2和5x +6是正数a 的两个平方根,则正数a 的值为________.13.计算:1-⎝ ⎛⎭⎪⎫-572 021×⎝ ⎛⎭⎪⎫1252 020=________. 14.某大型音乐会在艺术中心举行,观众在门口等候检查进入大厅,且排队的观众按照一定的速度增加,检查速度一定,当开放一个大门时,需要半小时待检观众能全部进入大厅,同时开放两个大门,只需10分钟,现在想提前开演,必须在5分钟内全部检完票,则应至少同时开放________个大门.三、(每题8分,共16分)15.计算:⎝ ⎛⎭⎪⎫-12-2-(2 021+π)0+|2-5|.16.解不等式(组):(1)1-x -13≤2x +33+x ;(2)⎩⎪⎨⎪⎧9x +5<8x +7,43x +2>1-23x ,并写出其所有的非负整数解.四、(每题8分,共16分)17.先化简,再求值:[(x +3y )(x -3y )+(2y -x )2+5y 2(1-x )-(2x 2-x 2y )]÷⎝ ⎛⎭⎪⎫-12xy ,其中x =95,y =220.18.(1)已知2x =128,2y =8,求2x -2y 的值;(2)若x -2y +1=0,求2x ÷4y ×8的值.五、(每题10分,共20分)19.已知a 是3 3的整数部分,b 是3 3的小数部分,计算a 2-4b 的值.(3≈1.73)20.已知A,B,C是三个多项式,且A÷B=C.(1)若A=x3-1,B=x-1,求多项式C;(2)根据(1)的结果,直接写出(x n+1-1)÷(x-1)(n为正整数)的结果.六、(12分)21.某居民小区响应党的号召,开展全民健身活动,该小区准备修建一座健身馆,其设计方案如图所示,A区为成年人活动场所,B区为未成年人活动场所,其余地方均种花草.(π取3.14)(1)活动场所和花草的面积各是多少?(2)整座健身馆的面积是成年人活动场所面积的多少倍?七、(12分)22.为了抓住文化艺术节的商机,某商店决定购进A,B两种艺术节纪念品.若购进A种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元.(1)求购进A,B两种纪念品每件各需要多少元;(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7 500元,但不超过7 650元,则该商店共有哪几种进货方案?八、(14分)23.【阅读思考】阅读下列材料:已知“x-y=2,且x>1,y<0,试确定x+y的取值范围”有如下解法:解:因为x-y=2,所以x=y+2.又因为x>1,所以y+2>1,所以y>-1.又因为y<0,所以-1<y<0,①同理得1<x<2,②由①+②,得-1+1<x+y<0+2.所以x+y的取值范围是0<x+y<2.【启发应用】请按照上述方法,完成下列问题:(1)已知x-y=3,且x>2,y<1,则x+y的取值范围是________;(2)已知x-y=a,且x<-1,y>1,试确定x+y的取值范围.(用含有a的式子表示)【拓展推广】请按照上述方法,完成下列问题:(3)已知x+y=2,且x>1,y>-4,试确定x-y的取值范围.答案一、1.C 2.B 3.B 4.D 5.D 6.D 7.B8.A 点拨:⎩⎪⎨⎪⎧x <2(x -a ),①x -1≤23x ,② 解不等式①,得x >2a ,解不等式②,得x ≤3,所以不等式组的解集是2a <x ≤3.因为关于x 的不等式组⎩⎪⎨⎪⎧x <2(x -a ),x -1≤23x 恰有3个整数解, 所以0≤2a <1,解得0≤a <12.9.D 点拨:①当x -2=1时,解得x =3,②当x +3=0且x -2≠0时,解得x =-3;③当x -2=-1,x +3为偶数时,解得x =1.10.B 点拨:设购进这种水果a 千克,进价为y 元/千克,这种水果的售价在进价的基础上应提高x ,则售价为(1+x )y 元/千克,由题意得(1-10%)a (1+x )y -ay ay ×100%≥20%,解得x ≥13,经检验x ≥13是原不等式的解.所以这种水果的售价在进价的基础上应至少提高33.4%. 二、11.±2;3- 212.494 点拨:因为3x -2和5x +6是正数a 的两个平方根,所以3x -2+5x +6=0,解得x =-12.所以3x -2=-72,所以a =494.13.127 14.4三、15.