设备状态检测与故障诊断的含义和作用分析
- 格式:ppt
- 大小:2.55 MB
- 文档页数:40
设备状态监测与故障诊断综述:摘要从设备管理的角度,介绍了典型的设备状态监测与故障诊断的诊断理论、技术手段和具体方法。
首先对设备状态监测与故障诊断的意义、开展,根底理论和现状进展了介绍,阐述了设备状态监测、故障诊断与设备管理的关系。
进而对振动监测、温度检测、无损检测等根本监测手段的原理及诊断方法。
关键字:状态监测;故障诊断;振动;设备1设备状态监测和故障诊断概述1.1设备状态监测和故障诊断的意义和开展历史1.1.1设备故障及故障诊断的意义随着现代化工业的开展,设备能否平安可靠地以最正确状态运行,对于确保产品质量、提高企业生产能力、保障平安生产都具有十分重要的意义。
设备的故障就是指设备在规定时间内、规定条件下丧失规定功能的状况,通常这种故障是从*一零部件的失效引起的。
设备的故障诊断则是发现并确定故障的部位和性质。
寻找故障的起因,预报故障的趋势并提出相应的对策。
1.1.2 设备故障诊断技术开展历史设备故障诊断技术的开展是与设备的维修方式严密相连的。
可以将故障诊断技术按测试手段分为六个阶段,即感官诊断、简易诊断、综合诊断、在线监测、精细诊断和远程监测。
从时间考察,故障诊断技术大致可以分为20世纪60年代以前、60年代到80年代和80年代以后几个阶段。
1.2现代设备故障诊断技术在故障诊断学建立之前,传统的故障诊断方法主要是依靠经历的积累。
将反映设备故障的特殊信号,从信息论角度出发对其进展分析,是现代设备故障诊断技术的特点。
可以分为统计诊断、逻辑诊断、模糊诊断。
其中有几种方法做简单的介绍。
贝叶斯法,此方法是基于概率统计的推理方法,以概率密度函数为根底,综合设备的故障信息来描述设备的运行状态,进展故障分析。
此外还有最大似然法、时间序列、法灰色系统法和故障树分析法。
故障树分析法模型是一个基于被诊断对象构造、功能特性的行为模型,是一种定性的因果模型。
1.3基于知识的故障诊断方法基于知识的故障诊断方法,不需要待测对象准确的数学模型,而且具有智能特性。
1.设备监测目的意义保障设备安全,防止突发故障。
保障设备精度,提高产品质量和经济效益。
推进设计理念和维修制度的革新。
避免设备事故、人员伤亡、环境污染。
维护社会稳定。
2.故障分类按故障对机械工作能力的影响分类:完全性故障局部性故障按故障发生速度及演变过程分类:突发性故障渐进性故障按其发生的原因分类:磨损性故障错用性故障先天性故障按造成的后果分类:危害性故障安全性故障3.故障规律浴盆曲线:磨合期,正常使用期,耗损期4.故障发生的原因宏观上分析1.设计错误2 原材料缺陷3 制造过程的缺陷4 运转缺陷微观上分析:疲劳,磨损,断裂,腐蚀5.零件磨损的一般规律磨合阶段,正常磨损阶段,急剧磨损阶段6.零件变形失效塑性变形失效,弹性变形失效,蠕变变形失效,翘曲变形失效7.断裂失效塑性断裂,脆性断裂8.状态监测与故障诊断的技术方法1.振动、噪声诊断技术2. 油液分析技术3. 温度检测技术4. 无损检测技术9.振动的危害降低机器及仪表的精度,引起机械设备及土木结构的破坏10.机械振动的分类按振动系统本身的特点分类: 离散系统连续系统按振动系统所受的激励类型分类: 自由振动强迫振动自激振动参数振动按系统的响应(振动规律)分类: 确定性振动随机振动按描述系统运动的微分方程分类:线性振动非线性振动11.机械振动要研究的内容和步骤1. 建立物理力学模型2.建立数学模型3.方程的求解4.结果的阐述12. 随机振动非确定而又具有统计规律,它们的规律不能用时间的确定性函数来描述,但又具有一定的统计规律性。
