不等式恒成立有解问题
- 格式:doc
- 大小:248.50 KB
- 文档页数:6
不等式恒成立与有解
不等式恒成立与有解问题涉及函数、不等式、方程、导数、数列等内容,是各交汇处的一个较为活跃的知识点,渗透着函数与方程、等价转换、分类讨论、数形结合、换元等思想方法,是中学数学的重要内容,也是高考的热门考点之一,由于此类问题综合性强,题中所涉及的未知数、参数数目多,处理时常常会陷入困境,令不少同学望而却步.倘若我们能掌握解决此类问题的一般策略和思想方法,那么对此类问题必会迎刃而解.
不等式恒成立与有解是有明显区别的,切不可混为一团.例如,若sinxsinx)max=l;若sinx(sinx)min=-1.不等式恒成立问题的描述中常出现“所有的”“一切”“都有”“恒成立”等全称量词,而不等式有解问题的描述中常出现“至少存在一个”“有些”等存在量词.解题时应细心思考,甄别差异,找准所要转化的等价问题,
重点:掌握不等式恒成立和有解问题的常见方法(如参数分离、数形结合、变换主元、构造函数等).
难点:不等式恒成立与有解问题的区别及等价转化,准确使用其成立的充要条件.
解决不等式恒成立与有解问题的基本策略是构作辅助
函数,利用函数的单调性、最值(或上、下界)、图象求解,其中涉及分类讨论、数形结合、参数分离、变换主元等数学思想方法.。
高中数学不等式恒成立与有解问题不等式恒成立与有解问题一直是中学数学的重要内容. 它是函数、数列、不等式等内容交汇处的一个较为活跃的知识点,随着中学数学引进导数,它为我们更广泛、更深入地研究函数、不等式提供了强有力的工具. 在近几年的高考试题中,涉及不等式恒成立与有解的问题,有时在同一套试题中甚至有几道这方面的题目。
其中,特别是一些含自然对数和指数函数的不等式恒成立与有解问题,将新增内容与传统知识有机融合,用初等方法难以处理,而利用导数来解,思路明确,过程简捷流畅,淡化繁难的技巧,它不仅考查函数、不等式等有关的传统知识和方法,而且还考查极限、导数等新增内容的掌握和灵活运用. 它常与思想方法紧密结合,体现能力立意的原则,带有时代特征,突出了高考试题与时俱进的改革方向. 因此,越来越受到高考命题者的青睐. 下面通过一些典型实例作一剖析.1.不等式恒成立与有解的区别不等式恒成立和有解是有明显区别的,以下充要条件应细心思考,甄别差异,恰当使用,等价转化,切不可混为一团.(1)不等式f(x)<k 在x ∈I 时恒成立•k•x f ,)(max <⇔x ∈I. 或f(x)的上界小于或等于k ;(2)不等式f(x)<k 在x ∈I 时有解•k•x f ,)(min <⇔x ∈I. 或f(x)的下界小于k ;(3)不等式f(x)>k 在x ∈I 时恒成立•k•x f ,)(min >⇔x ∈I. 或f(x)的下界大于或等于k ;(4)不等式f(x)>k 在x ∈I 时有解•k•x f ,)(max >⇔x ∈I. 或f(x)的上界大于k ;解决不等式恒成立和有解解问题的基本策略常常是构作辅助函数,利用函数的单调性、最值(或上、下界)、图象求解;基本方法包括:分类讨论,数形结合,参数分离,变换主元等等.例1 已知两函数f(x)=8x 2+16x-k ,g(x)=2x 3+5x 2+4x ,其中k 为实数.(1)对任意x ∈[-3,3],都有f (x)≤g(x)成立,求k 的取值范围;(2)存在x ∈[-3,3],使f (x)≤g(x)成立,求k 的取值范围;(3)对任意x 1x 2∈[-3,3],都有f (x 1)≤g(x 2),求k 的取值范围.解析 (1)设h(x)=g(x)-f(x)=2x 2-3x 2-12x+k ,问题转化为x ∈[-3,3]时,h(x)≥0恒成立,故h m in (x)≥0.令h′ (x)=6x 2-6x-12=0,得x= -1或2.由h(-1)=7+k ,h(2)=-20+k ,h(-3)=k-45,h(3)=k-9,故h m in (x)=-45+k ,由k-45≥0,得k≥45.(2)据题意:存在x ∈[-3,3],使f (x)≤g(x)成立,即为:h(x)=g(x)-f(x)≥0在x ∈[-3,3]有解,故h m ax (x)≥0,由(1)知h m ax (x )=k+7,于是得k≥-7.(3)它与(1)问虽然都是不等式恒成立问题,但却有很大的区别,对任意x 1x 2∈[-3,3],都有f (x 1)≤g(x 2)成立,不等式的左右两端函数的自变量不同,x 1,x 2的取值在[-3,3]上具有任意性,因而要使原不等式恒成立的充要条件是:]3,3[,)()(min max ••x •x g x f -∈≤,由g′(x)=6x 2+10x+4=0,得x=-32或-1,易得21)3()(min -=-=g x g ,又f(x)=8(x+1)2-8-k ,]3,3[•x -∈. 故.120)3()(max k f x f -==令120-k≤-21,得k≥141.点评 本题的三个小题,表面形式非常相似,究其本质却大相径庭,应认真审题,深入思考,多加训练,准确使用其成立的充要条件2.不等式有解问题例3 设x=3是函数f(x)=(x 2+ax+b)e x -3,x ∈R 的一个极值点.(1)求a 与b 的关系(用a 表示b ),并求f(x)的的单调区间;(2)设a>0,g(x)=x e a ⎪⎭⎫ ⎝⎛+4252,若存在S 1,S 2∈[0,4],使得|f(S 1)-g(S 2)|<1成立,求a 的取值范围.解析 (1)x e a b x a x x f --+-+-='32])2([)(,由)3(f '=0得b=-2a-3. 故f(x)=(x 2+ax-2a-3)x e -3. 因为)(x f '=-[x 2+(a-2)x-3a-3] x e -3=-(x-3)(x+a+1) x e -3. 由)(x f '=0得:x 1=3,x 2==-a-1. 由于x=3是f(x)的极值点,故x 1≠x 2,即a≠-4.