解:原式=4-1-(2-5)=4-1-2+5=1+ 5.16.解:(1)去分母,得3-(x -1)≤2x +3+3x ,去括号,得3-x +1≤5x +3, 移项,得-x -5x ≤3-3-1,合并同类项,得-6x ≤-1,系数化为1,得x ≥16.(2)解不等式9x +5<8x +7,得x <2,解不等式43x +2>1-23x ,得x >-12,则不等式组的解集为-12<x <2,其非负整数解为0,1.四、17.解:原式=(x 2-9y 2+4y 2-4xy +x 2+5y 2-5xy 2-2x 2+x 2y )÷⎝ ⎛⎭⎪⎫-12xy =(-4xy -5xy 2+x 2y )÷⎝ ⎛⎭⎪⎫-12xy =8+10y -2x ,当x =95,y =220时, 原式=8+10×220-2×95=2 018.18.解:(1)因为2x =128,2y =8,所以2x -2y =2x ÷(2y )2=128÷82=2.(2)因为x -2y +1=0,所以x -2y =-1,所以2x ÷4y ×8=2x -2y ×8=2-1×8=4.五、19.解:因为3 3≈3×1.73=5.19,所以a =5,b =3 3-5,所以a 2-4b =52-4×(3 3-5)=25-12 3+20=45-12 3≈24.24.20.解:(1)因为A =x 3-1,B =x -1,所以C =A ÷B =(x 3-1)÷(x -1)=(x -1)(x 2+x +1)÷(x -1)=x 2+x +1.(2)由(1)知(x n +1-1)÷(x -1)=x n +x n -1+x n -2+…+x +1.六、21.解:(1)活动场所面积为4a ·3a +π⎝ ⎛⎭⎪⎫3a 22=12a 2+9π4a 2≈19.065a 2, 花草的面积为(a +4a +5a )(1.5a +3a +1.5a )-⎝ ⎛⎭⎪⎫12a 2+9π4a 2 =48a 2-9π4a 2≈40.935a 2.(2)(a +4a +5a )(1.5a +3a +1.5a )4a ·3a=5.故整座健身馆的面积是成年人活动场所面积的5倍.七、22.解:(1)设该商店购进A 种纪念品每件需要a 元,购进B 种纪念品每件需要b 元,根据题意,得⎩⎨⎧8a +3b =950,5a +6b =800.解方程组,得⎩⎨⎧a =100,b =50.答:购进A 种纪念品每件需要100元,购进B 种纪念品每件需要50元.(2)设该商店购进A 种纪念品x 件,则购进B 种纪念品(100-x )件,根据题意,得⎩⎨⎧100x +50(100-x )≥7 500,100x +50(100-x )≤7 650,解得50≤x ≤53.因为x 为整数,所以x =50,51,52或53,所以该商店共有4种进货方案:方案1:购进A 种纪念品50件,购进B 种纪念品50件;方案2:购进A 种纪念品51件,购进B 种纪念品49件;方案3:购进A 种纪念品52件,购进B 种纪念品48件;方案4:购进A 种纪念品53件,购进B 种纪念品47件.八、23.解:(1)1<x +y <5(2)因为x -y =a ,所以x =y +a ,又因为x <-1,所以y +a <-1,所以y <-a -1,又因为y >1,所以1<-a -1,解得a <-2.当a <-2时,1<y <-a -1①,同理得当a <-2时,a +1<x <-1②,由①+②,得1+a +1<y +x <-a -1+(-1),所以当a <-2时,x +y 的取值范围是a +2<x +y <-a -2.(3)因为x +y =2,所以x =2-y ,又因为x >1,所以2-y >1,所以y <1,又因为y >-4,所以-4<y <1,所以-1<-y <4①,同理得1<x <6②,由①+②,得0<x -y <10,所以x -y 的取值范围是0<x -y <10.。
