光学传感器
- 格式:pdf
- 大小:896.47 KB
- 文档页数:6
光学传感器的工作原理本文主要介绍光学传感器的工作原理,包括什么是光学传感器、光学传感器的常见类型、光学传感器的工作原理和应用场景。
一、什么是光学传感器光学传感器是一种利用光学原理进行物理量测量的传感器。
光学测量技术,是一种利用光学原理来测量物理量的技术。
光学测量技术具有非接触、快速、高精度、不受环境干扰等特点。
目前,光学传感器已经广泛应用于工业、生产、医疗、环保、军事等领域。
与传统的机电传感器相比,光学传感器具有体积小、质量轻、速度快、精度高等优点。
二、光学传感器的常见类型1、光电传感器:光电传感器又称为人体红外传感器,是使用红外线技术进行探测的传感器。
在红外线的范围内,物体发出的红外线与环境中的红外线会发生干扰,不能够实现准确的测量。
因此,红外线传感器很少使用于高精度的测量。
2、光纤传感器:光纤传感器是一种利用光纤来采集、传输和处理光学信号的传感器。
相比于传统的机械式传感器,光纤传感器具有响应快、无干扰、可扩展性好等优点。
3、激光传感器:激光传感器是一种利用激光进行测量的传感器。
激光传感器具有响应快、精度高、非接触式测量等优点,广泛应用于工业、测绘、医疗等领域。
三、光学传感器的工作原理光学传感器的工作原理是利用光学原理来检测测量点的变化,从而实现物理量的测量。
通常,在光学传感器中,光源向检测点发射光线,当光线通过检测点时,光线的强度和颜色会发生变化。
接收器会接收到经过检测点后的光信号,并将其转化为对应的电信号。
电信号会被处理器进行处理,从而获取测量结果。
这是光学传感器的基本工作原理。
具体来说,光学传感器有以下三个基本组成部分:1、光源:光源是光学传感器工作的重要组成部分。
光源通常是激光或LED,发射的光源具有一定的波长和频率,在传输过程中,光源的频率和波长不会发生变化。
因此,光源可以根据不同的应用需求进行调整。
2、检测元件:检测元件通常是一种光敏元件,它可以感知光的变化并将其转化为电信号;3、处理器:处理器接收并处理光电信号,将其转化为需要的测量结果,如长度、角度、形状等。
光学传感器的分类
《光学传感器的分类》
嘿,咱今天来聊聊光学传感器的分类哈。
你们知道不,有一次我去一个科技馆玩,在那里面我就看到了好多跟光学传感器有关的东西。
就说那个展示光的折射的装置吧,我在那盯着看了好久。
那里面肯定就用到了光学传感器呀。
光学传感器呢,其实可以分成好几种。
比如说有一种叫光电二极管的,它就像是个超级敏感的小眼睛,能特别敏锐地捕捉到光的变化。
就好像我在科技馆里看到光线在各种镜片之间穿梭,光电二极管就能精确地感知到这些光线的一举一动呢。
还有一种叫光电晶体管的,这玩意儿也挺厉害,就像是个小机灵鬼,对光有着特别的反应。
我就想象着,如果把它放在我家里,是不是能帮我更好地感受光线的变化呀。
另外呢,还有那种叫电荷耦合器件的,它就像是个厉害的记录员,能把光的信息都好好地记录下来。
我当时在科技馆里看到那些神奇的光影效果,说不定就有它的功劳呢。
总之啊,光学传感器的分类还挺多的,每一种都有自己独特的本事。
就像我们人一样,各有各的特点和用处。
我那次在科技馆的体验,真的让我对这些光学传感器有了更深刻的认识和了解呀。
以后有机会,我还想去探索更多关于它们的奥秘呢!哈哈!。
光学传感器分类
1. 哇塞,有一种光学传感器叫光电二极管呢!比如说我们日常用的遥控器,它就是靠光电二极管来接收信号的呀。
2. 嘿,还有光电晶体管哦!就像在一些自动感应灯里,光电晶体管就在默默工作呢。
3. 哦哟,别忘了CMOS 传感器呀!手机拍照这么厉害,可少不了它的功劳呢,对吧?