当a<-4时,x 1<x 2,故f(x)在(]3,•∞-上为减函数,在[3,-a-1]上为增函数,在[)+∞--,1•a 上为减函数.当a>-4时,x 1>x 2,故f(x)在(]1,--∞-a •上为减函数,在[-a-1,3]上为增函数,在[)+∞,3•上为减函数.(2)由题意,存在S 1,S 2∈[0,4],使得|f(S 1)-g(S 2)|<1成立,即不等式|f(S 1)-g(S 2)|<1在S 1,S 2∈[0,4]上有解.于是问题转化为|f(S 1)-g(S 2)|m in <1,由于两个不同自变量取值的任意性,因此首先要求出f(S 1)和g(S 2)在[0,4]上值域.因为a>0,则-a-1<0,由(1)知:f(x)在[0,3]递增;在[3,4]递减. 故f(x)在[0,4]上的值域为[min{f(0),f(4)},f(3)]=[-(2a+3)e 3,a+6],而g(x)=x e a ⎪⎭⎫ ⎝⎛+4252在[0,4]上显然为增函数,其值域⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++422425,425e a •a . 因为4252+a -(a+6)=⎪⎭⎫ ⎝⎛-21a 2≥0, 故4252+a ≥(a+6).|f(S 1)-g(S 2)|m in =4252+a -(a+6)从而解230,01)6(4252<<⎪⎩⎪⎨⎧><+-+a ••••a a a 得. 故a 的取值范围为⎪⎭⎫ ⎝⎛23,0••. 假若问题变成:“对任意的S 1,S 2∈[0,4],使得|f(S 1)-g(S 2)|<1都成立,求a 的取值范围.”则可将其转化为|f(S 1)-g(S 2)|m ax <1点评 函数、不等式、导数既是研究的对象,又是决问题的工具. 本题从函数的极值概念入手,借助导数求函数的单调区间,进而求出函数 闭区间上的值域,再处理不等式有解问题. 这里传统知识与现代方法交互作用,交相辉映,对考生灵活运用知识解决问题的能力是一个极好的考查.3.不等式恒成立问题例2 设函数f(x)=(x+1)ln(x+1),若对所有x≥0,都有f(x)≥ax 成立,求实数a 的取值范围.解析 构作辅助函数g(x)=f(x)-ax=(x+1)ln(x+1)-ax ,原问题变为g(x)≥0对所有的 x≥0恒成立,注意到g(0)=0,故问题转化为g(x)≥g(0)在x≥0时恒成立,即函数g(x)在[)∞+••,0为增函数.于是可通过求导判断g(x)的单调性,再求出使g(x)≥g(0)成立的条件.g′(x)=l n(x+1)+1-a ,由g′(x)=0,得x=e1-a -1. 当x>e 1-a -1时,g′(x)>0,g(x)为增函数.当-1<x<e 1-a -1时,g′(x)<0,g(x)为减函数.那么对所有的x≥0,都有g(x)≥g(0),其充要条件是e 1-a -1≤0,故得a 的取值范围是(]1,••∞-.假若我们没有注意到g(0)=0,那么在解g(x)≥0对所有的x≥0恒成立时,也可转化为)0(0)(min ≥≥x x g ,再以导数为工具,稍作讨论即可得解.值得一提的是,本题还有考生采用参数分离法求解:由f(x)=(x+1)ln(x+1)≥ax 对所有的x≥0恒成立可得:(1)当x=0时,a ∈R . (2)当x>0时,.)1ln()1(x x x a ++≤设g(x)=xx x )1ln()1(++,问题转化为求g(x)在开区间(0,+∞)上最小值或下界,2)1ln()(x x x x g +-=',试图通过g′(x)=0直接解得稳定点,困难重重!退一步令h(x)=x-ln(x+1),因为0,111)(>+-='•x •x x h ,故)(x h '>0,则h(x)在(0,+∞)单调递增,即h(x)>h(0)=0,从而)(x g '>0,于是g(x)在(0,+∞)单调递增,故g(x)无最小值,此时,由于g(0)无意义,g(x)的下界一时也确定不了,但运用极限知识可得:)(lim )(0x g x g x →>,然而求此极限却又超出所学知识范围,于是大部分考生被此难关扫落下马,无果而终. 事实上采用洛比达法则可得:1]1)1[ln(lim )1ln()1(lim )(lim 000=++=++=→→→x xx x x g x x x ,故x>0时,g(x)>1,因而a≤1.综合(1)(2),得a 的取值范围是:(]1,••∞-. 点评 采用参数分离法求解本题,最大的难点在于求分离后所得函数的下界.它需要考生拥有扎实的综合素质和过硬的极限、导数知识,并能灵活地运用这些工具来研究函数的性态,包括函数的单调性,极值(最值)或上下界.突出考查了函数与方程思想、有限与无限的思想.。
不等式恒成立与能成立问题学号 姓名不等式恒成立指不等式对指定其间上的任意值都成立;不等式能成立指不等式在指定其间上至少有一个解(或称有解)。
下面从三个例子针对这两类问题的解决策略作比较说明。
例1.(1)若不等式()350x a -+<在[]1,1x ∈-内恒成立,求实数a 的取值范围。
(2).若不等式()350x a -+<在[]1,1x ∈-内能成立,求实数a 的取值范围。
例2.(1)若不等式22310x x m ++-≥在[]0,1x ∈内恒成立,求实数m的取值范围. (2)若不等式22310x x m ++-≥在[]0,1x ∈有解,求实数m的取值范围.例3.(1)若不等式245462x x a x -+≤+-在[]3,5x ∈内恒成立,求实数a的取值范围. (2)若不等式245462x x a x -+≤+-在[]3,5x ∈内有解,求实数a的取值范围。
总结:1.不等式恒成立与能成立(有解)解法策略比较:2.恒成立的参数范围是有解的参数范围的子集。
3. 不等式恒成立与能成立(有解)问题都是转化为最值解决。
作业:1.已知关于x 的不等式2350x a +-<。
(1)若此不等式对[]1,5x ∈上恒成立,求实数a的取值范围。