七 年 级 数 学 试 卷温馨提示: 同学们,学期过半啦!你一定又学到了很多新的知识吧,本套试题共22题,满分为100分,要求你在100分钟内完成,相信你一定能取得好成绩,现在就开始吧!一、耐心选一选:(本大题共10小题,每小题3分,共30分,在每1.9的算术平方根是( )(A )3 (B )-3 (C )±3 (D )812、在下列各数0、2.0 、π3、722、 1010010001.6、11131、27数的个数是 ( )(A) 1 ( B) 2 (C) 3 (D) 43、下列说法中,正确的是 ( )(A )4,3,2都是无理数 (B )无理数包括正无理数、负无理数和零(C )实数分为正实数和负实数两类 (D )绝对值最小的实数是0b c <5.下列运算正确的是( )(A ) 236a a a =÷ (B )_____________________________________ 姓名____________________ 考场号________________ 考号_______________-------------------------------------------密---------------------------------封--------------------------------线------------------------------------------------0)1()1(01=-+--(C ) ab b a 532=+ (D )22))((a b b a b a -=--+-6、不等式7215>-x 的正整数解的个数为( )(A )3个 (B )4个 (C )5个(D )6个7、下列各式正确的是( )(A )222)(b a b a +=+ (B )22))((a b a b b a -=-+(C ) 2222)(b ab a b a --=- (D )96)3(22+--=+-a a a8、下列)4)(3(-+b a 的展开式中正确的是( )(A) 1234-+-a b ab ; (B )4312ab a b -+-;(C )1234++-a b ab ; (D )1234++-b a ab .9、若多项式n x x ++62是一个整式的平方,则n 的值是( ) (A )36 (B )9 (C )-9 (D )±910、如左图,在边长为a 的正方形中挖掉一个边长为b 的小正方形()(b a >,把余下的部分剪拼成一矩形如右图,通过计算两个图形(阴影部分)的面积,验证了一个等式,则这个等式是 ( )(A )222))(2(b ab a b a b a -+=-+ (B )2222)(b ab a b a ++=+ (C )2222)(b ab a b a +-=- (D )))((22b a b a b a -+=-二、精心填一填(本大题共5小题,每小题3分,共15分,请将结果写 在横线上)11、比较大小:5-____2-.(填>、<或=) 12、计算:)12)(12(-+=a ba13、关于x 的某个不等式组的解集在数轴上可表示为:则这个不等式组的解集是 .14、今天,和你一同参加五校联考的学生总数为3000人,其中男生人数不超过女生人数的1.5倍,请问男生至多__________人。
七年级(下)数学期中复习卷一姓名一、填空题1、要使x 23-有意义,x 的取值范围是 。
2、要使x-21有意义,x 的取值范围是 。
3、已知54.78.56=,754.0=x ,则x= 4、已知703.19.2=,则=2905、如图,BD 平分∠ABC ,∠A=3∠DBC ,要使AD//BC ,则∠A 的度数为 。
第5题 第10题 第12题 第13题 6、数轴上点A 、B 分别表示数2-、7,点A 与点B 关于点C 成中心对称,则点C 所表示的数是 。
7、数轴上点A 表示数为5,点A 与点B 的距离为3,则点B 所表示的数是 。
8、数轴上点A 、B 分别表示数1-、6,点A 与点C 关于点B 成中心对称,则点C 所表示的数是 。
9、已知∠A 与∠B 的两边分别平行,且∠A 的度数比∠B 的度数的4倍少45°,则∠A 的度数是 。
10、折叠三角形纸片ABC ,使点A 落在BC 边上的点F ,且折痕DE 平行于BC ,若∠B=40°,则∠BDF的度数是 。
11. 直角三角形三边长分别为3、4、5,则斜边上的高为 。
12、如图,正方形ABCD 、CEFG 的面积分别为6和15,则阴影部分的面积为 。
13.如图,已知正方形ABCD 和正方形CEFG 的边长分别是8厘米和6厘米,那么阴影部分的面积是______平方厘米.14. 625的平方根是 。
15. 若814=a ,则a= 。
16. 把4531表示成幂的形式是 。
17. 如图,ABCD 和CEFG 都是正方形,已知AB=8,则阴影部分面积为 。