平稳随机过程与各态历经过程13. 自相关函数∑=∞→+=+nk k k Tx t x t x n t t R 11111)()(1),(lim ττ同一点不同的两个时间函数乘积称为随机过程 X(t)于时刻 t 1与 t 1+ τ的自相关函数。
它是时差 的函数,在一般情况下,它也依赖于采样时刻 t 1,反映这两个时刻的随机变量的X k (t 1)与X (t1+τ)统计联系。
状态监测与故障诊断的基本知识一、状态监测与故障诊断的意义及发展现状1.状态监测与故障诊断的定义通俗地说,状态监测与故障诊断就是给机器看病。
人不可能不生病,机器在运行过程中出现故障也是不可避免的。
人生了病需要求医就诊,机器出了故障也要找“医生”诊断病因。
医生对病人的诊断是基于体征检查(先看体温,再进行验血、X光、心电图、B超、…、甚至CT等)基础上的分析判断,对机器故障的诊断同样也是基于状态监测(先看总振动值,再求助于频谱、波形、轴心轨迹、趋势图、波德图、全息谱图等)基础上的综合性分析判断。
状态监测是指通过一定的途径了解和掌握设备的运行状态,包括利用监测与分析仪器(在线的或离线的),采用各种检测、监视、分析和判别方法,对设备当前的运行状态做出评估(属于正常、还是异常),对异常状态及时做出报警,并为进一步进行的故障分析、性能评估等提供信息和数据。
故障是指机械设备丧失了原来所规定的性能或状态。
通常把设备在运行中所发生的状态异常、缺陷、性能恶化、以及事故前期的状态统统称为故障,有时也把事故直接归为故障。
而故障诊断则是根据状态监测所获得的信息,结合设备的工作原理、结构特点、运行参数、历史状况,对可能发生的故障进行分析、预报,对已经或正在发生的故障进行分析、判断,以确定故障的性质、类别、程度、部位及趋势,对维护设备的正常运行和合理检修提供正确的技术支持。
2. 状态监测与故障诊断的意义状态监测与故障诊断技术的由来及发展,与十分可观的故障损失以及设备维修费密切相关,而状态监测与故障诊断的意义则是有效地遏制了故障损失和设备维修费用。
具体可归纳如下几个方面:(1)及时发现故障的早期征兆,以便采取相应的措施,避免、减缓、减少重大事故的发生;(2)一旦发生故障,能自动纪录下故障过程的完整信息,以便事后进行故障原因分析,避免再次发生同类事故;(3)通过对设备异常运行状态的分析,揭示故障的原因、程度、部位,为设备的在线调理、停机检修提供科学依据,延长运行周期,降低维修费用;(4)可充分地了解设备性能,为改进设计、制造与维修水平提供有力证据。
电力系统设备状态监测与故障诊断技术分析一、概述随着电力工业的快速发展,电力系统设备的安全稳定运行对于保障社会经济的持续发展和人民生活的正常进行具有至关重要的意义。
由于设备老化、运行环境恶劣以及人为操作失误等多种因素的影响,电力系统设备在运行过程中难免会出现各种故障。
对电力系统设备进行状态监测与故障诊断技术的研究与应用,成为了确保电力系统安全稳定运行的关键环节。
状态监测技术是指通过实时采集设备运行状态信息,对设备的健康状况进行实时监测和评估的技术。
该技术能够及时发现设备的异常状态,为故障诊断提供有力的数据支持。
而故障诊断技术则是根据状态监测所获得的数据,结合设备的结构特点、工作原理以及运行环境等因素,对设备故障进行准确判断和定位的技术。