4. 哇哦,CCD 传感器也是很重要的一类呀!像那些专业的相机,很多不就是用的 CCD 传感器嘛!
5. 嘿呀,还有位置敏感探测器呢!你想想看,有些精准定位的仪器里,它可发挥了大作用啦。
6. 哎呀呀,光纤传感器也很牛的哟!在一些远距离传输数据的场合,它可是立下汗马功劳的呀。
7. 哇,颜色传感器也很有趣呢!就好像能分辨各种色彩的小精灵,在一些色彩检测的设备里忙活着呢。
8. 嘿,还有量子点传感器呀!是不是很高科技的感觉?在一些对精度要求特别高的领域,它可厉害着呢!
9. 哇噻,环境光传感器也很关键呢!比如手机自动调节亮度,那就靠它啦!
我觉得光学传感器的分类真的太丰富多样啦,而且每一种都有着独特的作用和价值,在我们的生活中无处不在呀!。
光学传感器原理光学传感器是一种能够将光信号转换为电信号的传感器,它在现代工业生产、生活中起着至关重要的作用。
光学传感器的原理主要基于光的传播和光电转换的基本原理,下面我们将深入探讨光学传感器的原理。
首先,光学传感器的基本原理是利用光的传播特性进行信号的检测和转换。
光是一种电磁波,具有波长和频率的特性。
当光线照射到物体表面时,会发生反射、折射、透射等现象,这些现象都可以被光学传感器用来检测物体的位置、形状、颜色等信息。
光学传感器通过接收光信号,并将其转换为电信号,从而实现对物体的检测和识别。
其次,光学传感器的工作原理还涉及光电转换的过程。
光电转换是指将光信号转换为电信号的过程,其核心是光电效应。
光电效应是指当光线照射到半导体材料或光敏元件上时,会产生光生载流子,从而产生电流或电压信号。
光学传感器中常用的光电转换元件包括光电二极管、光敏电阻、光电晶体管等,它们能够将光信号转换为电信号,并输出给后续的电路进行处理和分析。
此外,光学传感器的原理还涉及光学系统的设计和光路的控制。
光学系统是指由光源、光学元件和光电转换元件组成的系统,它们共同构成了光学传感器的核心部分。
光源产生光信号,光学元件对光信号进行调控和聚焦,光电转换元件将光信号转换为电信号。
光路的控制是指通过光学系统的设计和调整,使得光信号能够准确地照射到需要检测的物体表面,并将反射、折射、透射等光学现象转化为电信号输出。
总之,光学传感器的原理是基于光的传播和光电转换的基本原理,通过光学系统的设计和光路的控制,实现对物体的检测和识别。
光学传感器在工业生产、自动化控制、环境监测、医疗诊断等领域有着广泛的应用,其原理的深入理解对于光学传感器的设计、应用和维护具有重要意义。
希望本文能够帮助读者更加深入地了解光学传感器的原理和工作机制。
光学传感器工作原理
光学传感器是一种能够检测和测量光的传感器,其工作基于光的吸收、散射、反射和透射等原理。
具体而言,光学传感器通过光电效应将光能转化为电信号或者将电信号转化为光能。
光学传感器通常由光源、光源调制器、光学器件、探测器和信号处理器等组成。
当光源发出光线时,经过光源调制器的调制,光线被引导到被测物体表面。
光线与物体相互作用后,产生反射、透射或散射等现象。
这些现象会改变光线的强度、频率或者方向。
被测物体与光线的相互作用会导致光的吸收和散射。
光学传感器中的探测器接收到经过物体反射、透射或散射后的光线,将光信号转化为电信号。
经过信号处理器的处理和分析,最终得到所需的测量结果。
除了吸收和散射,光学传感器还可以利用光的透射现象进行测量。
通过对透射光线的强度、频率或者方向进行测量,可以获得被测物体的相关信息。
总的来说,光学传感器工作原理基于光的吸收、散射和透射等现象,通过将光信号转化为电信号或者将电信号转化为光信号来实现对光的测量和检测。
光学传感器被广泛应用于工业、医疗、通信、环境监测等领域,起到了重要的作用。
光学传感器的应用一、智能手机中的光学传感器你知道吗?咱们每天不离手的智能手机里就藏着好多光学传感器呢,它们就像手机的小眼睛,时刻发挥着大作用。
比如说,那个自动调节屏幕亮度的功能,就是靠光学传感器来实现的。
它能像我们的眼睛一样,感知周围环境的光线强弱,然后自动把屏幕亮度调整到合适的程度。
这多方便啊,大太阳下能看得清屏幕,晚上又不会太刺眼。
我有一次和朋友出去玩,大太阳下我的手机屏幕自动变亮了,朋友还惊讶地问我怎么做到的,我就给他科普了一下光学传感器的这个厉害之处。
你是不是也觉得这个功能很贴心呢?二、数码相机里的光学传感器数码相机那可是摄影爱好者的宝贝,而光学传感器就是它的核心部件之一,就好比相机的心脏。
它负责捕捉光线,把我们看到的美丽景色转化成数字信号,记录下来。
不同的光学传感器性能不一样,拍出来的照片质量也有很大差别。
我有个摄影发烧友朋友,他对相机的光学传感器可讲究了。
他说一个好的光学传感器能让照片的色彩更鲜艳、细节更清晰,就像能把世界上最微小的美好都捕捉下来一样。
他给我看了他用不同相机拍的照片,真的是差别很明显。
你喜欢拍照吗?有没有注意过相机里的光学传感器呢?三、汽车上的光学传感器现在的汽车越来越智能了,光学传感器在里面也有不少功劳哦。
比如汽车的自动大灯,就是靠光学传感器来判断光线情况,自动开启或关闭大灯的。
这就像给汽车装了一双能自动感知光线的眼睛,晚上或者进入隧道的时候,它能自动让大灯亮起来,让我们开车更安全。
还有一些高级的汽车,配备了倒车影像系统,里面也用到了光学传感器。
它能让我们在倒车的时候清楚地看到车后面的情况,避免碰撞。
我叔叔上次开车,就多亏了倒车影像里的光学传感器,及时发现了后面的一个小障碍物,避免了一场小事故。
你觉得汽车上的这些光学传感器实用吗?四、医疗领域的光学传感器在医疗领域,光学传感器可是个大功臣呢。
比如说,一些血糖仪就用到了光学传感器,它能通过检测血液中的光学信号来测量血糖水平,就像一个小小的健康卫士,随时帮我们监测身体状况。
光学传感器工作原理光学传感器是一种利用光学原理来感知和检测物体的装置,广泛应用于工业自动化领域中。
本文将介绍光学传感器的工作原理,包括光学传感器的基本结构、工作方式、应用场景以及未来的发展趋势。
一、光学传感器基本结构与原理光学传感器基本由三个主要组件组成:光源、光学元件和光敏元件。
光源发出光信号,光学元件对光信号进行聚焦和改变光路,最后由光敏元件接收光信号并将其转化为电信号。