第17题 第18题 第19题 第20题18. 如图,直线AB 、CD 相交于O ,OE 平分∠AOD ,OF ⊥OC 于O ,∠1=50°,则∠2= , ∠3= 。
19. 如图,AB ⊥CD 于O ,EF 为过点O 的直线,MN 平分∠AOC ,若∠EON=110°,则, ∠EOB= ,∠BOM= ,∠BOF= 。
沪科版七年级下册数学期中考试试卷2020年4月一、单选题1.64的立方根是( )A .4B .±4C .8D .±82.在实数227,0,π,中,无理数的个数是( ) A .1 B .2 C .3 D .43.下列各式中,正确的是( )A 2=±B .3=C 3=-D 3=- 4.已知a b >,则下列不等式中,不成立的是( )A .a 3b 3+>+B .22a b 33>C .3a 3b ->-D .5a 5b > 5.下列计算正确的是( )A .3332b b b ⋅=B .()326ab ab =C .()2510a a =D .336y y y += 6.不等式2x 26+≤的解集在数轴上表示正确的是( )A .B .C .D .7.不等式组{21x x >-<-的解集为( )A .2x >-B .1x <-C .21x -<<-D .无解 8.下列因式分解正确的是( )A .6x+9y+3=3(2x+3y)B .x 2+2x+1=(x+1)2C .x 2﹣2xy ﹣y 2=(x ﹣y)2D .x 2+4=(x+2)29+|b ﹣1|=0,那么(a+b)2019的值为( )A .﹣1B .1C .32019D .﹣32019 10.某商店将定价为3元的商品,按下列方式优惠销售:若购买不超过5件,按原价付款;若一次性购买5件以上,超过部分打八折.小聪有27元钱想购买该种商品,那么最多可以购买多少件呢?若设小聪可以购买该种商品x 件,则根据题意,可列不等式为( ) A .3×5+3×0.8x ≤27B .3×5+3×0.8x ≥27C .3×5+3×0.8(x ﹣5)≤27D .3×5+3×0.8(x ﹣5)≥27二、填空题11.计算432x x ⋅的结果等于__________.12.分解因式:24x x -=______.13.已知关于x 的不等式2x ﹣m+3>0的最小整数解为1,则实数m 的取值范围是_____. 14.若x 2+kxy+49y 2是一个完全平方式,则k=_________;三、解答题15.化简()()()223536a b b ab ab ⋅-+--.16.解不等式组253(2)123x x x x +≤+⎧⎪-⎨<⎪⎩并写出不等式组的整数解 .17.(1)分解因式()()x x a y a x -+-(2)分解因式321025x y x y xy -+18.已知5x y a a a ⋅=,x y a a a ÷= ,求22x y -的值.19.列式计算:求使1143x ++的值不小于316x -的值的非负整数x .20.老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形成如下:2211322xy x y xy xy ⎛⎫⨯-=-+ ⎪⎝⎭. (1)求所捂的多项式;(2)若3122x y ==,,求所捂多项式的值.21.如图,某市有一块长为(3a+b)米、宽为(2a+b)米的长方形地块,中间是边长为(a+b)米的正方形,规划部门计划将在中间的正方形修建一座雕像,四周的阴影部分进行绿化.(1)绿化的面积是多少平方米?(用含字母a 、b 的式子表示)(2)求出当a =10,b =12时的绿化面积.22.仔细阅读下面例题,解答问题:例题:已知二次三项式2x 4x m -+有一个因式是()x 3+,求另一个因式以及m 的值. 解:设另一个因式为()x n +,得()()2x 4x m x 3x n -+=++则()22x 4x m x n 3x 3n -+=+++ {n 34m 3n +=-∴=.解得:n 7=-,m 21=- ∴另一个因式为()x 7-,m 的值为21-问题:仿照以上方法解答下面问题:已知二次三项式22x 3x k +-有一个因式是()2x 5-,求另一个因式以及k 的值.23.某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球每筒的售价多15元,健民体育活动中心从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.