(2)若此不等式对[]1,5x ∈上能成立,求实数a的取值范围。
2.已知关于x 的不等式20x a +>。
(1)若此不等式对[]1,2x ∈上恒成立,求实数a的取值范围。
(2)若此不等式对[]1,2x ∈上能成立,求实数a的取值范围。
3. 已知关于x 的不等式2+2310x x a -+>。
(1)若此不等式对[]0,1x ∈上恒成立,求实数a的取值范围。
(2)若此不等式在[]0,1x ∈上有解,求实数a的取值范围。
4. 若不等式4213a x x +≤+-在[]0,1x ∈内有解,求实数a的取值范围。
课程:函数不等式的恒成立与有解问题讨论含参数方程解的问题的主要方法方程 f x a的解可以看成两个函数y f x , y a 的交点横坐标(1)已知一元二次方程两解的具体分布情况可用一元二次方程根的分布求解(2)方程 f x a在x D 上解的个数即两个函数y f x ,y a在x D 上的交点个数利用参变量分离加数形结合解决。
(3)方程 f x g x (其中y f x , y g x 是两个不同类型的函数)也可通过研究两个函数y f x , y g x 的交点来解决。
不等式恒成立问题不等式 f x g x 反映的是两个函数y f x , y g x 图像的位置关系(1)函数思想f x 0在x D 上恒成立,即 f x min x D 0f x 0在x D上恒成立,即 f x max xD 0(2)参变量分离f x a在x D上恒成立,即 f x min x D af x a在x D上恒成立,即 f x max x D a(3)数形结合f xg x 在x D 上恒成立,即在x D 上y f x 的图像始终在y g x 图像上方。
二、例题分析例1、(1)若关于x的方程9x a 4 3x4 0有实数解,求实数a的取值范围。
(2)若关于x的方程k 9x k 3x 16 k 5 0在x 0,2 上有实数解,求实数k的取值范围。
练习1、若关于x的方程4x k 2x k 3 0只有一个实数解,求实数k的取值范围(有两解、无解、有解)例2、实数a取何值时,方程lg x 1 lg 3 x lg 1 ax 有一解、两解、无解?练习2、当a满足什么条件时,方程lg x2 20x lg 8x 6a 3 0 有唯一解例3、已知关于x的不等式k 4x 2x 1 6k 0 (1)若不等式的解集为x 1 x log23 ,求实数k 的值2)若不等式的解集为x 1 x log23 的子集,求实数k的取值范围3)若不等式对任意x x1 x log23 恒成立,求实数k的取值范围练习3、(1)已知二次函数 f x ax2x a R, a 0 ,如果x 0,1 时,恒有 f x 1,求实数 a 的取值范围。
不等式恒成立有解问题不等式恒成立与有解问题不等式恒成立与有解问题一直是中学数学的重要内容.它是函数、数列、不等式等内容交汇处的一个较为活跃的知识点,随着中学数学引进导数,它为我们更广泛、更深入地研究函数、不等式提供了强有力的工具.在近几年的高考试题中,涉及不等式恒成立与有解的问题,有时在同一套试题中甚至有几道这方面的题目,比如2021年高考江西卷以及湖北卷.其中,特别就是一些不含自然对数和指数函数的不等式恒设立与欠阻尼问题,将追加内容与传统科学知识有机融合,用初等方法难以处置,而利用导数能解,思路明晰,过程简便简洁,淡化郧荆道的技巧,它不仅考查函数、不等式等有关的传统科学知识和方法,而且还考查音速、导数等追加内容的掌控和灵活运用.它常与思想方法紧密结合,彰显能力立意的原则,具有时代特征,注重了低考试题与时俱进的改革方向.因此,越来越受中考命题者的亲睐.下面通过一些典型实例并作一剖析.1.不等式恒成立与有解的区别不等式恒设立和欠阻尼就是存有显著区别的,以下充要条件应当细心思索,筛选差异,恰当采用,等价转变,切勿搭为一团.(1)不等式f(x)(2)不等式f(x)(3)不等式f(x)>k在x i时恒成立fmin(x)k•x i.或f(x)的下界大于或等于k;,•(4)不等式f(x)>k在x i时存有求解fmax(x)k•x i.或f(x)的上界大于k;,•解决不等式恒成立和有解解问题的基本策略常常是构作辅助函数,利用函数的单调性、最值(或上、下界)、图象求解;基本方法包括:分类讨论,数形结合,参数分离,变换主元等等.基准1未知两函数f(x)=8x2+16x-k,g(x)=2x3+5x2+4x,其中k为实数.(1)对任意x[-3,3],都有f(x)≤g(x)成立,求k的取值范围;(2)存有x[-3,3],并使f(x)≤g(x)设立,谋k的值域范围;(3)对任意x1x2[-3,3],都有f(x1)≤g(x2),求k的取值范围.解析(1)设h(x)=g(x)-f(x)=2x2-3x2-12x+k,问题转变为x[-3,3]时,h(x)≥0恒设立,故hmin(x)≥0.令h′(x)=6x2-6x-12=0,得x=-1或2.由h(-1)=7+k,h(2)=-20+k,h(-3)=k-45,h(3)=k-9,故hmin(x)=-45+k,由k-45≥0,得k≥45.(2)据题意:存有x[-3,3],并使f(x)≤g(x)设立,即为为:h(x)=g(x)-f(x)≥0在x[-3,3]存有求解,故hmax(x)≥0,由(1)言hmax(x)=k+7,于是得k≥-7.(3)它与(1)问虽然都是不等式恒成立问题,但却有很大的区别,对任意x1x2[-3,3],都有f(x1)≤g(x2)成立,不等式的左右两端函数的自变量不同,x1,x2的取值在[-3,3]上具备任意性,因而要使原不等式恒设立的充要条件就是:fmax(x)gmin(x)•,•x[3•,3],由g′(x)=6x2+10x+4=0,得x=-2或-1,易得3,3].故fmax(x)f(3)120k.令gmin(x)g(3)21,又f(x)=8(x+1)2-8-k,x[3•120-k≤-21,得k≥141.