铸造型预应力筋锚垫板的受力和尺寸探讨——预应力锚固区安全探讨之三
- 格式:pdf
- 大小:798.05 KB
- 文档页数:8
夹具预应力筋用锚具在建筑工程中,夹具预应力筋用锚具是一种重要的工程材料,它主要应用于桥梁、高速公路、地铁等大型基础设施的建设中。
这种锚具的主要作用是将预应力筋锚固在结构中,以增加结构的强度和刚度,提高结构的耐久性。
夹具预应力筋用锚具由锚头、锚杆和夹具三部分组成。
其中,锚头是锚具的主要部分,它通过夹具与预应力筋连接,将预应力传递到结构中。
锚杆的作用是将锚头固定在结构中,夹具则用来连接锚头和预应力筋,保证预应力能够均匀地传递到结构中。
夹具预应力筋用锚具的使用可以带来许多优点。
它可以提高结构的强度和刚度,减少结构的变形和裂缝。
它可以提高结构的耐久性,延长结构的使用寿命。
夹具预应力筋用锚具还可以提高结构的抗震性能,减少地震对结构的影响。
然而,夹具预应力筋用锚具的使用也存在一些问题。
它的成本较高,需要大量的资金投入。
它的施工难度较大,需要专业的技术人员进行操作。
夹具预应力筋用锚具的使用还需要考虑到环境因素对它的影响,如温度、湿度等。
夹具预应力筋用锚具是一种重要的工程材料,它具有许多优点,但也存在一些问题。
因此,在使用夹具预应力筋用锚具时,需要考虑到它的优点和缺点,并根据实际情况进行选择和使用。
还需要加强对其研究和开发,提高其性能和使用效率。
一、预应力锚夹具预应力锚夹具是用于在钢结构中施加预应力的重要工具。
通过使用预应力锚夹具,可以有效地提高钢结构的承载能力,改善其受力状态,提高其抗震性能。
预应力锚夹具一般由锚具、夹具和连接器组成。
锚具是用于将预应力钢绞线或钢筋固定在结构上的部件;夹具是用于夹紧预应力钢绞线或钢筋的部件;连接器是用于连接锚具和夹具的部件。
预应力锚夹具的选择应考虑以下因素:1、预应力的大小和方向:应根据设计要求选择合适的预应力大小和方向,以确保锚夹具能够有效地施加预应力。
2、钢绞线或钢筋的类型和尺寸:应根据钢绞线或钢筋的类型和尺寸选择合适的锚夹具,以确保其能够牢固地固定钢绞线或钢筋。
3、结构的特点和要求:应根据结构的特点和要求选择合适的锚夹具,以确保其能够适应结构的要求。
|试 验 与 检 狈厂王 倩,等:预应力混凝土T 梁锚固区受力分析与验算N C 预应力混凝土 T 梁锚固区受力分析与验算王倩!朱自萍!谢玉萌!刘婉癑(安徽省交通规划设计研究总院股份有限公司;公路交通节能环保技术交通运输行业研发中心,安徽合肥230088)摘要:根据《公路钢筋混凝土及预应力混凝土桥涵设计规范M JTG 3362 — 2018)新增的后张预应力混凝土锚固区验算规定,对广泛使用的T 梁锚固区进行分析和验算,以某30 m 预应力混凝土 T 梁为例验算梁端和三角齿块的截面和配筋。
计算结果表 明:原有T 梁端部锚固区截面配筋满足规范要求,负弯矩区三角齿块锚后牵拉和局部弯曲不满足规范要求,需要增加配筋、改善 构造。
关键词:锚固区验算;T 梁锚固区;三角齿块;锚后牵拉;局部弯曲中图分类号:U443. 32 文献标志码:A 文章编号:1673-5781(2020)06-1109-040引 言装配式预应力混凝土 T 梁为预制标准化构件,具有刚度 大、变形小、伸缩缝少、行车舒适、技术成熟等优点,因此广泛应用在公路桥梁建设中,常用跨径范围为20〜40 m *整体受力 明确、技术成熟,局部锚固区受力复杂,计算不明确,使用过程 中也因配筋不当导致出现裂缝的事件较多*因此有必要对桥梁进行锚固区验算*预应力混凝土桥梁锚固区属于混凝土结构的D 区,即应力扰动区*美国《AASHTOLRFD 规范》中明确将混凝土梁桥 结构划分为B 区和D 区,分别进行设计,并给出了一些典型D区的设计方法*可以采用拉压杆模型、压力扩散模型以及三维有限元模型进行计算分析*我国2018年颁布的《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG 3362 — 2018)%&首次在国内给出应力扰动 区(D 区)的概念,并将后张锚固区划分为局部区和总体区两个区域,分别进行计算*本文结合该规范新增锚固区规定,对某30m 跨径预应力混凝土 T 梁锚固区进行验算*1计算规定1.1梁端锚固区计算在后张预应力混凝土端部锚固区的总体区内'存在多个受拉区域'如图1 所示'锚固力从锚板向全截面扩散过程中'会产生劈裂应力,其合力称为劈裂力*当锚固力作用在截面核心之外时,锚固区受拉侧边缘还存在纵向拉应力,其合力为边缘拉力*锚固面压陷和周边的变形协调要求,将在锚固面边缘产生剥裂应力,其合力称为剥裂力*ab图1后张预应力混凝土端部锚固区内的受拉效应1.1.1端锚劈裂力计算单个锚头引起的端锚劈裂力设计值按下式计算:T b ,d / 0.25P X1 + 刃2%1 —刃―子& + 0. 5P d sin (1)劈裂力作用位置至锚固面的水平距离:d b = 0. 5( — 2? +e sin ,(2)式中:P d 为预应力锚固力设计值,取1 2倍张拉控制力卫为锚垫板宽度;为锚固端截面高度;为锚固力偏心距,即锚固力作用点距截面形心的距离"为锚固力在截面上的偏心率*收稿日期:2020-06-11 ;修改日期:2020-07-01作者简介:王 倩(1990 — ),女,安徽合肥人,研究生,工程师.《工程与建设》2020年第34卷第6期1109|试验与检测「王倩,等:预应力混凝土T梁锚固区受力分析与验算S=2e/h,为力筋倾角*对于由一组密集锚头引起的锚下劈裂力设计值,采用锚固力合力值代入式(1)计算;对于非密集锚头引起的锚下劈裂力设计值,按单个锚头分别计算,取各劈裂力最大值*相邻锚垫板中心距小于2倍锚垫板宽度的,定义为密集锚头*一组密集锚头的总垫板宽度c取该组锚头两个最外侧垫板外缘之间的间距*112剥裂力计算由锚垫板局部压陷引起的周边剥裂力按下式计算:T s.=0.02max{P.-}(3)当两个锚固力中心距大于0.5倍锚固端截面高度时,剥裂力按式(3)和式(4)计算取大值*.9eTs,=0.45P.•(1)(4)h式中:巴2为同一端面上,第Z个锚固力设计值;氏为锚固力设计值的平均值,即2.g(I11+P d2)/2;s为两个锚固力的中心距;h为锚固端截面高度*113边缘拉力设计值计算求验算受力截面的截面尺寸和配筋。
预应力锚具受力过程的有限元分析及锚圈的尺寸和材料优化随着预应力技术在桥梁、建筑、水利工程方面的大量应用,锚具作为保证有效传递预应力的关键部件也得到越来越多的关注。
在保证锚固效率的同时,锚具的成本成为人们越来越关注的问题。
传统的设计沿用宁大勿小的原则,基于经验进行设计。
锚具的受力情况较复杂,目前还很难用理论公式准确地计算出它的应力应变。
本文以锚圈为研究对象,通过建立锚具组件的有限元模型,对锚具的受力过程进行分析,校核锚圈的强度,并对锚圈外形尺寸和材料展开优化,最后用物理实验验证。
在锚具受力过程的模拟方面,本文以七孔锚具为例,在分析了七孔锚具的工作状况及结构后,对锚圈、夹片及钢绞线的形状进行了简化,采用线性硬化弹塑性材料模型,设置摩擦系数之后,运用有限元分析软件建立数值模型,对七孔锚圈的受力过程进行模拟分析,得到了锚圈在受力过程中的应力应变及位移的分布状态,校核了锚圈强度。
在锚圈的尺寸及材料优化问题上,首先,对七孔锚圈的外形尺寸进行了优化,考虑到钢材的规格尺寸及产品机加工的要求,将七孔锚圈按照Φ135和Φ126两种尺寸规格分别进行模拟计算,分析同一直径的不同高度锚圈的应力应变的变化随高度的变化趋势,得到较优的高度。
第三,对七孔锚圈的两种不同材料及其不同状态的模拟结果进行了比较,得出45钢通过调质处理提高它的屈服强度和断裂强度后,用来替代40Cr是可行的。
最后进行了物理实验验证,模拟结果与实验结果比较一致,验证了数值模型的正确性。
