快速凸包算法
- 格式:ppt
- 大小:802.50 KB
- 文档页数:24
基于凸包算法的指尖识别方法高晨;张亚军【摘要】针对现有指尖检测方法容易受背景的干扰,并且指尖误判点较多的情况,提出了一种基于凸包分析的指尖检测算法.首先,为减少类肤色背景和光照对手部轮廓提取的影响,采用YCbCr肤色模型和背景差分法相结合的方法提取手部轮廓;然后采用快速凸包算法获得手部轮廓的凸包,并利用凸包顶点和缺陷点计算出掌心的坐标,根据凸包缺陷深度和手指几何特征及曲率特征检测手指指尖;最后采用有灯光和类肤色背景干扰的环境,而不是背景单一的环境进行实验,验证了所提算法的鲁棒性.实验结果表明,该算法可以有效识别出指尖数目和手掌的位置,实现简单的数字手势(0~5)的识别,具有较强的鲁棒性.%Since the conventional fingertip detection method is easily influenced by background and there are too many finger misjudgment points,this paper proposes a detection algorithm based on the analysis of a convex hull.Firstly,in order to reduce the influence of approximate skin background color and light intensity on the extraction of the hand area,we use the YCbCr skin model combined with the background difference method to extract the hand area.We then derive the hand contour convex hull and,finally,use the defects and hull points to obtain the coordinates of the hand palm.Based on the depth of the convex hull defects,the geometric features of fingers and curvature allow detection of the fingertips.In order to verify the robustness of the algorithm developed in this paper,we employed a light and colored background,rather than a single background environment;the results showed that the method can effectively identify the number of fingertipsand the location of the palm,and can also recognize numerical (0 ~ 5) hand gestures,demonstrating its efficacy.【期刊名称】《北京化工大学学报(自然科学版)》【年(卷),期】2017(044)002【总页数】6页(P70-75)【关键词】指尖识别;凸包算法;背景差分法;肤色模型【作者】高晨;张亚军【作者单位】北京化工大学机电工程学院,北京 100029;北京化工大学机电工程学院,北京 100029【正文语种】中文【中图分类】TP301.5手势作为人们常用的表达方式之一,可以快速简单地实现人机交互,代替传统的键盘、鼠标等人机交互设备。
凸包算法公式凸包是计算几何中的一个重要概念,而凸包算法公式则是解决相关问题的关键工具。
咱先来说说啥是凸包。
想象一下,你面前有一堆散落在地上的钉子,然后你拿一个橡皮筋把最外层的钉子圈起来,让橡皮筋形成的形状能够完全包住所有钉子,这个形状就是这堆钉子的凸包。
凸包算法有好几种,比如 Graham 扫描法、Jarvis 步进法等等。
咱就拿 Graham 扫描法来说说它涉及的公式。
Graham 扫描法里,首先要找到一个基准点。
通常找纵坐标最小的点,如果有多个这样的点,就选横坐标最小的那个。
找到这个点后,其他点就按照和这个基准点的极角大小进行排序。
这里就涉及到计算极角的公式啦。
对于两个点 A(x1, y1)和 B(x2, y2),极角θ 可以通过反正切函数来计算,公式是:θ = atan2(y2 - y1, x2 - x1)。
计算出极角后,就可以开始扫描了。
从基准点开始,依次检查相邻的三个点,如果这三个点构成的转向是逆时针的,那就保留中间那个点;如果是顺时针的,就把中间那个点去掉。
这里判断转向的公式就比较关键了。
对于三个点 A(x1, y1)、B(x2,y2)和 C(x3, y3),可以通过计算向量叉积来判断转向。
如果叉积大于 0 ,就是逆时针;小于 0 ,就是顺时针。