评测本题的三个大题,表面形式非常相近,究其本质却大相径庭,应当深入细致审题,深入细致思索,多提训练,精确采用其设立的充要条件.2.不等式恒成立问题基准2(06年全国)设立函数f(x)=(x+1)ln(x+1),若对所有x≥0,都存有f(x)≥ax设立,谋实数a的值域范围.解析构作辅助函数g(x)=f(x)-ax=(x+1)ln(x+1)-ax,原问题变为g(x)≥0对所有的x≥0恒成立,注意到g(0)=0,故问题转化为g(x)≥g(0)在x≥0时恒成立,即函数g(x)在0•,•为增函数.于是可通过求导判断g(x)的单调性,再求出使g(x)≥g(0)成立的条件.g′(x)=ln(x+1)+1-a,由g′(x)=0,得x=e当x>ea1a1-1.-1时,g′(x)>0,g(x)为增函数.a1那么对所有的x≥0,都存有g(x)≥g(0),其充要条件就是e-1≤0,故得a的值域范围就是•,1.假若我们没注意到g(0)=0,那么在求解g(x)≥0对所有的x≥0恒设立时,也可以转变为gmin(x)0(x0),再以导数为工具,稍加探讨即可暂解.值得一提的是,本题还有考生采用参数分离法求解:由f(x)=(x+1)ln(x+1)≥ax对所有的x≥0恒成立可得:(1)当x=0时,a r.(2)当x>0时,a设g(x)=(x1)ln(x1).x(x1)ln(x1),问题转变以求g(x)在开区间(0,+∞)上最小值或下界,xx ln(x1)g(x),试图通过g′(x)=0直接解得稳定点,困难重重!退一步令x21•,•x0,故h(x)>0,则h(x)在(0,+∞)单调递减,h(x)=x-ln(x+1),因为h(x)1x1即h(x)>h(0)=0,从而g(x)>0,于是g(x)在(0,+∞)单调递增,故g(x)无最小值,此时,由于g(0)无意义,g(x)的下界一时也确定不了,但运用极限知识可得:g(x)limg(x),然x0而谋此音速却又远远超过所学科学知识范围,于是大部分学生被此困境洗落马,无果而终.事实上采用洛比达法则可得:limg(x)limx0(x1)ln(x1)lim[ln(x1)1]1,故x>0x0x0x时,g(x)>1,因而a≤1.综合(1)(2),得a的取值范围是:•,1•.评测使用参数分离法解本题,最小的难点是谋拆分后税金函数的下界.它须要学生具有坚实的综合素质和优良的音速、导数科学知识,并能够有效率地运用这些工具去研究函数的性态,包含函数的单调性,极值(最值)或上时下界.注重考查了函数与方程思想、非常有限与无穷的思想.3.不等式有解问题基准3(06年湖北)设x=3就是函数f(x)=(x2+ax+b)e3x,x r的一个极值点.(1)求a与b的关系(用a表示b),并求f(x)的的单调区间;(2)设a>0,g(x)=aa的取值范围.解析(1)f(x)[x2(a2)x b a]e3x,由f(3)=0得b=-2a-3.故f(x)=(x2+ax-2a-3)e3x225x e,若存在s1,s2[0,4],使得|f(s1)-g(s2)|当a>-4时,x1>x2,故f(x)在•,a1上以减至函数,在[-a-1,3]上以增函数,在3•,上以减至函数.(2)由题意,存在s1,s2[0,4],使得|f(s1)-g(s2)|于是问题转变为|f(s1)-g(s2)|min因为a>0,则-a-1225x e在[0,4]上似乎为减4函数,其值域a2252254•,a e.442因为a2251-(a+6)=a42≥0,故a225≥(a+6).4225(a6)125a2|f(s1)-g(s2)|min=a-(a+6)从而求解,•44a0值范围为0•,.得0a 3.故a的取2假若问题变为:“对任一的s1,s2[0,4],使|f(s1)-g(s2)|点评函数、不等式、导数既是研究的对象,又是决问题的工具.本题从函数的极值概念入手,借助导数求函数的单调区间,进而求出函数闭区间上的值域,再处理不等式有解问题.这里传统知识与现代方法交互作用,交相辉映,对考生灵活运用知识解决问题的能力是一个极好的考查.。
不等式有解和恒成立问题知识点的罗列,文字不宜太多,简洁明了最好)知识点一:不等式恒成立问题知识点二:不等式有解问题分析该知识点在中高考中的体现,包含但不仅限于:考察分值、考察题型(单选、填难度)题目)【试题来源】(上海2016杨浦二模卷)【题目】设函数x x g 3)(=,x x h 9)(=,若bx g a x g x f +++=)()1()(是实数集R 上的奇函数,且0))(2()1)((>⋅-+-x g k f x h f 对任意实数x 恒成立,求实数k 的取值范围.【答案】:因为bx g a x g x f +++=)()1()(是实数集上的奇函数,所以1,3=-=b a .)1321(3)(+-=x x f ,)(x f 在实数集上单调递增. 由0))(2()1)((>⋅-+-x g k f x h f 得))(2()1)((x g k f x h f ⋅-->-,又因为)(x f 是实数集上的奇函数,所以,)2)(()1)((-⋅>-x g k f x h f ,又因为)(x f 在实数集上单调递增,所以2)(1)(-⋅>-x g k x h即23132-⋅>-x x k 对任意的R x ∈都成立, 即x k 13<例题(k f 【答案】sin k x -22k k k k ⎧-≥⎪≤⎨⎪≤⎩解决不等式有解和恒成立问题的方法✧ 二次函数法。
在之前的讲义中,我们在二次函数那一节已经适当讨论了一些一元二次不等式的恒成立(有解)问题。
事实上,在高考中,很多不等式可以通解变形为一元二次不等式。
因此利用二次函数来求解不等式的恒成立(有解)问题是一个非常有用的方法。
✧ 分离参数法。
所谓分离参数法就是将不等式同解变形为()a f x >或者()a f x <的形式,然后再利用以下命题进行求解。