通过以上研究,本文的结论对锚圈外形尺寸的设计和选用材料提供了理论依据,起到了一定的指导作用。
锚具预应力锚具预应力是一种常用于建筑工程中的技术,在混凝土结构中起着至关重要的作用。
通过在混凝土构件中引入预应力,可以有效地提高结构的承载能力和耐久性,同时还能降低结构的自重,减小裂缝的产生,延长结构的使用寿命。
本文将介绍锚具预应力的概念、原理、应用以及未来发展趋势。
锚具预应力是利用预应力钢筋或钢束施加在混凝土构件上的预应力,通过锚固装置将预应力钢筋的预应力传递到混凝土中,使混凝土受到拉力,从而增加混凝土的抗拉能力。
锚具预应力的原理是利用预应力钢筋的弹性回缩和混凝土的收缩来产生内应力,使混凝土构件在受力状态下具有一定的预应力,从而提高结构的整体性能。
在实际工程中,锚具预应力广泛应用于桥梁、楼板、梁柱等混凝土结构中。
通过在混凝土构件中设置预应力钢筋,并利用锚固装置固定预应力钢筋的预应力,可以有效地提高混凝土构件的承载能力和抗震性能,减小结构变形,提高结构的整体稳定性。
特别是在大跨度桥梁、高层建筑等工程中,锚具预应力技术更是不可或缺的重要手段。
随着科学技术的不断发展,锚具预应力技术也在不断创新和改进。
未来,随着新材料、新技术的应用,锚具预应力技术将更加智能化、高效化和环保化。
例如,利用智能传感器监测混凝土结构的应力、变形等参数,实现对结构状态的实时监测和控制;采用新型环保材料替代传统的预应力钢筋,降低建筑工程的能耗和排放,实现可持续发展。
总的来说,锚具预应力作为一种重要的建筑工程技术,在提高结构安全性、减轻结构自重、延长结构使用寿命等方面具有重要作用。
通过不断的研究和实践,锚具预应力技术将不断完善和发展,为建筑工程的发展带来更多的可能性和机遇。
相信在未来的建筑领域,锚具预应力技术将发挥越来越重要的作用,为人类创造更加安全、美观、环保的建筑环境。
40+55+40m预应力混凝土连续箱梁锚垫板张拉破坏事故处理摘要:预应力张拉施工中出现锚垫板张拉破坏的情况是预应力施工非常棘手的问题,本文为笔者结合工程实践,对某立交桥40+55+40m预应力混凝土连续箱梁施工中出现的锚垫板张拉破坏事故进行了分析与处理。
关键词:预应力混凝土连续箱梁锚垫板张拉破坏分析与处理1概述公路桥梁建设工程中,预应力结构以其优良的结构性能已被广泛地应用,适应了现代桥梁结构型式的多样性和复杂性的发展趋势。
但预应力施工实践中,有时难免会出现预应力锚垫板张拉破坏的现象,给工程施工带来了不可预见的损失。
笔者仅就某互通式立交A匝道预应力混凝土连续箱梁桥施工中出现的锚垫板张拉破坏事故进行了原因分析和处理措施,仅供同行参考。
某高速公路某互通式立交A匝道桥下部结构为桩基础、柱式桥墩和肋板式桥台,上部结构为40+55+40m一联变截面单箱三室预应力混凝土连续箱梁,梁高为1.7~3.2米,梁顶设8cm的沥青混凝土面层。
全桥位于R=199.5m右转平曲线上。
箱梁采用C50级混凝土,预应力管道为塑料波纹管,张拉锚具型号为OVM15—16,预应力钢绞线采用`1860MPa高强低松驰钢绞线,设计采用两端通长一次性张拉。
2锚垫板张拉破坏事故情况说明该连续梁施工时,钢筋检查合格、预应力管道固定位置准确、混凝土施工过程顺利。
当混凝土同条件养护试件10d抗压强度为51.3MPa,具备了设计张拉条件的要求时,使用四套张拉机具开始对梁体实施左右对称两端同时张拉;设计张拉顺序依次为:N13、N12—N14、N11—N15、N10—N16、N9—N5、N4—N6、N3—N7、N2—N8、N1—N21、N20—N22、N19—N23、N18—N24、N17,采用应力、伸长量双控法张拉。
总共24束钢绞线,一天半张拉完毕。
第三天,经检查,钢束均没有产生回缩现象,随后准备进行封锚、压浆工作。
当工人正在按次序实施切除钢绞线工作长度的时候,位于曲线外侧的第N17钢束锚具垫板出现崩裂,其它钢束没有发生变化。
