工业机器人腕部结构设计
- 格式:ppt
- 大小:1.38 MB
- 文档页数:32
毕业论文题目关节型工业机械手的结构设计学院机械工程学院专业机械工程及自动化班级机自0917班学生学号20090421170指导教师二〇一三年六月三日摘要关于该关节型工业机械手的具体研究方法。
本次设计工作首先对实体安川机器人进行了细致的研究,了解了其内部的具体结构,安川机器人的结构可分为六个轴系,然后根据六个轴系对其内部结构进行分解,以便了解各个零件之间的配合,这样就对安川机器人有了大体的了解。
下面就进行尺寸的测量,尺寸的测量只需要测量一下大体的外观尺寸,而内部尺寸可根据零件的配合进行合理的设计。
然后,进行计算(包括电机功率的计算,轴的设计,齿轮的参数计算),接着可依据相关资料,选取恰当的电机。
最后,可根据实体与之前所掌握的知识对机械手的结构进行设计分析。
关键词:伺服电机、机械手抓、移动旋转。
ABSTRACTHere is about the research method of the industrial manipulator joints. The design work on the real first AnChuan robot has carried on the detailed research, understand the internal structure of concrete, AnChuan robot structure can be divided into six axis, and then according to the six axis of its internal structure decomposition, in order to understand the cooperation between the various parts of the, thus for AnChuan robot have roughly understanding. Below is the size of the measurement, the size of the measurement only need to measure the general appearance of the size, and the internal dimension can be reasonable according to the parts of the design. Then, computing (including motor power calculation, the design of the shaft, the gear parameter calculation), then can according to relevant data, select the appropriate machine. Finally, according to the entity and prior knowledge on the structure of the manipulator design analysis.Keywords:servo motor rotate, manipulator grabbing and moving.目录摘要 (I)ABSTRACT (II)1 前言 (1)机械手国内外发展现状 (1)多关节型工业机械手概述 (2)机械手组成与分类 (3) (3) (3)2机械手的设计方案 (4) (5)机械手设计方案 (5)方案特点 (6)电机的选型 (7)初步估算机械手的质量 (7) (8)计算电机功率 (10)锥齿轮设计 (10)齿轮精度、材料 (10)按齿面接触疲劳强度设计 (10)按齿根弯曲强度设计 (12)锥齿轮参数计算 (12)同步带轮的设计 (13)同步齿形带传动计算 (13)带轮几何尺寸的计算 (14)减速器的设计 (16)减速器减速比的计算 (16)减速器输出轴径的计算 (16)4 机械手各结构设计 (17)手爪结构的设计 (17)手爪的设计要求 (17)手爪的分类 (18)手部结构形式的确定 (18)手腕结构的设计 (18)手腕的设计要求 (18)手腕结构形式的确定 (19)手臂结构的设计 (19)手臂的设计要求 (19)手臂结构 (19)小臂结构形式的确定 (20)小臂后箱体的结构设计 (20)连接杆件的设计 (21)5 关键轴的校核 (21)腕部输入轴的结构 (21)轴的校核 (22)6 结论 (24)参考文献 (25)致谢 (26)1前言机械手国内外发展现状1962年,美国机械铸造公司试制成一台数控试教机械手。
喷涂机器人手腕分类
在机器人手臂和手爪之间用于支撑和调整手爪的部件就叫机器人手腕。
机器人手腕主要用来确定被抓物体的姿态,一般采用三自由度多关节机构由旋转关节和摆动关节组成,三个关节可形成27种配置。
按照机器人手腕(4、5、6轴)结构形式的不同,喷涂机器人可分为正交球型手腕喷涂机器人、直线形非球型中空手腕喷涂机器人、斜交非球型中空手腕喷涂机器人。
一、正交球型手腕喷涂机器人
正交球型手腕结构喷涂机器人除了具备防爆功能外,其手腕结构与通用六轴关节型工业机器人相同,4、5、6轴为正交球型结构,即一个摆动轴、2个旋转轴,三个轴线相交于一点且两相邻关节的轴线垂直的喷涂机器人。