通过故障诊断,可以确定故障的原因、程度和范围,为后续的维修和更换工作提供指导。
近年来,随着传感器技术、信号处理技术和人工智能技术的不断发展,电力系统设备状态监测与故障诊断技术也取得了显著的进步。
各种新型传感器和监测设备的出现,使得状态信息的获取更加准确和全面信号处理技术的发展,使得对监测数据的分析和处理更加高效和精确而人工智能技术的应用,则为故障诊断提供了更加智能和自动化的方法。
尽管取得了这些进展,但电力系统设备状态监测与故障诊断技术仍面临着一些挑战和问题。
例如,对于复杂设备和系统的监测与诊断,需要更加深入的理论研究和更加完善的技术体系同时,还需要解决在实际应用过程中可能出现的误报、漏报等问题,提高监测与诊断的准确性和可靠性。
本文旨在对电力系统设备状态监测与故障诊断技术进行深入的分析和研究,探讨其在实际应用中的优势和不足,并提出相应的改进和发展方向。
通过对该技术的深入研究和应用推广,有望为电力系统设备的安全稳定运行提供更加坚实的技术保障。
1. 电力系统设备状态监测与故障诊断的重要性在电力系统中,设备状态监测与故障诊断技术的应用具有极其重要的意义。
这一技术能够确保电力系统的稳定运行。
电气设备状态监测与故障诊断1 前言1.1 状态监测与故障诊断技术的含义电气设备在运行中受到电、热、机械、环境等各种因素的作用,其性能逐渐劣化,最终导致故障。
特别是电气设备中的绝缘介质,大多为有机材料,如矿物油、绝缘纸、各种有机合成材料等,容易在外界因素作用下发生老化。
电气设备是组成电力系统的基本元件,一旦失效,必将引起局部甚至广大地区的停电,造成巨大的经济损失和社会影响。
“监测”一词的含义是为了特殊的目的而进行的注视、观察与校核。
设备的状态监测是利用各种传感器和测量手段对反映设备运行状态的物理、化学量进行检测,其目的是为了判明设备是否处于正常状态。
“诊断”一词原是一医学名词,指医生对收集到的病人症状(包括医生的感观所感觉到的、病人自身主观陈述以及各种化验检测所得到的结果)进行分析处理、寻求患者的病因、了解疾病的严重程度及制订治疗措施与方案的过程。
设备的“故障诊断”借用了上述概念,其含义是指这样的过程:专家根据状态监测所得到的各测量值及其运算处理结果所提供的信息,采用所掌握的关于设备的知识和经验,进行推理判断,找出设备故障的类型、部位及严重程度,从而提出对设备的维修处理建议。
简言之,“状态监测”是特征量的收集过程,而“故障诊断”是特征量收集后的分析判断过程。
广义而言,“诊断”的含义概括了“状态监测”和“故障诊断”:前者是“诊”;后者是“断”。
1.2 状态监测与故障诊断技术的意义电气设备特别是大型高压设备发生突发性停电事故,会造成巨大的经济损失和不良的社会影响。
提高电气设备的可靠性,一种办法是提高设备的质量,选用优质材料及先进工艺,优化设计,合理选择设计裕度,力求在工作寿命内不发生故障。
但这样会导致制造成本增加。
此外,设备在运行中,总会逐渐老化,而大型设备不可能象一次性工具那“用过即丢”。
因此,另一方面,必须对设备进行必要的检查和维修,这构成了电力运行部门的重要工作内容。
早期是对设备使用直到发生故障,然后维修,称为事故维修。
5 设备状态监测与故障诊断所谓“状态监测与故障诊断”,就是对运行中的设备实施定期或连续监测、有关参数分析、有效地对设备运行状态进行系统自动监测分析或人工分析,读取相应的自诊断状态报告,以便尽早发现潜伏性故障,提出预防性措施,避免发生严重事故,保证设备的安全、稳定和经济运行,并以此指导设备检修。