向量叉积的公式是:(x2 - x1) * (y3 - y1) - (y2 - y1) * (x3 - x1) 。
我记得之前有一次参加数学建模比赛,题目就和凸包算法有关。
当时我们小组几个人,一开始对这些公式和算法都不太熟悉,急得像热锅上的蚂蚁。
大家一起熬夜查资料、讨论,一遍遍地推导公式,尝试不同的方法。
特别是在计算极角和判断转向的时候,总是出错。
但经过不断地尝试和纠错,我们终于搞清楚了这些公式的应用,成功解决了问题,还拿到了不错的名次。
总之,凸包算法公式虽然看起来有点复杂,但只要掌握了其中的原理和规律,多做练习,就能熟练运用啦。
不管是在数学研究中,还是在实际的计算机图形学、地理信息系统等领域,凸包算法都有着广泛的应用。
凸包面积和周长的计算凸包是在平面上给定的一组点中构成的最小凸多边形。
凸包的面积和周长是计算凸包重要的指标,可以用来分析数据分布的紧密程度和形状特征。
本文将介绍凸包的定义和生成算法,并详细说明如何计算凸包的面积和周长。
一、凸包的定义凸包是指在平面上给定的一组点中,由这些点构成的最小凸多边形。
凸多边形的特点是:任意两点之间的线段都在多边形内部。
凸包是凸多边形中的最小面积的凸多边形,即是在所有凸多边形中,面积最小的凸多边形。
二、凸包的生成算法1. Jarvis算法(也叫作包裹算法或者旋转卡壳算法):该算法基于以下思想:从一组点中找到一个起始点,将其作为凸包的一个顶点。
然后,从这个点开始,寻找下一个能保证凸包深度最大的点,并将其加入凸包。
不断重复这个过程,直到回到起始点为止。
该算法的时间复杂度为O(nh),其中n是点的个数,h是凸包的顶点数。
2.快速凸包算法:该算法基于Graham扫描算法改进而来。
首先选择一个y坐标最小的点,将其他点按照与这个点的连线的极角进行排序。
然后依次处理排序后的点,对每个点进行判断,如果点在逆时针方向上,则加入凸包,否则舍弃。
最后得到凸包。
该算法的时间复杂度为O(nlogn),是一种高效的凸包生成算法。
三、凸包面积的计算凸包的面积可以用以下公式进行计算:S = (x1y2 + x2y3 + ... + xn-1yn + xny1 - x2y1 - x3y2 - ... - xnyn-1 - x1yn) / 2其中,(x1, y1), (x2, y2), ..., (xn, yn)是凸包的顶点的坐标。
计算凸包的面积可以通过以上公式进行求解,公式中的坐标是有顺序的,要按照逆时针或者顺时针的方向依次输入。
四、凸包周长的计算凸包的周长可以通过计算凸包顶点之间的距离之和来得到。
对于凸包的n个顶点,可以依次计算相邻顶点之间的距离,并将其累加得到凸包的周长。
保证计算的正确性需要注意以下几点:1.凸包的顶点要按照逆时针或者顺时针的方向依次输入,以保证计算出的面积和周长的结果正确。
多边形化算法
多边形化算法是指将给定的点集或线段组合成封闭的多边形的过程。
这个问题在计算几何学、计算机图形学和地理信息系统等领域中经常遇到。
以下是一些常见的多边形化算法:
1. 凸包算法:凸包算法是最常用的多边形化算法之一。
它的目标是找到包含所有点的最小凸多边形。
常见的凸包算法有Graham扫描算法、Jarvis步进算法和快速凸包算法。
2. 三角剖分算法:三角剖分算法将给定的点集或线段划分为一组互不相交的三角形,从而形成多边形。
常见的三角剖分算法有Delaunay三角剖分算法和Ear Clipping算法。
3. 最小生成树算法:最小生成树算法可以用于生成一个连接给定点集的最小权重树形结构,在某些情况下可以用来构建多边形。
Prim算法和Kruskal算法是两种常用的最小生成树算法。
4. Alpha形算法:Alpha形算法是一种基于给定参数Alpha 的多边形化算法。
它通过连接在给定距离内的点来构建多边形,从而生成不规则的凸多边形。
5. Voronoi图算法:Voronoi图算法将给定的点集划分为一组区域,其中每个区域都由距离最近的点支配。
这些区域可以被视为多边形的一部分。
这些算法在实际应用中根据具体需求和数据特征的不同,选择合适的算法进行多边形化处理。
需要根据具体情况评估算法的效率、精确性和适用性。
凸包算法及凸包融合凸包算法是计算凸包的一种常用算法,它可以找到一组点集中最外层的凸多边形。
凸包融合是指将两个凸包合并成一个新的凸包,能够通过减少顶点数目来优化计算效率。
凸包算法主要有以下几种常见的实现方法:1.枚举算法:对于点集中的每一对点,判断其他点是否位于这两点所确定的直线的一侧。
如果所有点都在一侧,则这两点是凸包上的边。
时间复杂度为O(n^3)。
2. Graham扫描算法:选取一个点作为基准点,将其他点按照相对于基准点的极角大小进行排序。
然后依次处理每个点,判断其是否属于凸包。
时间复杂度为O(nlogn)。
3. Jarvis步进算法(也称为包裹法):从点集中选取一个临时点p,然后找到与p相邻的点集中极角最小的点q,将q加入凸包中。
然后将q作为新的临时点p,重复以上步骤,直到回到第一个点。
时间复杂度为O(nh),其中h是凸包的边数。
4.快速凸包算法:通过空间分割和递归的方法进行凸包计算,时间复杂度为O(nlogn)。