二、直线形非球型中空手腕喷涂机器人
直线形非球型中空手腕结构喷涂机器人4、5、6轴为三个回转轴,且三个回转轴可重合为一条直线。
三、斜交非球型中空手腕喷涂机器人
斜交非球型中空手腕结构喷涂机器人4、5、6轴为三个回转轴,且三个回转轴相交于两点的形式。
1前言1.1机器人的概念机器人是一个在三维空间中具有较多自由度,并能实现较多拟人动作和功能的机器,而工业机器人则是在工业生产上应用的机器人。
美国机器人工业协会提出的工业机器人定义为:“机器人是一种可重复编程和多功能的,用来搬运材料、零件、工具的操作机”。
英国和日本机器人协会也采用了类似的定义。
我国的国家标准GB/T12643-90将工业机器人定义为:“机器人是一种能自动定位控制、可重复编程的、多功能的、多自由度的操作机。
能搬运材料、零件或操持工具,用以完成各种作业”。
而将操作机定义为:“具有和人手臂相似的动作功能,可在空间抓放物体或进行其它操作的机械装置”。
机器人系统一般由操作机、驱动单元、控制装置和为使机器人进行作业而要求的外部设备组成。
1.1.1操作机操作机是机器人完成作业的实体,它具有和人手臂相似的动作功能。
通常由下列部分组成:a.末端执行器又称手部,是机器人直接执行工作的装置,并可设置夹持器、工具、传感器等,是工业机器人直接与工作对象接触以完成作业的机构。
b. 手腕是支承和调整末端执行器姿态的部件,主要用来确定和改变末端执行器的方位和扩大手臂的动作范围,一般有2~3个回转自由度以调整末端执行器的姿态。
有些专用机器人可以没有手腕而直接将末端执行器安装在手臂的端部。
c. 手臂它由机器人的动力关节和连接杆件等构成,是用于支承和调整手腕和末端执行器位置的部件。
手臂有时包括肘关节和肩关节,即手臂与手臂间。
手臂与机座间用关节连接,因而扩大了末端执行器姿态的变化范围和运动范围。
d. 机座有时称为立柱,是工业机器人机构中相对固定并承受相应的力的基础部件。
可分固定式和移动式两类。
1.1.2驱动单元它是由驱动器、检测单元等组成的部件,是用来为操作机各部件提供动力和运动的装置。
1.1.3控制装置它是由人对机器人的启动、停机及示教进行操作的一种装置,它指挥机器人按规定的要求动作。
1.1.4人工智能系统它由两部分组成,一部分是感觉系统,另一部分为决策-规划智能系统。
详解机器人手腕结构图————————————————————————————————作者:————————————————————————————————日期:【详解】机器人手腕结构图机器人手腕是连接末端操作器和手臂的部件,它的作用是调节或改变工件的方位, 因而它具有独立的自由度,以使机器人末端操作器适应复杂的动作要求。
工业机器人一般需要6个自由度才能使手部达到目标位置并处于期望的姿态。
为了使手部能处于空间任意方向, 要求腕部能实现对空间三个坐标轴x、y、z的转动,即具有翻转、俯仰和偏转三个自由度,如图2.31所示。
通常也把手腕的翻转叫做Roll,用R表示;把手腕的俯仰叫做Pitch,用P表示; 把手腕的偏转叫Yaw,用Y表示。
图2.31 手腕的自由度(a)绕z轴转动; (b)绕y轴转动; (c) 绕x轴转动;(d) 绕x、y、z轴转动手腕的分类1.按自由度数目来分手腕按自由度数目来分, 可分为单自由度手腕、2自由度手腕和3自由度手腕。
(1)单自由度手腕,如图2.32所示。
图(a)是一种翻转(Roll)关节, 它把手臂纵轴线和手腕关节轴线构成共轴形式。
这种R关节旋转角度大, 可达到360°以上。
图(b)、(c)是一种折曲(Bend)关节(简称B关节), 关节轴线与前后两个连接件的轴线相垂直。
这种B关节因为受到结构上的干涉, 旋转角度小,大大限制了方向角。
图(d)所示为移动关节。
图2.32单自由度手腕(a) R手腕;(b) B手腕;(c)Y手腕;(d) T手腕(2) 2自由度手腕,如图2.33所示。
2自由度手腕可以由一个R关节和一个B关节组成BR手腕(见图2.33(a)),也可以由两个B关节组成BB手腕(见图2.33(b))。
但是,不能由两个R关节组成RR手腕,因为两个R共轴线,所以退化了一个自由度, 实际只构成了单自由度手腕,见图2.33(c)。
图2.33 二自由度手腕(a) BR手腕; (b) BB手腕; (c) RR手腕(3)3自由度手腕,如图2.34所示。
目录1 前言 (1)1.1课题来源 (1)1.2技术要求及预期效果 (1)1.3本课题要解决的主要问题及设计总体思路 (1)1.4国内外研究现状及发展状况 (1)1.4.1 研究现状 (1)1.4.2 发展趋势 (2)2 总体方案设计 (4)2.1机械结构类型的确定 (4)2.2传动方案的确定 (4)2.3工作空间的确定 (5)2.4手腕结构的确定 (5)2.5驱动装置的选择 (6)2.5.1 机器人驱动方案的分析和选择 (6)2.5.2 手腕电机的选择 (7)2.5.3 传动比的确定及分配 (8)3 齿轮的设计 (9)3.1齿轮强度的设计与校核 (9)3.1.1第一级圆柱齿轮传动设计 (9)3.1.2 第二级圆锥齿轮传动设计 (12)4 轴的设计 ........................................................................................... 错误!未定义书签。