设备状态监测和故障诊断技术也称为预测维修技术,是新兴的一门包含很多新科技的多学科性综合技术。
简单地说就是通过一些技术手段,对设备的振动、噪声、电流、温度、油质等进行监测和技术分析,掌握设备的运行状态,判断设备未来的发展趋势,诊断故障发生的部位、故障的原因,进而具体指导维修工作。
传统的耳听、手摸等也可以算是其中的一种比较简单的手段。
5.1 设备故障的规律设备故障是一个非常广义的概念。
简单地说,设备故障就是设备系统或其中的元件/部件丧失了规定的功能或精度。
与故障意义相近的还有“失效”的概念,失效通常指的是不可修复的对象;故障指的是可以修复的对象。
早期故障:这种故障的产生可能是设计、加工或材料上的缺陷,在设备投入运行初期暴露出来。
或者是有些零部件如齿轮箱中的齿轮及其他摩擦副需经过一段时期“跑合” , 使工作情况逐渐改善。
这种早期故障经过暴露、处理、完善后,故障率开始下降。
使用期故障:这是产品有效寿命期内发生的故障,这种故障是由于载荷(外因,指运行条件等)和系统特性(内因,指零部件故障、结构损伤等)无法预知的偶然因素引起的。
设备大部分时间处于这种工作状态。
这时的故障率基本上是恒定的。
对这个时期的故障进行监测与诊断具有重要意义。
后期故障(耗散期故障):它往往发生在设备的后期,由于设备长期使用,甚至超过设备的使用寿命后,设备的零部件由于逐渐磨损、疲劳、老化等原因使系统功能退化,最后可能导致系统发生突发性的、危险性的、全局性的故障。
这期间设备故障率是上升趋势,通过监测、诊断,发现失效零部件应及时更换,以避免发生事故。
设备故障的规律可分为以下六种模式。
设备状态检测与故障讲义诊断的含义和作用设备状态检测与故障诊断是指通过对设备运行状态进行检测,结合故障诊断技术,分析设备出现问题的原因和程度,并提出相应的解决方案。
它在设备运行维护管理中起着举足轻重的作用,有助于提高设备运行的可靠性、安全性和效率,并降低维修成本和生产损失。
设备状态检测是指对设备运行状态的监测和评估,可以通过传感器、仪表、信号采集装置等手段获取设备的参数、信号和数据,进行实时监控和记录。
常见的设备状态参数包括温度、压力、振动、电流、转速等。
设备状态检测的主要目的是获取设备运行的实时数据,实现对设备状态的准确把握,为故障诊断提供数据和依据。
故障诊断是指通过分析和判断设备出现故障的原因和程度,确定故障的类型和位置,进而提出相应的解决方案。
故障诊断可以通过专家系统、模型识别、故障模拟和数据分析等方法实现。
在故障诊断中,通常需要对设备的状态数据进行分析和比较,利用数学统计、故障树分析、人工神经网络等方法,实现对故障的判断和定位。
设备状态检测与故障诊断在实际应用中起到了重要的作用。
首先,它可以实现对设备运行状态的实时监测和评估,及时发现设备的异常和故障,从而减少设备停机时间和生产损失。
其次,通过对设备故障原因和程度的诊断,可以准确判断故障的类型和位置,提供维修和保养的依据。
再者,设备状态检测与故障诊断可以帮助企业实现设备运维的智能化和自动化,提高设备的可靠性和效率,降低人力成本和维修成本。
此外,它还可以对设备的整体运行情况进行分析和比较,为设备更新和更换提供决策支持。
综上所述,设备状态检测与故障诊断在设备运行维护管理中有着重要的作用。
它通过实时监测设备的运行状态,并通过对设备故障原因和程度的诊断,帮助企业及时发现和解决设备故障问题,提高设备的可靠性和效率,减少维修成本和生产损失。
因此,对设备状态检测与故障诊断技术的研究和应用具有重要的意义,有助于提升企业的竞争力和市场地位。