m min ax ()()(())a f x a x a f x f >⇔>>恒成立(有解);m max in ()()(())a f x a x a f x f <⇔<<恒成立(有解).1、若不等式1log (10)0x a a --<有解,则实数a 的范围是____?????????????.2、函数()f x )对一切实数,x y 均有()()(21)f x y f y x y x +-=++成立,且(1)0f =.(1)求f (2)求(f 3对一切4、已知(1)若(2)若5、已知。
一元二次不等式恒成立和有解问题一、一元二次不等式在实数集上的恒成立1、不等式20ax bx c >++对任意实数x 恒成立⇔00==⎧⎨>⎩a b c 或0Δ<0>⎧⎨⎩a2、不等式20ax bx c <++对任意实数x 恒成立⇔00==⎧⎨<⎩a b c 或0Δ<0<⎧⎨⎩a【注意】对于二次不等式恒成立问题,恒大于0就是相应的二次函数的图像在给定的区间上全部在x 轴上方; 恒小于0就是相应的二次函数的图像在给定的区间上全部在x 轴下方.二、一元二次不等式在给定区间上的恒成立问题求解方法方法一:若()0>f x 在集合A 中恒成立,即集合A 是不等式()0>f x 的解集的子集,可以先求解集,再由子集的含义求解参数的值(或范围);方法二:转化为函数值域问题,即已知函数()f x 的值域为[,]m n ,则()≥f x a 恒成立⇒min ()≥f x a ,即≥m a ;()≤f x a 恒成立⇒max ()≤f x a ,即≤n a .三、给定参数范围的一元二次不等式恒成立问题解决恒成立问题一定要清楚选谁为主元,谁是参数;一般情况下,知道谁的范围,就选谁当主元,求谁的范围,谁就是参数. 即把变元与参数交换位置,构造以参数为变量的函数,根据原变量的取值范围列式求解。
四、常见不等式恒成立及有解问题的函数处理方法不等式恒成立问题常常转化为函数的最值来处理,具体如下: 1、对任意的[,]∈x m n ,()>a f x 恒成立⇒max ()>a f x ; 若存在[,]∈x m n ,()>a f x 有解⇒min ()>a f x ;若对任意[,]∈x m n ,()>a f x 无解⇒min ()≤a f x .2、对任意的[,]∈x m n ,()<a f x 恒成立⇒min ()<a f x ; 若存在[,]∈x m n ,()<a f x 有解⇒max ()<a f x ; 若对任意[,]∈x m n ,()<a f x 无解⇒max ()≥a f x .题型一 一元二次不等式在实数集上的恒成立问题【例1】若关于x 的不等式2220ax ax --<恒成立,则实数a 的取值范围为( ) A .[]2,0- B .(]2,0- C .()2,0- D .()(),20,-∞-⋃+∞ 【答案】B【解析】当0=a 时,不等式成立;当0≠a 时,不等式2220--<ax ax 恒成立,等价于()()20,2420,<⎧⎪⎨∆=--⨯-<⎪⎩a a a 20∴-<<a . 综上,实数a 的取值范围为(]2,0-.故选:B .【变式1-1】“不等式20-+>x x m 在R 上恒成立”的充要条件是( ) A .14>m B .14<m C .1<mD .1>m 【答案】A【解析】∵不等式20-+>x x m 在R 上恒成立,∴2(1)40∆--<=m ,解得14>m , 又∵14>m ,∴140∆=-<m ,则不等式20-+>x x m 在R 上恒成立, ∴“14>m ”是“不等式20-+>x x m 在R 上恒成立”的充要条件,故选:A.【变式1-2】已知关于x 的不等式2680-++>kx kx k 对任意∈x R 恒成立,则k 的取值范围是( )A .01k ≤≤B .01k ≤< C .0k <或1k > D .0k ≤或1k > 【答案】B【解析】当0=k 时,80>恒成立,符合题意;当0≠k 时,由题意有()()2Δ6480>⎧⎪⎨=--+<⎪⎩k k k k ,解得01<<k , 综上,01≤<k .故选:B.【变式1-3】已知关于x 的不等式()()221110a x a x ----<的解集为R ,则实数a 的取值范围( )A .3,15⎛⎫- ⎪⎝⎭B .3,15⎛⎤- ⎥⎝⎦C .[)3,1,5⎛⎫-∞-⋃+∞ ⎪⎝⎭D .()3,1,5⎛⎫-∞-⋃+∞ ⎪⎝⎭【答案】B【解析】当1a =时,不等式为10-<,对x R ∀∈恒成立,所以满足条件当1a =-时,不等式为210x -<,解集为1,2⎛⎫-∞ ⎪⎝⎭,不满足题意当210a ->时,对应的二次函数开口向上,()()221110ax a x ----<的解集一定不是R ,不满足题意当210a -<,11a -<<时,若不等式()()221110a x a x ----<的解集为R ,则()()221410a a ∆=-+-<,解得:315a -<<,综上,315a -<≤故选:B【变式1-4】关于x 的不等式21x x a x +≥-对任意x ∈R 恒成立,则实数a 的取值范围是( )A .[]1,3-B .(],3-∞C .(],1-∞D .(][),13,-∞⋃+∞ 【答案】B【解析】当0x =时,不等式为01≥-恒成立,a R ∴∈;当0x ≠时,不等式可化为:11a x x ≤++,0x >,12x x ∴+≥(当且仅当1x x=,即1x =±时取等号),3a ∴≤; 综上所述:实数a 的取值范围为(],3-∞.故选:B.题型二 一元二次不等式在某区间上的恒成立问题【例2】若14x <≤时,不等式()2241x a x a -++≥--恒成立,求实数a 的取值范围.【答案】(,4]-∞.【解析】对于任意的14x <≤,不等式()22241(1)25x a x a x a x x -++≥--⇔-≤-+,即2254(1)11x x a x x x -+≤=-+--, 因此,对于任意的14x <≤,2254(1)11x x a x x x -+≤=-+--恒成立, 当14x <≤时,013x <-≤,44(1)(1)411x x x x -+≥-⋅=--, 当且仅当411x x -=-,即3x =时取“=”,即当3x =时,4(1)1x x -+-取得最小值4,则4a ≤, 所以实数a 的取值范围是(,4]-∞.