4.1转腕传动轴的选择 ....................................................................... 错误!未定义书签。
4.2摆腕传动轴的设计 ....................................................................... 错误!未定义书签。
4.2.1 圆柱齿轮轴的设计 ..................................................................... 错误!未定义书签。
4.2.2 轴的强度校核 ............................................................................. 错误!未定义书签。
4.2.3 圆锥齿轮轴的设计 ..................................................................... 错误!未定义书签。
大中型工业机器人手腕的设计龚仲华;龚晓雯【摘要】为解决当前工业机器人生产制造、维修中所存在的谐波减速器及传动部件的分离和组装技术难题,将新技术和新颖功能部件应用到产品设计中,使工业机器人的装配和维修更简单和快捷;对现行工业机器人的传动系统结构及存在问题进行了分析和研究,提出了一种用于大中型垂直串联工业机器人手腕的新型结构设计方案,并对传动系统的结构进行了具体介绍;该方案将手腕传统系统设计成了可整体装拆和标准化生产、能通过法兰定位简单安装的传动组件,使手腕安装及维修时无需进行谐波减速器及传动部件的分离,传动组件装配时无需进行调整;利用实际生产制造及产品技术性能测试,对传统系统的设计进行了验证.结果表明,采用这一设计方案所制造的工业机器人手腕,不但解决了传统结构设计中所存在的减速器及传动部件的安装和维修问题,延长了部件的使用寿命;而且手腕摆动轴B、手回转轴T的传动精度、运动速度等指标均比传统结构手腕提高了10%~ 20%左右.【期刊名称】《机电工程》【年(卷),期】2016(033)012【总页数】6页(P1457-1462)【关键词】工业机器人;垂直串联;后驱手腕;设计【作者】龚仲华;龚晓雯【作者单位】常州机电职业技术学院电气工程学院,江苏常州213164;国家统计局武进调查队,江苏常州213100【正文语种】中文【中图分类】TH122;TP242.2工业机器人是集多学科先进技术于一体的机电一体化设备,其应用已越来越广泛。
工业机器人的手腕是用来调整作业工具姿态、决定作业灵活性的关键部件,其结构将直接影响产品性能和使用维修。
现代工业机器人大都采用交流伺服电机驱动,电机的转速高、输出转矩小,而手腕的回转、摆动运动需要低速、大转矩输出,因此,传动系统必须有大比例的RV减速器或谐波减速器进行减速[1-4]。
部件型(component type)谐波减速器是目前使用最为广泛的减速装置,这种减速器采用的是刚轮、柔轮、谐波发生器分离型结构[5],因此,无论是生产厂家的产品制造,还是机器人使用厂家维修时,都需要进行谐波减速器和传动零件的分离和安装,其装配调试的要求非常高。
机器人手腕的设计要求
手腕是连接手臂和末端执行器的部件,其功能是在手臂和机座实现了末端执行器在作业空间的三个位置坐标(自由度)的基础上,再由手腕来实现末端执行器在作业空间的三个姿态(方位)坐标,即实现三个旋转自由度。
通过机械接口,联接并支承末端执行器。
手腕能实现绕空间三个坐标轴的转动,即回转运动、左右偏摆运动和俯仰运动。
当有特殊需要时,还可以实现小距离的横移运动。
手腕的自由度愈多,结构和控制愈复杂。
因此,应根据机器人的作业要求来决定其应具有的自由度数目。
在多数情况下,手腕具有1-2个自由度即可满足作业要求。
(1)设计要求
对工业机器人手腕设计的要求有:
①由于手腕处于手臂末端,为减轻手臂的载荷,应力求手腕部件的结构紧凑,减少其质量和体积。
为此腕部机构的驱动装置多采用分离传动,将驱动器安置在手臂的后端。
②手腕部件的自由度愈多,各关节角的运动范围愈大,其动作的灵活性愈高,机器人对作业的适应能力也愈强。
但增加手腕自由度,会使手腕结构复杂,运动控制难度加大。
因此,在设计时,不应盲目增加手腕的自由度数。
通用目的机器人手腕多配置3个自由度,某些动作简单的专用工业机器人的手腕,根据作业实际需要,可减少其自由度数,甚至可以不设置手腕以简化结构。
③为提高手腕动作的精确性,应提高传动的刚度,应尽量减少机械传动系统中由于间隙产生的反转回差。
④对手腕回转各关节轴上要设置限位开关和机械挡块,以防止关节超限造成事故。
摘要本文简要介绍了电动式关节型机器人机械手的概念,机械手硬件和软件的组成,机械手各个部件的整体尺寸设计,气动技术的特点。
本文对机械手进行总体方案设计,确定了机械手的坐标形式和自由度,确定了机械手的技术参数。
同时,设计了机械手的夹持式手部结构,设计了机械手的手腕结构,计算出了手腕转动时所需的驱动力矩和回转气缸的驱动力矩。