设备状态监测及故障诊断近年来,为了提高设备管理与维修的现代化水平,在省设协和油田设备处的大力支持与帮助下,我厂应用状态监测及故障诊断技术,及时发现并解决了许多设备隐患,提高了设备运行可靠度,为电厂长周期、满负荷生产奠定了良好的基础。
1 开展状态监测与故障诊断工作的缘由1.1 状态监测与故障诊断是一种新的管理理念电厂生产的特点是自动化水平高、生产连续性强,一旦某台设备发生故障,将迫使机组降低负荷,甚至停机。
多年的摔打与磨练告诉我们:单凭眼看、手摸、耳听、鼻嗅等感观经验来判断设备故障已无法适应现代化生产的需要,只有开展状态监测和故障诊断工作才能彻底摆脱这种落后的管理模式。
1.2 状态监测和故障诊断是提高设备管理水平的需要我厂已搞过8次大修,在检修项目的确立和设备系统部件的更换上,虽然针对性、方向性有了很大提高,但确切性、适宜性、经济性仍有差距。
根据“四个凡是”的贯标精神要求,设备、系统的大小修的立项应更具科学性、针对性,减少盲目性,要解决这一问题,惟有开展状态监测和故障诊断。
1.3 状态监测和故障诊断是降本增效的需要。
我厂检修费用一年比一年紧缩,降本增效压力逐年递增,如何进一步降低发电成本,是摆在全厂干部职工面前的一个现实问题。
从历年大修情况来看,部分单位存在不同程度的欠修和过剩检修。
过剩检修意味着工作量加大,费用增加,造成人、财、物的浪费,而欠修将给设备运行带来隐患。
开展状态监测和故障诊断可有效避免欠修和过剩检修,做到物尽其用,达到降本增效的目的。
1.4 状态监测和故障诊断是二期投产的需要我厂二期两台机组相继投产,如果按照过去三年一大修的计划,每年至少要安排一台机组大修,甚至一年安排两台机组的大修。
我厂经过8次机组大修,积累了丰富的检修经验,对设备、系统的性能特点有了更深的了解。
特别是1999年和2000年的机组技改性大修,使设备的可靠性有了明显提高,基本具备了把机组三年一大修改为四年一大修的条件。
电气设备状态监测与故障诊断技术1 前言1.1 状态监测与故障诊断技术的含义电气设备在运行中受到电、热、机械、环境等各种因素的作用,其性能逐渐劣化,最终导致故障。
特别是电气设备中的绝缘介质,大多为有机材料,如矿物油、绝缘纸、各种有机合成材料等,容易在外界因素作用下发生老化。
电气设备是组成电力系统的基本元件,一旦失效,必将引起局部甚至广大地区的停电,造成巨大的经济损失和社会影响。
“监测”一词的含义是为了特殊的目的而进行的注视、观察与校核。
设备的状态监测是利用各种传感器和测量手段对反映设备运行状态的物理、化学量进行检测,其目的是为了判明设备是否处于正常状态。
“诊断”一词原是一医学名词,指医生对收集到的病人症状(包括医生的感观所感觉到的、病人自身主观陈述以及各种化验检测所得到的结果)进行分析处理、寻求患者的病因、了解疾病的严重程度及制订治疗措施与方案的过程。
设备的“故障诊断”借用了上述概念,其含义是指这样的过程:专家根据状态监测所得到的各测量值及其运算处理结果所提供的信息,采用所掌握的关于设备的知识和经验,进行推理判断,找出设备故障的类型、部位及严重程度,从而提出对设备的维修处理建议。
简言之,“状态监测”是特征量的收集过程,而“故障诊断”是特征量收集后的分析判断过程。
广义而言,“诊断”的含义概括了“状态监测”和“故障诊断”:前者是“诊”;后者是“断”。
1.2 状态监测与故障诊断技术的意义电气设备特别是大型高压设备发生突发性停电事故,会造成巨大的经济损失和不良的社会影响。
