复叠式制冷循环
- 格式:pptx
- 大小:477.57 KB
- 文档页数:53
采用复叠式制冷循环的原因
1. 提高制冷效率:复叠式制冷循环可以将低温冷凝器中的冷气进一步冷却,使其温度更低,从而提高制冷系统的效率。
通过多个级别的冷凝器和蒸发器,冷凝温度不断下降,从而减少了对压缩机的功率需求,并提高了制冷系统的性能。
2. 扩大制冷范围:复叠式制冷循环可以扩大制冷系统的工作温度范围。
传统的单级制冷循环通常适用于较低的温度范围,而复叠式制冷循环可以通过多级蒸发器和冷凝器,在不同温度范围内工作,适用于更广泛的应用领域。
3. 降低系统压力:复叠式制冷循环通过将制冷循环中的压力降低到较低的水平,可以减少系统中的压力损失,提高了压缩机的效率,减少了能耗。
4. 提高系统稳定性:复叠式制冷循环的多级结构可以提高系统的稳定性。
通过将制冷系统分为多个级别,可以减小每个级别的温度和压力差异,减少了运行过程中的温度和压力波动,从而提高了系统的稳定性和可靠性。
5. 实现多种制冷要求:复叠式制冷循环可以根据不同的制冷需求进行灵活调节。
通过增加或减少冷凝器和蒸发器的级数,可以实现不同的制冷效果,满足不同的使用要求。
总的来说,采用复叠式制冷循环可以提高制冷系统的效率和性能,扩大制冷范围,减小能耗,提高系统的稳定性和可靠性,以及适应不同的制冷要求。
课程设计课程名称制冷与低温课程设计题目名称冷库CO2/NH3复叠制冷系统设计学生学院能源与动力工程学院专业班级能动B11组员朱家伟李科白清川指导教师晏刚2014年9月2日设计总说明本课程设计是设计一个10^3 m3低温冷冻库制冷循环系统,要求选用CO2/NH3复叠制冷循环系统。
整个设计过程主要包括系统制冷量计算、系统高低温级循环理论设计、复叠制冷系统设备的计算和选配,同时结合整体设备运行原理,对该CO2/NH3复叠制冷循环系统进行校正。
本次设计先从冷库制冷量计算着手,先根据CO2的制冷范围,初设循环的温度范围,计算出中间温度;再由各级冷凝蒸发温度结合循环p-h图确定系统设备的工况,最后根据工况和要求选取最佳的制冷设备。
经过设计计算,可以根据两级压缩机的排气量选取合适的压缩机,根据换热器负荷,利用专业换热器软件计算换热器的技术参数,在选取合适的换热器。
通过本次的设计,得到了一个较合理的可适用于低温冷冻库的CO2/NH3复叠系统成套设备。
关键词:低温冷库 CO2/NH3复叠螺杆压缩机蒸发冷凝器课程设计目录一、CO2/HN3复叠制冷系统制冷量计算 (2)1.110^3M³冷库耗冷量的计算 (2)1.2冷库机组计算 (3)二、CO2/NH3复叠制冷系统理论循环计算 (4)2.1C02/NH3复叠制冷系统的特点 (4)2.2CO2/NH3复叠制冷系统的组成 (5)2.3复叠系统温度的确定 (6)2.4低温级(CO2)设计参数 (6)2.5高温级(NH3)设计参数 (6)2.6低温级(CO2)循环理论计算 (6)2.7高温级(NH3)循环理论计算 (8)三、CO2/NH3复叠制冷系统设备的选择 (9)3.1压缩机的选择 (9)3.2换热器的计算和选择 (10)3.3油冷却器的选择 (10)3.4电子膨胀阀的选择 (11)3.5CO2安全阀的设计 (12)3.6润滑油的选择 (13)3.7密封材料 (14)四、主要参考文献 (16)五、心得体会 (17)一、co2/hn3复叠制冷系统制冷量计算1.1 10^3m³冷库耗冷量的计算Q=Q1+Q2+Q3+Q4+Q5+Q6+Q71、传导热量Q1:Q1=K×F×(T0 –T1)= 84 kw式中:K——库体材料传热系数W/ °C.m2。
第六章双级和复叠式蒸气压缩制冷一、概述空调用的制冷技术,单级压缩制冷就可满足,但在冷库制冷中,当结冻间的库房温度要求保持-23℃时,其蒸发温度必须达到-33℃左右。
而单级压缩制冷其蒸发温度只能达到-25~-30℃左右,这是因为对活塞式压缩机来说,其压缩机的压力比P k /P o 不能太大。
对R717其压力比P k /P o ≤8,对R12或R22其压力比P k /P o ≤10。
对于R12和R22,其蒸发温度低于-30℃时将采用双级压缩制冷。
双级压缩有双机双级压缩和单机双级压缩之分。
所谓双机压缩是由两台不同的压缩机(即低压压缩机和高压压缩机)来完成双级压缩,而单机双级压缩是由一台压缩机上设有低压缸和高压缸来完成双级压缩的。
二、一次节流、完全中间冷却的双级压缩制冷循环(一)制冷循环过程双级压缩根据中间冷却器的工作原理不同,分为完全中间冷却的双级压缩和不完全中间冷却的双级压缩。
氨系统一般用完全中间冷却的双级压缩,氟利昂系统用不完全中间冷却的双级压缩。
氨系统完全中间冷却的双级压缩基本原理如下页图6-1所示。
它的工作原理是:质量流量为M R1的氨液在蒸发器中吸热,制取冷量Ф0以后,以状态1吸入低压级压缩机(或单机双级压缩的低压缸)压缩到状态2,进入中间冷却器。