设计了机械手的手臂结构。
设计出了机械手的气动系统,绘制了机械手气压系统工作原理图,大大提高了绘图效率和图纸质量,画出了机械手的装配图图。
关键词:工业机器人机械手电动电动式关节型机器人机械手AbstractAt first, the paper introduces the conception of the industrial robot and the Eller. Dairy information of the development briefly. What’s more, the paper accounts for the background and the primary mission of the topic.The paper introduces the function, composing and classification of the manipulator, tells out the free-degree and the form of coordinate. At the same time, the paper gives out the primary specification parameter of this manipulator,The paper designs the structure of the hand and the equipment of the drive of the manipulator. This paper designs the structure of the wrist, computes the needed moment of the drive when the wrist wheels and the moment of the drive of the pump.The paper designs the structure of the arm. The paper institutes two control schemes of according to the work flow of the manipulator. The paper draws out the work time sequence chart and the trapezium chart.KEY WORDS: Industrial robot robot electricelectric-type joints robot manipulator目录第一章绪论 (5)1.1 绪言 (5)1.2 课题工作要求 (7)1.3 课题基本参数的确定 (8)第二章结构的设计 (10)2.1 手部的机构 (10)2.1.1 手指的形状和分类 (11)2.1.2 设计时考虑的几个问题 (11)2.1.3 手部夹紧的设计 (12)2.2 手腕结构设计 (13)2.2.1 手腕的自由度 (13)2.2.2 手腕的驱动力矩的计算 (13)2.3 手臂伸缩,升降的尺寸设计与校核 (18)2.3.1 手臂伸缩的尺寸设计与校核 (18)2.3.2手臂升降的尺寸设计与校核 (19)第三章控制系统设计 (22)总结 (43)致谢 (44)结参考文献 (45)第1章绪论1.1绪言到目前为止,世界各国对“机器人机械手”还没有做出统一的明确定义。
机械手腕部设计范文机械手是一种模仿人手的机械装置,广泛应用于工业生产线上的自动化操作。
机械手通常由机械臂和手腕部组成,其中手腕部起着连接机械臂与末端执行器的作用。
手腕部的设计对机械手的动作能力和精度有着重要影响。
机械手腕部主要由关节、传感器和执行器组成。
关节是连接机械臂和手腕的部分,通常由旋转关节和弯曲关节组成。
旋转关节使机械手能够在水平方向上旋转,而弯曲关节则使机械手能够在垂直方向上弯曲。
关节的设计需要考虑到承载能力、阻尼控制和位置精度等因素。
传感器在机械手腕部起到了非常重要的作用。
通过传感器可以实时获取机械手的位置、姿态和力量等信息,从而实现更加精确的控制。
常用的传感器有位置传感器、力矩传感器和视觉传感器。
位置传感器用于测量关节的位置,力矩传感器用于测量关节所施加的力矩,而视觉传感器可以通过图像识别实现对目标物体的抓取。
执行器是机械手腕部的输出部分,通过执行器可以实现对机械手的运动控制。
常见的执行器有电机和液压缸。
电机驱动机械手的旋转和弯曲动作,而液压缸则可以实现更大的力矩输出。
根据实际需要,执行器的选型需要考虑到输出力矩、响应速度和能耗等因素。
除了上述基本组成部分,机械手腕部还需要考虑到人机交互性和安全性等因素。
人机交互性指的是机械手腕部与操作人员之间的交互,包括界面设计和操作逻辑等方面。
安全性是指机械手腕部在工作过程中的安全保护措施,如急停装置和限位开关等。
在设计机械手腕部时,需要充分考虑到工作环境和任务需求。
工作环境包括空间限制、温度要求和清洁程度等方面,而任务需求则包括工作范围、负载能力和定位精度等方面。
根据这些要求,可以选择合适的关节结构、传感器和执行器等。
总结起来,机械手腕部设计需要考虑到关节、传感器和执行器等部分的协调配合,同时还需要兼顾人机交互性和安全性等因素。
通过合理的设计,可以实现机械手腕部对于工业生产的快速、准确和安全的操作。