(1)该网店甲、乙两种羽毛球每筒的售价各是多少元?(2)根据健民体育活动中心消费者的需求量,活动中心决定用不超过2550元钱购进甲、乙两种羽毛球共50筒,那么最多可以购进多少筒甲种羽毛球?参考答案1.A【解析】试题分析:∵43=64,∴64的立方根是4,故选A考点:立方根.2.C【解析】在实数227,0,π,中,无理数有 π共3个, 故选C.3.D【解析】根据一个正数的算术平方根和平方根的性质可判断A 、B ;∣a ∣可判断C ;根据立方根的定义可判断D .【详解】=2,故A 错误;=±3,故B 错误;=|﹣3|=3,故C 错误;=﹣3,故D 正确.故选D .【点睛】本题主要考查的是立方根、平方根和算术平方根的性质,熟记性质是解题的关键. 4.C【解析】由不等式的性质进行计算并作出正确的判断.【详解】A 、由a b >,可得a 3b 3+>+,成立;B 、由a b >,可得22a b 33>,成立; C 、由a b >,可得3a 3b -<-,此选项不成立;D 、由a b >,可得5a 5b >,成立;故选:C .【点睛】考查了不等式的性质.应用不等式的性质应注意的问题:在不等式的两边都乘以(或除以)同一个负数时,一定要改变不等号的方向;当不等式的两边要乘以(或除以)含有字母的数时,一定要对字母是否大于0进行分类讨论.5.C【解析】直接利用合并同类项法则以及幂的乘方运算法则和积的乘方运算法则分别计算得出答案.【详解】解:A 、b 3•b 3=b 6,故此选项错误;B 、(ab 2)3=a 3b 6,故此选项错误;C 、(a 5)2=a 10,正确;D 、y 3+y 3=2y 3,故此选项错误.故选:C .【点睛】本题考查合并同类项以及幂的乘方运算和积的乘方运算,正确掌握相关运算法则是解题关键.6.B【解析】求出不等式的解集,表示在数轴上即可.【详解】解:解不等式2x 26+≤,得:x 2≤,将不等式解集表示在数轴上如下:故选:B .此题考查了在数轴上表示不等式的解集,以及解一元一次不等式,熟练掌握运算法则是解本题的关键.7.C【解析】【分析】根据“大小小大中间找”可确定不等式组的解集.【详解】不等式组{21x x>-<-的解集为21x-<<-,故选C.【点睛】本题主要考查不等式的解集,解题的关键是掌握确定不等式组解集的口诀.8.B【解析】【详解】(A)原式=3(2x+3y+1),故A错误;(C)x²−2xy−y²不是完全平方式,不能因式分解,故C错误;(D)x2+4不能因式分解,故D错误;故选B.9.A【解析】【分析】直接利用偶次方的性质以及绝对值的性质得出a,b的值,进而得出答案.【详解】∵|a+2|+(b-1)2=0,∴a+2=0,b-1=0,∴a=-2,b=1,∴(a+b)2019=(-2+1)2019=-1.故选A.此题主要考查了非负数的性质,正确得出a ,b 的值是解题关键.10.C【解析】【分析】设小聪可以购买该种商品x 件,根据总价=3×5+3×0.8×超出5件的部分结合总价不超过27元,即可得出关于x 的一元一次不等式.【详解】设小聪可以购买该种商品x 件,根据题意得:3×5+3×0.8(x-5)≤27.故选C .【点睛】考查了由实际问题抽象出一元一次不等式,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.11.72x【解析】分析:依据单项式乘单项式的运算法则进行计算即可.详解:原式=2x 4+3=2x 7.故答案为:2x 7.点睛:本题主要考查的是单项式乘单项式,掌握相关运算法则是解题的关键.12.()4x x -【解析】【分析】利用提公因式法分解因式即可.【详解】解:24x x -=()4x x -.故答案为:()4x x -.【点睛】本题考查提公因式法分解因式,熟练掌握分解因式的方法是解题的关键.13.3≤m <5【解析】【分析】先解出不等式,然后根据最小整数解为1得出关于m 的不等式组,解之即可求得m 的取值范围.【详解】解不等式2x ﹣m+3>0,得:x >32m -, ∵不等式有最小整数解1,∴0≤32m -<1, 解得:3≤m <5,故答案为:3≤m <5.【点睛】本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.14.