状态2的过热蒸汽被来自膨胀阀的液体制冷剂在中间冷却器内冷却,冷却至饱和状态3,又进入了高压级压缩机(或单机双级压缩的高压缸)压缩至状态4,然后进入冷凝器,冷凝至饱和液态5。
状态5的高压液体制冷剂分两路,一路流量为M R2经膨胀阀①节流至状态6,进入中间冷却器;另一路流量M R1经中间冷却器的盘管过冷至状态7,状态7的液体经膨胀阀②节流至状态8,然后进入蒸发器中蒸发吸热,吸收被冷却物体的热量,达到制冷目的。
图6-1 一次节流、完全中间冷却的双级压缩制冷(a)工作流程(b)理论循环(二)热力计算这里需要指出的是,上述这种双级压缩制冷循环与单级压缩制冷循环有一点不同,就是流经各设备的制冷剂质量流量并不相等。
高低温试验箱复叠式制冷系统的故障判断1复叠式制冷机组的快速故障判断1.1 复叠式制冷循环工业生产和科学实验要求的-60℃~-100℃的低温环境,一般通过复叠式制冷机组实现。
图l所示为采用R404A和R23的复叠式制冷系统示意图。
它由两个单级压缩系统组成,高温级采用R404A,低温级采用R23为制冷剂,高温级制取了冷量供低温制冷循环冷凝用。
可见,复叠式制冷系统是由压缩机、冷凝器、蒸发器、膨胀阀以及许多的设备附件所组成的相互联系而又相互影响的两套的复杂系统。
因此,一旦制冷设备出现了故障.不应把注意力仅仅集中在某一个局部或某一级上,而是要对整个系统进行全面检查和综合分析。
这就需要实践经验的积累和理论的指导。
通过长期实践的总结,摸索出不少检查故障的经验,归纳成复叠式制冷机组的“一看、二听、三摸”快速检修基本方法。
1.2“一看、二听、三摸”的内容1.2.1一看就是看压力表和温度表的指示值,看润滑油量看蒸发器与吸气管的结霜情况。
在风冷机组中,高温级高压表指示值为:10~14bar;低压表指示值为:0.5~lbar。
低温级高压表指示值为:10~14bar;低压表指示值为;0.8~-0.8bar。
在水冷机组中,高温级高压表指示值为:8~12bar;低压表指示值为:0.8~0.5bar。
低温级高压表指示值为:lO~14bar;低压表指示值为:0.8~0.5bar。
看压缩机曲轴箱内的润滑油应处在油面指示值所规定的范围内波动。
压缩机组的回霜:高低温试验箱工作室内温度在0℃左右时,高级压缩机组的回霜以回到压缩机迸气截止阀时为正常;当温度箱工作室内温度降到-25℃左右时,低级压缩机组的回霜以回到压缩机进气截止阀时为正常,如有差异表明氟利昂注入量少。
高低温试验箱工作室内降温速度,若降温速度比平时正常运转时有显著的减慢则属不正常现象。
高温级膨胀阀,从进液口到出液口,中间有明显的霜分界线为正常;分界线在进液口处膨胀阀有堵塞,要对膨胀阀的过滤器进行清洗。
复叠式制冷循环计算复叠式制冷循环是一种高效的制冷方式,主要由两个单独的循环组成,相互独立地进行制冷和回热过程。
本文将介绍复叠式制冷循环的计算原理,包括循环参数的设定和计算公式的推导。
一、循环参数的设定复叠式制冷循环主要由高温循环和低温循环两部分组成,具体的循环参数如下:1. 高温循环:压缩机排气压力Pc、蒸发器出口压力Pe、冷凝器出口压力Pc1、蒸发器入口温度Te、冷凝器出口温度Tc1、冷凝器入口温度Tc2。
2. 低温循环:低温蒸发器出口压力Pf、低温压缩机排气压力Pc2、低温蒸发器入口温度Tf1、低温蒸发器出口温度Tf2、低温冷凝器出口温度Tc3、低温冷凝器入口压力Pe1。
二、计算原理根据第一定律和第二定律,复叠式制冷循环的制冷量和功率消耗可以通过以下公式计算:1. 高温循环:制冷量Qh=mcph(Te-Tc1)功率消耗Ph=mcph[(Te-Tc1)/(Te*Tc1)]*(H2-H1)其中,mcph为高温循环工质的质量流量,H1为高压侧叶轮进口焓值,H2为高压侧叶轮出口焓值。
2. 低温循环:制冷量Qf=mcpf(Tf1-Tf2)功率消耗Pf=mcpf[(Tf1-Tf2)/(Tf2*Pe1)]*(H4-H3)其中,mcpf为低温循环工质的质量流量,H3为低压侧叶轮进口焓值,H4为低压侧叶轮出口焓值。
三、计算步骤在计算复叠式制冷循环的制冷量和功率消耗时,需要按照以下步骤进行:1. 确定循环参数,包括高温循环和低温循环的压力、温度、质量流量等参数。
2. 按照上述公式分别计算高温循环和低温循环的制冷量和功率消耗。
3. 计算复叠式制冷循环的制冷量和功率消耗,其中制冷量为两个循环的制冷量之和,功率消耗为两个循环的功率消耗之和。
4. 计算制冷效率,即制冷量与功率消耗的比值,用于评估复叠式制冷循环的能效。
四、应用场景复叠式制冷循环适用于需要高效制冷的场合,例如低温冷却、制冷设备等领域。
由于其具有独立的高温循环和低温循环,可以使制冷量和能效得到提高,满足节能减排需求。