1. 光源:光源通常采用发光二极管(LED)或激光二极管(LD)。
LED具有低功耗、寿命长的特点,适用于大部分场景。
而LD则具有高亮度、狭窄光束的特点,适用于远距离探测或高精度测量。
2. 光学元件:光学元件包括透镜、反射镜等,用来控制光的发射和接收方向,聚焦光线,以及改变光的角度和形状。
通过调整光学元件的参数,可以实现不同工作距离和测量精度。
3. 光敏元件:光敏元件是将光信号转化为电信号的核心部件。
常见的光敏元件有光电二极管(PD)、光敏电阻(LDR)和光敏电容(LC)等。
其中,PD是应用最广泛的光敏元件,其内部光电效应可以将光信号转化为电流或电压信号。
光学传感器工作原理简单概括为:通过光源发出的光信号经过适当的光学元件处理后,照射到被测物体上,并通过光敏元件接收反射回来的光信号,再将其转化为电信号进行分析和处理。
二、光学传感器的工作方式光学传感器根据应用要求和测量对象的不同,有多种工作方式。
1. 透射式:透射式光学传感器通过检测光线是否受到遮挡或被物体吸收来实现测量。
当被测物体进入光束的路径时,光线会被阻挡或吸收,从而改变光敏元件接收到的光信号强度。
透射式传感器通常用于检测物体的存在、计数和位置变化等应用。
2. 反射式:反射式光学传感器通过检测光线是否被物体反射回来来实现测量。
光源和光敏元件位于同一侧,当物体靠近时,光线会被物体反射回来,进而改变光敏元件接收到的光信号强度。
反射式传感器通常用于检测物体的距离、颜色和形状等应用。
Colorimetric chemosensors designed to provide high sensitivity for Hg 2þin aqueous solutionsQi Lin,Yong-Peng Fu,Pei Chen,Tai-Bao Wei,You-Ming Zhang *Key Laboratory of Eco-Environment-Related Polymer Materials,Ministry of Education of China,Key Laboratory of Polymer Materials of Gansu Province,College of Chemistry and Chemical Engineering,Northwest Normal University,Lanzhou,Gansu 730070,PR Chinaa r t i c l e i n f oArticle history:Received 25January 2012Received in revised form 28June 2012Accepted 29June 2012Available online 25July 2012Keywords:Mercury cationColorimetric sensor Speci fic selectivity High sensitivity Aqueous solutions Easy-to-makea b s t r a c tThe speci fic colorimetric detection of Hg 2þin the context of interference from coexisting metal ions in aqueous solutions is a challenge.Therefore,a series of easy-to-make Hg 2þcolorimetric chemosensors S1w S3,bearing thiourea moiety as binding site and nitrophenyl moiety as signal group,were designed and synthesized.Among these sensors,S3showed excellent colorimetric speci fic selectivity and high sensitivity for Hg 2þin DMSO and DMSO/H 2O binary solutions.When Hg 2þwas added to the solution of S3,a dramatic color change from brown to colorless was observed,while the cations Ca 2þ,Mg 2þ,Cd 2þ,Fe 3þ,Co 2þ,Ni 2þ,Cu 2þ,Zn 2þ,Pb 2þ,Ag þand Cr 3þdid not interfere with the recognition process for Hg 2þ.The detection limits were 5.0Â10À6and 1.0Â10À7M of Hg 2þusing the visual color changes and UV e vis changes respectively.Ó2012Elsevier Ltd.All rights reserved.1.IntroductionAs mercury has an extremely toxic impact on the environment and human health [1e 5],the development of chemosensors for the mercury cation (Hg 2þ)has received considerable attention [6e 10].As is well known,mercury can lead to dysfunctions of the brain,kidney,stomach,and central nervous systems [1e 5,11,12].There-fore,the rational design and synthesis of ef ficient sensors to selectively recognize