±14【解析】分析:这里首末两项是x 和7y 这两个数的平方,那么中间一项为加上或减去x 和7y 积的2倍.详解:∵x 2+kxy+49y 2是一个完全平方式,∴27x y kxy ±⨯⨯=,∴k=±14.故答案为k=±14.点睛:本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.15.339a b【解析】【分析】原式先计算乘方运算,再计算乘除运算即可得到结果【详解】解:()()()223536a b b ab ab ⋅-+--=()32225936a b b ab a b ⋅+-⋅ =33334536a b a b -=339a b .故答案为:339a b .【点睛】本题考查整式的混合运算,熟练掌握运算法则是解题的关键.16.该不等式组的解集为:-1≤x <3,其整数解为-1,0,1,2.【解析】分析:根据一元一次不等式求解方法,分别求解不等式,并在数轴上表示,重合的部分即为不等式组解集在数轴上的表示.本题解析:由不等式①得:x≥-1由不等式②得:x <3∴该不等式组的解集为:-1≤x <3∴其整数解为-1,0,1,217.(1)()()x a x y --;(2)2(5)xy x -.【解析】【分析】(1)直接提取公因式(x-a)分解因式即可;(2)先提取公因式xy ,然后利用完全平方公式进一步进行因式分解.【详解】(1)()()x x a y a x -+-=()()x x a y x a --- =()() x a x y --(2)32x y 10x y 25xy -+=()2xy x 10x 25-+ ()2xy x 5=-.【点睛】本题考查了因式分解﹣提公因式法.当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的.18.5.【解析】【分析】根据幂的运算法则和平方差公式即可求出答案.【详解】解:由题意可知,51x y x y +=-=,,∴()()5x y x y +-=∵22()()x y x y x y -=-+∴22x y -=5故答案为:5.【点睛】本题考查幂的运算法则,解题的关键是熟练运用幂的运算法则和平方差公式,本题属于基础题型.19.符合条件的非负整数有0、1、2、3.【解析】【分析】根据题意列出不等式后,依据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1求得其解集,继而可得答案.【详解】 根据题意得:1131436x x +-+≥ 去分母得:3(x +1)+4≥2(3x ﹣1),去括号得:3x +3+4≥6x ﹣2,移项得:3x ﹣6x ≥﹣2﹣3﹣4,合并同类项得:﹣3x ≥﹣9,解得:x ≤3.则符合条件的非负整数有0、1、2、3.【点睛】本题考查了解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变20.(1)这个多项式为621x y -+-;(2)-9.【解析】【分析】(1)设多项式为A ,则A=(3x 2y-xy 2+12xy )÷(-12xy )计算即可. (2)把3122x y ==,代入多项式求值即可. 【详解】解:(1)设多项式为A ,则A=(3x 2y-xy 2+12xy )÷(-12xy ) =-6x+2y-1. (2)∵3122x y ==,, ∴原式= -6×32+2×12-1= -9+1-1=-9. 故答案为:(1)这个多项式为621x y -+-;(2)-9.【点睛】本题考查单项式乘多项式、多项式除以单项式的法则,解题的关键是利用乘法与除法是互为逆运算,把乘法转化为除法解决问题,属于基础题.21.(1)绿化面积是(5a 2+3ab)平方米;(2)绿化面积是860平方米.【解析】【分析】(1)根据长方形面积减去正方形面积表示出阴影部分面积,即为绿化面积;(2)将a =10,b =12代入化简后的式子中计算即可得到结果.【详解】(1)依题意得:(3a+b)(2a+b)﹣(a+b)2=6a 2+3ab+2ab+b 2﹣a 2﹣2ab ﹣b 2=(5a 2+3ab)平方米.答:绿化面积是(5a 2+3ab)平方米;(2)当a =10,b =12时,原式=500+360=860(平方米).答:绿化面积是860平方米.【点睛】本题考查了整式的混合运算,以及代数式求值,熟练掌握运算法则是解本题的关键. 