工程技术科技创新导报 Science and Technology Innovation Herald21DOI:10.16660/ki.1674-098X.2108-5640-5879锚垫板锚固区传力试验——钢筋混凝土构件裂缝扩展技术研究周振兴 王俊华 王超奇(中钢集团郑州金属制品研究院有限公司 河南郑州 450000)摘 要:锚具锚垫板因具有良好的传力性能,在预应力混凝土结构中被广泛应用,目前我国对锚具锚垫板产品的相关标准中关于其传力性能试验描述不够详细、明确,存在一定的技术难题,给检测工作带来不便。
本文通过对锚垫板锚固区进行传力试验,研究其应力状态和构件裂缝扩展情况,以及裂缝形态和破坏荷载来完善锚垫板锚固区传力试验的相关技术方法,为预应力结构的使用寿命和安全性提供参考。
关键词:工程材料 锚固区传力 试验研究 锚垫板 裂缝扩展 破坏荷载中图分类号:TU37文献标识码:A文章编号:1674-098X(2021)07(b)-0021-03Load Transfer Test in Anchorage Zone of Anchor Pads ——Research on Crack Propagation Technology of Reinforced Concrete MembersZHOU Zhenxing WANG Junhua WANG Chaoqi(Sinosteel Zhengzhou Metal Products Research Institute Co., Ltd., Zhengzhou, Henan Province,450000 China)Abstract: Anchorage anchor pad is widely used in prestressed concrete structure because of its good force transfer performance. At present, the test description on its force transfer performance in the relevant standards of anchorage anchor pad products in China is not detailed and clear, and there are certain technical problems, which brings inconvenience to the testing work. In this paper, through the force transfer test of the anchor pad anchorage zone, the stress state and crack propagation of the component, as well as the crack shape and failure load are studied to improve the relevant technical methods of the force transfer test of the anchor pad anchorage zone, so as to provide reference for the service life and safety of the prestressed structure.Key Words: Engineering materials; Force transfer in anchorage zone; Experimental study; Anchor pad; Crack propagation; Failure load作者简介:周振兴(1989—),男,本科,工程师,研究方向为建筑材料。