提高电气设备的可靠性,一种办法是提高设备的质量,选用优质材料及先进工艺,优化设计,合理选择设计裕度,力求在工作寿命内不发生故障。
但这样会导致制造成本增加。
此外,设备在运行中,总会逐渐老化,而大型设备不可能象一次性工具那“用过即丢”。
因此,另一方面,必须对设备进行必要的检查和维修,这构成了电力运行部门的重要工作内容。
早期是对设备使用直到发生故障,然后维修,称为事故维修。
设备状态检测与故障诊断解说词尊敬的观众们,大家好!今天,我将为大家介绍设备状态检测与故障诊断的相关知识。
设备状态检测与故障诊断是一项重要的技术,它能够帮助我们及时发现设备的异常状态,减少故障发生的可能性,提高设备的可靠性和工作效率。
设备状态检测是通过对设备进行实时监测和分析,了解设备的工作状态是否正常。
我们可以通过监测设备的温度、振动、电流等参数来判断设备是否处于正常工作状态。
如果设备的温度异常升高,或者振动频率异常增大,那么就可能存在设备故障的风险。
通过及时检测和分析这些指标,我们可以提前采取措施,避免设备故障带来的不良影响。
故障诊断是在设备发生故障时,通过分析故障现象和相关数据,找出故障的原因和位置。
故障诊断需要借助专业的工具和技术,比如红外热像仪、振动分析仪等。
通过这些设备,我们可以对设备进行全面的检测和分析,找出故障的根本原因,以便进行及时修复和维护。
在设备状态检测与故障诊断过程中,我们还需要注意一些关键问题。
首先是数据采集的准确性和及时性,只有准确和及时地采集到设备的状态数据,我们才能更好地判断设备是否正常工作。
其次是数据分析的精确性和有效性,只有通过准确的数据分析,我们才能找出故障的原因和位置,做出正确的处理决策。
设备状态检测与故障诊断技术的应用非常广泛。
它不仅可以应用在工业设备上,还可以应用在交通运输、能源、医疗等领域。
通过设备状态检测与故障诊断,我们可以提高设备的可靠性和安全性,降低故障的发生率,为各行各业的生产和运营提供有力的保障。
设备状态检测与故障诊断是一项关键的技术,它可以帮助我们及时发现设备的异常状态,减少故障发生的可能性。
通过准确的数据采集和分析,我们可以找出故障的原因和位置,做出正确的处理决策。
设备状态检测与故障诊断的应用范围广泛,对于提高设备的可靠性和安全性具有重要意义。
让我们共同努力,将设备状态检测与故障诊断技术应用到实际生产和生活中,为社会发展和进步贡献力量!谢谢大家!。
设备状态检测与故障诊断知识基本概念•设备状态检测:是指通过各种传感器和检测技术,实时收集设备的运行参数,对设备的工作状态进行实时监测和分析的过程。
其目的是及时发现设备的异常情况,预测设备可能出现的故障,从而采取相应的措施,避免故障的发生.•设备故障诊断:是在状态监测的基础上,通过分析设备的运行参数和故障特征,判断设备是否存在故障,确定故障的类型、位置和原因,并提出相应的解决方案的过程。
故障诊断的目的是减少设备的故障率,延长设备的使用寿命,提高设备的运行效率常用检测方法•振动检测:通过监测设备运行时的振动信号,分析振幅、频率、相位等参数来判断设备的状态。
例如,振幅增大可能表示设备存在不平衡、不对中、松动等问题;特定频率成分的变化可以对应不同的故障类型,如旋转机械中,不平衡故障会在旋转频率处出现明显的周期成分,转轴不对中时,旋转频率的 2 倍成分会明显加大。
常用的振动检测仪器有便携式测振仪、在线振动监测系统等.•温度检测:监测设备关键部位的温度变化,以发现过热等异常情况。