【变式2-1】已知2(2)420+-+-x a x a对[)2,∀∈+∞x 恒成立,则实数a 的取值范围________. 【答案】(],3-∞【解析】因为2(2)420x a x a +-+-对[)2,x ∀∈+∞恒成立,即4222x a x ++-≥+在[)2,x ∀∈+∞时恒成立,令2,4x t t +=≥, 则4222x x ++-+代换为42t t +-,令4()2g t t t=+-, 由对勾函数可知,()g t 在[)4,t ∈+∞上单增,所以min ()(4)3g t g ==, 所以(],3a ∈-∞.故答案为:(],3-∞【变式2-2】已知二次函数222y x ax =++.若15x ≤≤时,不等式3y ax >恒成立,求实数a 的取值范围. 【答案】22<a .【解析】不等式()3f x ax >即为:220x ax -+>,当[]1,5x ∈时,可变形为:222x a x x x+<=+,即min 2()a x x <+. 又2222x x x x+≥+= 当且仅当2x x=,即[]21,5x =时,等号成立,min 2()22x x∴+=22a <故实数a 的取值范围是:22a <【变式2-3】若不等式2(1)10x a x +-+≥对一切(1,2]x ∈都成立,则a 的最小值为( )A .0B .2-C .222-D .5- 【答案】D【解析】记22()(1)11f x x a x x ax a =+-+=++-,要使不等式()2110x a x +-+≥对一切(1,2]x ∈都成立,则:12(1)20a f ⎧-≤⎪⎨⎪=≥⎩或2122()1024a a a f a ⎧<-<⎪⎪⎨⎪-=--+≥⎪⎩或22(2)50a f a ⎧-≥⎪⎨⎪=+≥⎩ 解得2a ≥-或42a -<<-或54a -≤≤-,即5a ≥-.故选:D【变式2-4】不等式225732ax x a x +->-对一切()1,0a ∈-恒成立,则实数x 的取值范围是( )A .(]1,4,2⎡⎫-∞-⋃+∞⎪⎢⎣⎭B .(][),41,-∞-⋃-+∞C .()4,1--D .14,2⎛⎫- ⎪⎝⎭【答案】A【解析】令()()227532=-+-+f a a x x x ,对一切()1,0a ∈-均大于0恒成立,所以()()22270175320⎧->⎪⎨-=--+-+≥⎪⎩x f x x x ,或()227005320⎧-<⎪⎨=-+≥⎪⎩x f x x ,或22705320⎧-=⎪⎨-+≥⎪⎩x x x , 解得4x ≤-或7x >172≤<x 7x =综上,实数x 的取值范围是4x ≤-,或12x ≥,故选:A.题型三 给定参数范围的一元二次不等式恒成立问题【例3】当[]2,3a ∈时,不等式210ax x a -+-≤恒成立,求的取值范围.【答案】1,12⎡⎤-⎢⎥⎣⎦【解析】由题意不等式210ax x a -+-≤对[]2,3a ∈恒成立,可设2()(1)(1)f a x a x =-+-+,[]2,3a ∈,则()f a 是关于a 的一次函数,要使题意成立只需(2)0(3)0f f ≤⎧⎨≤⎩,即22210320x x x x ⎧--≤⎨--≤⎩,解2210x x --≤,即()()2110x x +-≤得112x -≤≤,解2320x x --≤,即()()3210x x +-≤得213x -≤≤,所以原不等式的解集为1,12⎡⎤-⎢⎥⎣⎦,所以x 的取值范围是1,12⎡⎤-⎢⎥⎣⎦.【变式3-1】若命题“[]()21,3,2130a ax a x a ∃∈---+-<”为假命题,则实数x 的取值范围为( )A .[]1,4-B .50,3⎡⎤⎢⎥⎣⎦C .[]51,0,43⎡⎤⎢⎥⎣-⎦D .[)51,0,43⎛⎤- ⎥⎝⎦【答案】C【解析】命题“[]()21,3,2130a ax a x a ∃∈---+-<”为假命题,其否定为真命题,即“[]()21,3,2130a ax a x a ∀∈---+-≥”为真命题.令22()23(21)30g a ax ax x a x x a x =-++-=--++≥,则(1)0(3)0g g -≥⎧⎨≥⎩,即22340350x x x x ⎧-++≥⎨-≥⎩,解得14503x x x -≤≤⎧⎪⎨≥≤⎪⎩或,所以实数x 的取值范围为[]51,0,43⎡⎤⎢⎥⎣-⎦.故选:C【变式3-2】已知[]1,1∈-a ,不等式2(4)420x a x a +-+->恒成立,则x 的取值范围为( ) A .()()3,,2∞-∞+ B .()()2,,1∞-∞+ C .()()3,,1∞-∞+D .()1,3 【答案】C【解析】令()2(2)44f a x a x x =-+-+,则不等式2(4)420x a x a +-+->恒成立转化为()0f a >在[1,1]a ∈-上恒成立.∴有(1)0(1)0f f ->⎧⎨>⎩,即22(2)4402440x x x x x x ⎧--+-+>⎨-+-+>⎩, 整理得:22560320x x x x ⎧-+>⎨-+>⎩,解得:1x <或3x >.∴x 的取值范围为()(),13,-∞⋃+∞.故选:C .【变式3-3】已知当11a -≤≤时,()24420x a x a +-+->恒成立,则实数x 的取值范围是( )A .(),3-∞B .][(),13,∞∞-⋃+C .(),1-∞D .()(),13,-∞⋃+∞ 【答案】D【解析】()24420x a x a +-+->恒成立,即()22440x a x x -+-+>,对任意得[]1,1a ∈-恒成立, 令()()2244f a x a x x =-+-+,[]1,1a ∈-,当2x =时,()0f a =,不符题意,故2x ≠, 当2x >时,函数()f a 在[]1,1a ∈-上递增,则()()2min 12440f a f x x x =-=-++-+>,解得3x >或2x <(舍去),当2x <时,函数()f a 在[]1,1a ∈-上递减,则()()2min 12440f a f x x x ==-+-+>,解得1x <或2x >(舍去),综上所述,实数x 的取值范围是()(),13,-∞⋃+∞.