22.()4,x + 20.【解析】【分析】根据例题中的已知的两个式子的关系,二次三项式2x 4x m -+的二次项系数是1,因式是()x 3+的一次项系数也是1,利用待定系数法求出另一个因式.所求的式子22x 3x k +-的二次项系数是2,因式是()2x 5-的一次项系数是2,则另一个因式的一次项系数一定是1,利用待定系数法,就可以求出另一个因式.【详解】解:设另一个因式为()x a +,得()()22x 3x k 2x 5x a +-=-+则()222x 3x k 2x 2a 5x 5a +-=+-- {2a 535a k -=∴-=-解得:a 4=,k 20=故另一个因式为()x 4+,k 的值为20【点睛】正确读懂例题,理解如何利用待定系数法求解是解本题的关键.23.(1)该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元;(2)最多可以购进20筒甲种羽毛球.【解析】【分析】(1)设该网店甲种羽毛球每筒的售价为x元,乙种羽毛球每筒的售价为y元,根据“甲种羽毛球每筒的售价比乙种羽毛球每筒的售价多15元,购买了2筒甲种羽毛球和3筒乙种羽毛球共花费255元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购进甲种羽毛球m筒,则购进乙种羽毛球(50﹣m)筒,根据总价=单价×数量结合总费用不超过2550元,即可得出关于m的一元一次不等式,解之取其最大值即可得出结论.【详解】(1)设该网店甲种羽毛球每筒的售价为x元,乙种羽毛球每筒的售价为y元,依题意,得:x-y=152x+3y=255⎧⎨⎩,解得:x=60 y=45⎧⎨⎩.答:该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元.(2)设购进甲种羽毛球m筒,则购进乙种羽毛球(50﹣m)筒,依题意,得:60m+45(50﹣m)≤2550,解得:m≤20.答:最多可以购进20筒甲种羽毛球.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.。
沪科数学七下期中复习卷
一.选择题
1.下列各数中无理数有( )
0.9-, 3.141,227
-
,3
27-,π,0, 4.217,0.1010010001,0.001. A 、2个 B 、3 个 C 、 4个 D 、5个 2.计算3
55
322)()(a a -÷-的结果是( )
A 、—2
B 、2
C 、4
D 、—4
3.如果关于x 的不等式x a )1(+>1+a 的解集为x <1,那么a 的取值范围是( ) A .a >0 B .a <0 C .a >-1 D .a <-1
4.一个正方形的边长增加了cm 2,面积相应增加了2
32cm ,则这个正方形的边长为( ) A 、6cm B 、5cm C 、8cm D 、7cm
5.若))((n x x mx x ++=-+3152
,则m 的值为 ( ) A 、
B 、5
C 、
D 、2
6.若01x <<,则2
1
x x x
,,的大小关系是( ) A .
21x x x << B .21x x x << C .21x x x << D .21
x x x
<< 7.下列说法正确的是( )
A.无理数可以用数轴上的点表示 B.两个无理数之间没有有理数 C.无理数分为正无理数、负无理数和零 D.两个无理数之和一定还是无理数 8.若x = 156,y = 144,则
222
1
21y xy x ++的值是( ) A 、90000 B 、150 C 、450 D 、45000 9.不等式组21
318
x x --⎧⎨
->⎩≥的解集在数轴上可表示为( )
A .
B .
C .
D .
10.估算254-的值( )
A.在5和6之间 B.在6和7之间 C.在7和8之间 D.在8和9之间
二.填空题
11.在电子显微镜下测得一个圆球体细胞的直径是5×105
-cm.,3
102⨯ 个这样的细胞排成的细胞链的长
0 1 2 3 4 0 1
2
3
4
1 2 3 4
12.若⎩⎨
⎧-=--=+3
1b a b a ,则=-22b a . 13.如果不等式组2
223
x
a x
b ⎧+⎪⎨⎪-<⎩≥的解集是01x <≤,那么a b +的值为 .