mercury cations is an important topic in supramolecular chemistry [6e 10].Although previous work has involved the development of a wide variety of chemical [13e 43]and physical [44e 48]sensors for the detection of Hg 2þ,so far,improving the detection selectivity in the context of interference from coexisting metal ions has been challenging.Moreover,most of these methods require expensive equipment and involve time-consuming and laborious procedures that can be carried out only by trained professionals [44e 48],which signi ficantly restricting the practical application of these Hg 2þsensors.For simplicity,convenience and low cost,easily-prepared Hg 2þcolorimetric sensors [15e 23,30,38]are needed.On the other hand,in biological and environmental systems,mercury e sensor interactions commonly occur in aqueous solution [23e 26],therefore,muchattention has been paid to developing mercury sensors that work in the aqueous phase [17,23e 26,32,34,49e 52].In view of this requirement and as part of our research effort devoted to ion recognition [53e 60],an attempt was made to obtain ef ficient colorimetric sensors which could sense Hg 2þwith speci fic selectivity and high sensitivity in aqueous solutions.This paper details the design and synthesis of a series of Hg 2þcolorimetric sensors S1w S3bearing thiourea and nitrophenyl groups (Scheme 1).The strategies for the design of these sensors were as follows.Firstly,a thiourea group was introduced as the binding site.The C ¼S moiety on the thiourea group possesses a high af finity with Hg 2þ.Secondly,in order to achieve “naked-eye ”colorimetric recognition,we introduced nitrophenyl groups as the signal group.Finally,the sensor was designed to be easy to synthesize.In order to establish the signal group ’s contribution to the sensor ’s colorimetric sensing abilities for Hg 2þ,compound S1which without containing the nitro-group was also synthesized.2.Experimental section2.1.Materials and physical methods1H NMR spectra were recorded with a Mercury-400BB spec-trometer at 400MHz 1H chemical shifts are reported in ppm down field from tetramethylsilane (TMS,d scale with the solvent*Corresponding author.Tel.:þ869317970394.E-mail address:zhangnwnu@ (Y.