故选:D.【变式3-3】不等式225732ax x a x +->-对一切()1,0a ∈-恒成立,则实数x 的取值范围是( )A .(]1,4,2⎡⎫-∞-⋃+∞⎪⎢⎣⎭B .(][),41,-∞-⋃-+∞C .()4,1--D .14,2⎛⎫- ⎪⎝⎭【答案】A【解析】令()()227532=-+-+f a a x x x ,对一切()1,0a ∈-均大于0恒成立,所以 ()()22270175320⎧->⎪⎨-=--+-+≥⎪⎩x f x x x ,或()227005320⎧-<⎪⎨=-+≥⎪⎩x f x x , 或22705320⎧-=⎪⎨-+≥⎪⎩x x x ,解得4x ≤-或7x >172≤<x 7x = 综上,实数x 的取值范围是4x ≤-,或12x ≥.故选:A.题型四 一元二次不等式在实数集上的有解问题【例4】已知不等式20kx x k -+<有解,则实数k 的取值范围为__________. 【答案】1,2⎛⎫-∞ ⎪⎝⎭【解析】当0k =时,0x -<,符合题意当0k >时,令2y kx x k =-+,由不等式20kx x k -+<有解,即2140k ∆=->,得102k <<当0k <时, 2y kx x k =-+开口向下,满足20kx x k -+<有解,符合题意综上,实数k 的取值范围为1,2k ⎛⎫∈-∞ ⎪⎝⎭【变式4-1】若关于x 的不等式2210ax x ++<有实数解,则a 的取值范围是_____. 【答案】(),1-∞【解析】当0a =时,不等式为210x +<有实数解,所以0a =符合题意;当0a <时,不等式对应的二次函数开口向下, 所以不等式2210ax x ++<有实数解,符合题意; 当0a >时,要使不等式2210ax x ++<有实数解, 则需满足440∆=->a ,可得1a <,所以01a <<, 综上所述:a 的取值范围是(),1-∞.【变式4-2】x R ∃∈,使得不等式231x x m -+<成立,则m 的取值范围是___________.【答案】11,12⎛⎫+∞ ⎪⎝⎭【解析】令()22111313612f x x x x ⎛⎫=-+=-+ ⎪⎝⎭,则()min 1112f x =,因为x R ∃∈,使得不等式231x x m -+<成立, 所以1112m >, 则m 的取值范围是11,12⎛⎫+∞ ⎪⎝⎭,【变式4-3】若关于x 的不等式29(2)04ax a x -++<有解,则实数a 的取值范围是____________. 【答案】(,1)(4,)-∞+∞【解析】当0a =时,不等式为9204x -+<有解,故0a =,满足题意;当0a >时,若不等式29(2)04ax a x -++<有解, 则满足29(2)404a a ∆=+-⋅>,解得1a <或4a >;当0a <时,此时对应的函数的图象开口向下,此时不等式29(2)04ax a x -++<总是有解,所以0a <,综上可得,实数a 的取值范围是(,1)(4,)-∞+∞.题型五 一元二次不等式在某区间上的恒成立问题【例5】已知关于x 的不等式2630mx x m -+<在(]02,上有解,则实数m 的取值范围是( )A .(3-∞,B .127⎛⎫-∞ ⎪⎝⎭, C .()3+∞, D .127⎛⎫+∞ ⎪⎝⎭, 【答案】A【解析】由题意得,2630mx x m -+<,(]02x ∈,,即263xm x <+ , 故问题转化为263xm x <+在(]02,上有解, 设26()3x g x x =+,则266()33x g x x x x==++,(]02x ∈,, 对于323x x+≥,当且仅当3(0,2]x =时取等号, 则max ()323g x ==3m <,故选:A【变式5-1】已知命题p :“15∃≤≤x ,250x ax -->”为真命题,则实数a 的取值范围是( )A .4a <B .4aC .4a >D .4a >-【答案】A 【解析】由题意,当15x ≤≤时,不等式250x ax -->有解,等价于“15x ∀≤≤,250x ax --≤恒成立”为真时对应a 取值集合的补集 若15x ∀≤≤,250x ax --≤恒成立为真命题, 需满足25550a --≤且150a --≤,解得4a ≥. 因此p 命题成立时a 的范围时4a <,故选:A .【变式5-2】若关于x 的不等式22(1)0x m x m -+-≥在(1,1)-有解,则m 的取值范围为( )A .(,1][0,)-∞-+∞B .(,1)(0,)-∞-+∞ C .[0,1] D .(0,1) 【答案】B【解析】令22()(1)f x x m x m =-+-,其对称轴为202m x =≥, 关于x 的不等式22(1)0x m x m -+-≥在(1,1)-有解, 当(1,1)x ∈-时,有()(1)f x f <-,(1)0f ∴->,即20m m +>,可得0m >或1m <-.故选:B .【变式5-3】已知当12x ≤≤时,存在x 使不等式()()14m x m x -++<成立,则实数m 的取值范围为( )A .{}22m m -<<B .{}12m m -<<C .{}32m m -<<D .{}12m m <<【答案】C【解析】由()()14m x m x -++<可得224m m x x +<-+,由题意可得()22max 4m m x x +<-+,且12x ≤≤,令()24f x x x =-+对称轴为12x =,开口向上,所以()24f x x x =-+在[]1,2上单调递增, 所以2x =时,()()2max 22246f x f ==-+=,所以26m m +<,解得:32m -<<, 所以实数m 的取值范围为{}32m m -<<,故选:C.【变式5-4】关于x 的不等式2244x x a a -+≥在[]1,6内有解,则a 的取值范围为________.【答案】[]2,6-【解析】2244x x a a -+≥在[]1,6内有解,()22max 44a a x x ∴-≤-,其中[]1,6x ∈;设()2416y x x x =-≤≤, 则当6x =时,max 362412y =-=, 2412a a ∴-≤,解得:26a -≤≤,a ∴的取值范围为[]2,6-.。