凸包融合是指将两个凸包合并成一个新的凸包,通常需要满足以下条件:1.相交边的共享:两个凸包如果相交,那么它们的公共边必须都在新的凸包中。
2.外部边的合并:如果两个凸包没有相交,那么合并后的凸包应该包含两个凸包的外部边。
3.顺序性:合并后的凸包应该按照某种规定的顺序进行连接。
凸包融合算法的一种常见方法是基于边的融合。
具体步骤如下:1.找到两个凸包之间的最近边,并将其作为起始边。
2.沿着其中一个凸包的边界向对面的凸包前进,每次选取与当前边最接近的边。
3.如果新选取的边与已经选取的边形成了一个角度大于180度的三角形,那么停止前进,并将新选取的边作为起始边。
4.重复步骤2和步骤3,直到回到起始边。
凸包融合算法可以减少凸包的顶点数量,从而提高计算效率。
例如,对于两个有m和n个顶点的凸包,假设m > n,则融合后的凸包最多有m+n个顶点,而不是m*n个顶点。
融合后的凸包可以保留原始凸包的边界信息,并且减少了计算和存储开销。
信息学竞赛中的计算几何问题与算法计算几何是信息学竞赛中的一个重要篇章,它将几何学和计算机科学相结合,利用算法和数据结构解决实际问题。
在本文中,我们将探讨信息学竞赛中的计算几何问题以及相应的算法。
一、点和线的处理信息学竞赛中,点和线的处理是最基础的问题之一。
常见的问题有求两点之间的距离、点是否在线段上、点是否在多边形内、线段是否相交等。
对于求两点之间的距离,我们可以利用勾股定理进行计算。
假设有两点A(x1, y1)和B(x2, y2),则距离d可以通过以下公式计算:d = sqrt((x2-x1)^2 + (y2-y1)^2)。
判断点是否在线段上可以利用叉积的性质。
设点A(x1, y1)、B(x2, y2)、C(x3, y3),则若AB和AC的叉积等于0,即(x2-x1)*(y3-y1) - (x3-x1)*(y2-y1) = 0,点C在线段AB上。
判断点是否在多边形内可以利用射线法。
假设有一条射线从当前点发出,若与多边形的边交点数为奇数,则点在多边形内;若为偶数,则点在多边形外。
判断线段是否相交可以利用线段相交的充要条件。
对于两条线段AB和CD,若AC和AD的叉积和BC和BD的叉积异号,并且CA和CB的叉积和DA和DB的叉积异号,则线段AB和CD相交。
二、面积和重心的计算另一个重要的计算几何问题是求解多边形的面积和重心。
多边形的面积可以通过求解多边形顶点的坐标和来计算,其中x[i]和y[i]分别表示第i个顶点的横坐标和纵坐标。
根据公式:Area = 0.5 * (x[0]*y[1] +x[1]*y[2] + ... + x[n-1]*y[0] - x[1]*y[0] - x[2]*y[1] - ... - x[0]*y[n-1]),即可求得多边形的面积。
多边形的重心是指多边形所有顶点的平均位置,计算重心的坐标可以通过求解多边形每个顶点和重心的横纵坐标之和的平均值来得到。
重心的横坐标的计算公式为:x = (x[0] + x[1] + ... + x[n-1]) / n,纵坐标的计算公式为:y = (y[0] + y[1] + ... + y[n-1]) / n。
凸包扩展系数-概述说明以及解释1.引言1.1 概述概述:凸包是计算几何学中的重要概念,它是一个包含给定点集中所有点的最小凸多边形。
凸包的计算方法和算法在计算机图形学、模式识别、地理信息系统等领域有着广泛的应用。
在实际应用中,为了更好地描述点集之间的几何关系,人们引入了凸包扩展系数这一概念。
凸包扩展系数可以帮助我们衡量凸包在空间中的扩展程度,进一步优化算法和提高计算效率。
本文将系统地介绍凸包的定义、计算方法和算法,以及凸包扩展系数的定义和计算方法,旨在深入探讨凸包在实际应用中的意义和作用。
1.2 文章结构本文将分为三个部分:引言、正文和结论。
在引言部分,将首先对凸包进行简要概述,介绍凸包的基本概念,并说明本文的目的。
引言部分将帮助读者了解本文所要讨论的主题,并对文章的重点和方向有一个初步的了解。
在正文部分,将详细介绍凸包的定义和基本概念,以及凸包的计算方法和算法。
通过对凸包的详细讨论,读者可以深入了解凸包的特性和计算过程,从而更好地理解凸包扩展系数的定义和计算方法。
在结论部分,将总结本文的内容,讨论凸包在不同领域的应用和意义,并介绍凸包扩展系数的定义和计算方法。
结论部分将对本文所讨论的内容进行一个简要的总结,同时展望凸包在未来的研究和应用方向。
1.3 目的:本文的目的在于探讨和分析凸包扩展系数在计算机图形学和几何学中的重要性和应用。
通过详细介绍凸包的定义、基本概念和计算方法,引出了凸包扩展系数的概念。
在这一部分,我们将重点讨论凸包扩展系数的定义和计算方法,以及其在实际应用中的意义和作用。
同时,我们也将探讨如何利用凸包扩展系数来优化算法和提高计算效率。
通过深入研究凸包扩展系数的相关理论和实践,希望能够为读者提供全面的了解和思考,推动相关领域的研究和发展。
2.正文2.1 凸包的定义和基本概念凸包是指包围一组点集的最小凸多边形。
其中,凸多边形意味着多边形内部的所有角度都小于180度。
凸包在计算机图形学、几何学、地理信息系统等领域都有广泛的应用。