如轴承、电机绕组、变压器等部位温度过高,可能预示着润滑不良、散热问题、过载等故障。
可采用热电偶、热电阻、红外测温仪等温度传感器进行测量。
比如,通过监测轴承回油温度及瓦块温度,可及时发现滑动轴承的工作异常,避免烧瓦事故.•油液分析:对设备的润滑油或液压油进行理化性能分析和颗粒分析,以评估设备的磨损状况和润滑系统的工作状态。
润滑油的粘度、闪点、酸值等指标的变化,以及油中磨损颗粒的数量、大小、形貌和成分等,都能反映设备零部件的磨损程度和潜在故障。
常见的油液分析方法有光谱分析、铁谱分析、颗粒计数等.•电气检测:针对电气设备,测量电流、电压、电阻、绝缘电阻、局部放电等电气参数,以判断设备的电气性能是否正常。
例如,通过检测电动机的电流和电压,可以判断其是否过载、缺相;测量变压器的绝缘电阻和局部放电,可以评估其绝缘状况,及时发现绝缘老化、受潮、短路等故障隐患•无损检测:采用无损检测技术,如超声波检测、射线检测、磁粉检测、渗透检测等,检测设备内部的缺陷和损伤,而不破坏设备的结构和性能。
机械设备状态检测与故障诊断1.简述设备故障诊断的目的和任务答:目的:①能及时的、正确的对各种异常状态或故障状态作出诊断,预防或消除故障,对设备的运行进行必要的指导,提高设备的可靠性、安全性和有效性,把故障降低到最低水平②保证设备发挥最大的设计压力③通过检测监视、故障分析、性能评估等,为设备结构改造、优化设计、合理制造及生产过程提供数据和信息任务:①状态监测②故障诊断③指导设备的管理维修2.简述设备故障诊断技术的定义、内容、类型和方法答:定义:在设备运行中或基本不拆卸设备的情况下,掌握设备的运行状况,判定产生故障的部位和原因,以及预测预报设备状态的技术内容:设备故障诊断的内容包括状态监测、分析诊断和故障预测三方面,实施过程为信号采集、信号处理、状态识别、诊断决策四方面类型:①按诊断对象分类:旋转机械诊断技术、往复机械诊断技术、工程结构诊断技术、运载器和装置诊断技术、通信系统诊断技术、工艺流程诊断技术②按诊断目的分类:功能诊断与运行诊断、定期诊断与连续诊断、直接诊断与间接诊断、常规工况与特殊工况诊断、在线诊断和离线诊断③按诊断方法完善程度分类:简易诊断、精密诊断技术方法:①传统方法:利用各种物理和化学的原理和手段,通过伴随故障出现的各种物理和化学现象直接检测故障;利用故障所对应的征兆来诊断②智能诊断:在传统诊断方法的基础上,将人工智能的理论的方法用于故障诊断③模式识别、概率统计、模糊数学、可靠性分析和故障树分析、神经网络、小波变换、分析几何等数学分支在故障诊断中应用3.机械设备故障的信息获取和检测方法有哪些?答:获取方法:直接观测法、参数测定法、磨损残渣测定法、设备性能指标的测定检测方法:①振动和噪声的故障检测:振动法、特征分析法、模态识别与参数识别法、冲击能量与冲击脉冲测定法、声学法②材料裂纹及缺陷损伤的故障检测:超声波探伤法、射线探伤法、渗透探伤法、磁粉探伤法、涡流探伤法、激光全息检测法、微波检测技术、声发射技术③设备零部件材料的磨损及腐蚀故障检测:光纤内窥技术、油液分析技术④温度、压力、流量变化引起的故障检测4.简述振动检测和诊断系统的组成和原理,说明其区别答:振动检测系统:信息输入-数据预处理-数据变换和压缩-特征提取-状态分类-{①显示、打印、绘图、储存②判断与决策-报警、审核、维修}诊断系统:激振器-被诊断对象-传感器-二次仪表-{①磁带记录仪②分析仪③数据采集、记录和存储器}-故障诊断系统5.测振传感器有哪些类型?简述其工作原理。