不等式恒成立、有解问题
1.已知()22f x x x a =++对任意x R ∈()0f x >恒成立,试求实数a 的取值范围;
★提炼:最高次项系数含有参数时要注意讨论其为0的时候
2.已知()223f x ax x =-+(2()2f x x ax =-+)
(1)1,3,2
x ⎡⎤∃∈⎢⎥⎣⎦()0f x ≥,试求实数a 的取值范围; (2)1,3,2
x ⎡⎤∃∈⎢⎥⎣⎦()0f x <,试求实数a 的取值范围;
★提炼:
(1)不管当0>a 还是0<a 时,],[0)(βα∈>x x f 在有解⇔()0f α>或()0f β>
(2)也可以用该命题的否定转化为恒成立的问题求解(如上一题)
(3)也可以分离参数用数形结合求解
(4)若在区间D 上存在实数x 使不等式()A x f >成立,则等价于在区间D 上()max f x A >;
若在区间D 上存在实数x 使不等式()B x f <成立,则等价于在区间D 上的()min f x B <.
3.设函数2()1f x x =-,对任意3,2x ⎡⎫∈+∞⎪⎢⎣⎭,24()(1)4()x f m f x f x f m m ⎛⎫-≤-+
⎪⎝⎭
恒成立,则实数m 的取值范围是
变型题1:对于R x ∈,不等式031222>++-x a x 恒成立,则实数a 的取值范围是
变型题2:已知函数x
a x f 21)(+-
=。
(1)解关于x 的不等式0)(>x f 。
(2)若02)(≥+x x f 在(0,+∞)上恒成立,求a 的取值范围。
★提炼:(1)解决恒成立问题通常可以利用分离变量转化,其中分离的可能是关于参数的代数式。
分离过的变量的代数式通常有对号函数式、二次函数式、反比例函数式、分子分母分别为一次和二次代数式等。
(2) 将参数与变量分离,即化为()()g f x λ≥(或()()g f x λ≤)恒成立的形式;
(3) 求()f x 在x D ∈上的最大(或最小)值;
(4) 解不等式()max ()g f x λ≥(或()()min g f x λ≤) ,得λ的取值范围。
(5)分离参数的前提有一是好分离二是分离过后的代数式要好求最值,求最值的方法常见的有(参考求最值的常用方法)
4.若对于任意1a ≤,不等式2(4)420x a x a +-+->恒成立,求实数x 的取值范围
★提炼:主参换位法,主要是在告知参数范围的情形下使用,而且一般是参数为一次式
5.若不等式kx x ≥+|1|对一切R x ∈恒成立,求实数k 的取值范围.
变型题:若11||2
x a x -+≥对一切0x >恒成立,则a 的取值范围是
★提炼:数形结合,能够将代数式分解为两部分,并能将两部分的函数图像在同一坐标系中画出来。
6.已知两函数2()816,f x x x k =+-32()254g x x x x =++,其中k 为实数。
(1)对任意[]3,3x ∈-,都有()()f x g x ≤成立,求k 的取值范围.
(2)存在[]3,3x ∈-,使()()f x g x ≤成立,求k 的取值范围.
(3)对任意[]123,3x x ∈-、,都有12()()f x g x ≤,求k 的取值范围.
(4)对任意[]13,3x ∈-,[]23,3x ∃∈-使12()()f x g x ≤,求k 的取值范围.
(5)对任意[]13,3x ∈-,[]23,3x ∃∈-使12()()f x g x ≥,求k 的取值范围.
(6) []13,3x ∃∈-,[]23,3x ∃∈-使12()()f x g x ≥,求k 的取值范围。
变型题1:(2010山东理数)(22)(本小题满分14分) 已知函数1()ln 1a f x x ax x -=-+
-()a R ∈. (Ⅰ)当12
a ≤时,讨论()f x 的单调性; (Ⅱ)设2()24g x x bx =-+ 当14
a =时,若对任意1(0,2)x ∈,存在[]21,2x ∈,使 12()()f x g x ≥,求实数
b 取值范围.
★提炼:函数不等式恒成立与有解的解题思路主要有构造函数用单调性、 分离参数用单调性、基本不等式、一个函数的最(大)小值(小)大于另一个函数的最(小)大值、一个函数的最(大)小值(小)大于另一个函数的最(大)小值、等。
8.已知函数1ln )1()(2+++=ax x a x f
(I )讨论函数)(x f 的单调性;
(II )设1-<a .如果对任意),0(,21+∞∈x x ,1212|()()|4||f x f x x x -≥-,求a 的取值范围
变型题:已知函数3
()f x x ax b =++,对于12,x
x ⎛∈ ⎝⎭ (12x x ≠)时总有
1212|()()|||f x f x x x -<-成立,求实数a 的范围.
★提炼: 由导数的几何意义知道,函数()y f x =图像上任意两点1122(,),(,)P x y Q x y )连线的斜率2121
y y k x x -=- (12x x ≠)的取值范围,就是曲线上任一点切线的斜率(如果有的话)的范围,利用这个结论,可以解决形如1212|()()|||f x f x x x -≥-或1212|()()|||f x f x m x x -≥-(0m >)型的不等式恒成立问题。