14.算术平方根等于它本身的数是 ;立方根等于它本身的数是 。
15.若一个正数的平方根是12-a 和2+-a ,这个正数是 。
16.已知关于x 的不等式组0521
x a x -⎧⎨
->⎩≥,
只有四个整数解,则实数a 的取值范围是 .
17.分解因式:a a a +-2
3
2=________。
18.在下列说法中①0.09是0.81的平方根;②-9的平方根是±3;③2
(5)-的算术平方根是-5;④2-是一个负数;⑤0的相反数和倒数都是0;⑥42=±;⑦已知a 是实数,则2||a a =;⑧全体实数和数轴上的点一一对应.正确的个数是 .
19.有若干张面积分虽为ab b a ,,2
2
的正方形和长方形纸片,阳阳从中抽取了1张面积为2
a 的正方形纸片,
4张面积为ab 的长方形纸片,若他想拼成一个大正方形,则还需要抽取面积为2
b 的正方形纸片 张。
三.解答题 20.计算:102011
)5
1
()5(97)1(-+-⨯+---π。
21.解方程:(1)()6432
=-x ; (2)8)12(3
-=-x 。
22.已知c b a ,,实数在数轴上的对应点如图所示,化简2
2
)(c b a c b a a -+-+--。
23.解不等式组12(1)5
321
22
x x x --⎧⎪
⎨-<+⎪⎩≤②①,并把解集在数轴上表示出来.
24.已知x 2
-2x -2 = 0,求代数式(x – 1)2
+ (x + 3)(x – 3) + (x – 3)(x – 1)的值。
25.因式分解:
(1)2
244721681b a b a -+; (2)x 2
-2xy+y 2
-16; (3)6xy 2-9x 2y -y 3。
26.若01222
=+-++b b a ,求2
2
ab b a +的值。
27.计算:(1))32)(32(+--+y x y x ; (2)2
2
1313)()(-+x x 。
28.郑老师想为希望小学四年(3)班的同学购买学习用品,了解到某商店每个书包价格比每本词典多8元.用124元恰好可以买到3个书包和2本词典. (1)每个书包和每本词典的价格各是多少元?
(2)郑老师计划用l000元为全班40位学生每人购买一件学习用品(一个书包或一本词典)后.余下不少于l OO 元且不超过120元的钱购买体育用品.共有哪几种购买书包和词典的方案?
29.问题:判断下面各式是否成立. (1)322322
=;(2)833833=;(3)15
441544=. 探究1:你判断完上面各题后,发现了什么规律,并猜想=24
5
5
__________. 探究2:归纳上面各式,得出一个猜想,求一个带分数的算术平方根就等于把这个带分数的整数部分直接移到根号外,这个猜想正确吗?为什么?
探究3:什么情况下根号里面的数能直接放到根号外面来呢?根据观察上面各式的结构特点,归纳一个猜想,用含有n 的式子将规律表示出来,说明n 的取值范围,并用数学知识说明你所写式子的正确性. 探究4:33722722
=,3326332633=,3363
446344=,……,根据观察上面各式的结构特点,归纳一个猜想,并验证你的猜想.
30.阅读下列解答过程,然后回答问题。
已知多项式x 542
3
+++mx x 有一个因式(x + 1),求m 的值。
解法一:设另一个因式为(x 2
+ ax + b ),则
x 542
3
+++mx x = (x + 1)(x 2
+ ax + b ) = b x b a x a x +++++)()1(23 ∴a + 1 = 4,a + b = m ,b = 5 ∴a = 3,b = 5 ∴m = 8 解法二:令x + 1 = 0得x = -1 即当x = - 1时,原多项式为零。
∴(- 1)3
+ 4×(- 1)2
+ m ×(- 1) + 5 = 0 ∴m = 8
依照上面的解法,解答问题:若x 3
+ 3x 2
- 3x + k 有一个因式是x + 1,求k 的值。