-M.Zhang).Contents lists available at SciVerse ScienceDirectDyes and Pigmentsjournal homepage:w ww.else/locate/dyepig0143-7208/$e see front matter Ó2012Elsevier Ltd.All rights reserved./10.1016/j.dyepig.2012.06.023Dyes and Pigments 96(2013)1e 6resonances as internal standards).High-resolution mass spectra were recorded on a Bruker APEXII Fourier transform ion cyclotron resonance (FTICR)MS instrument.Ultraviolet e visible (UV e vis)spectra were recorded on a Shimadzu UV-2550spectrometer.Melting points were measured on an X-4digital melting-point apparatus (uncorrected).The infrared spectra were performed on a Digilab FTS-3000Fourier transform-infrared spectrophotometer.The inorganic salts Ca(ClO 4)2$6H 2O,Mg(ClO 4)2$6H 2O,Cd(ClO 4)2$6H 2O,Fe(ClO 4)3$6H 2O,Co(ClO 4)2$6H 2O,Ni(ClO 4)2$6H 2O,Cu(ClO 4)2$6H 2O,Zn(ClO 4)2$6H 2O,Pb(ClO 4)2$3H 2O,AgClO 4$H 2O and Cr(ClO 4)3$6H 2O were purchased from Alfa Aesar Chemical Reagent Co.(Tianjin,China).All solvents and other reagents were of analytical grade.2.2.General procedure for UV e vis spectroscopyAll the UV e vis experiments were carried out in DMSO solution on a Shimadzu UV-2550spectrometer.Any changes in the UV e vis spectra of the synthesized compound were recorded on the addi-tion of perchlorate metal salts while the ligand concentration was kept constant in all experiments.2.3.General procedure for 1H NMRFor 1H NMR titrations,two stock solutions were prepared in DMSO-d 6:one of them contained the host only and the second one contained an appropriate concentration of guest.Aliquots of the two solutions were mixed directly in NMR tubes.2.4.Synthesis and characterization of sensors S1w S3Benzoyl chloride (3mmol),dry and powdered KSCN (4mmol)and PEG-400(0.1mL,as phase transfer catalyst)were added to dry dichloromethane (15mL).Then the reaction mixture was stirred at room temperature for 2h,and the inorganic salts were filtered out.The filtrate was a solution of the corresponding benzoyl isothiocyanate,which did not need separating.Then 2.8mmol of phenylhydrazine was added to the filtrate solution and stirred at room temperature for 3h,yielding the precipitate of S1.After evaporating the solvent in a vacuum,the precipitate was filtered,washed with 75%ethanol three times,and recrystallized with ethanol to get white crystal of S1.The other compounds S2and S3were prepared by similar procedures.S1:yield:80.5%;m.p.138e 140 C;1H-NMR (DMSO-d 6,400MHz)d 12.61(s,2H,NH),11.59(s,1H,NH),7.99e 7.97(m,2H,ArH),7.71e 7.65(m,2H,ArH),7.57e 7.53(m,2H,ArH),7.45e 7.41(m,2H,ArH),7.30e 7.26(m,2H,ArH);13C NMR (DMSO-d 6,100MHz)d 179.18,168.37,138.02,133.20,132.18,128.75,128.69,128.53,126.42,124.37;IR (KBr,cm À1)v :3444(mb,N e H),3310(m,N e H),3235(m,N e H),1678(s,C ¼O),1601(s,C ¼C),1525(s,C ¼C),1474(s,C ¼C),1276(s,C ¼S);Anal.calcd.for C 14H 13N 3OS:C,61.97;H,4.83;N,15.49;Found:C,61.85;H,4.74;N,15.58.S2:yield:95.7%;m.p.199e 201 C;1H-NMR (DMSO-d 6,400MHz)d 12.02(s,2H,NH),9.77(s,1H,NH),8.15e 8.12(m,1H,ArH),7.95e 7.92(m,2H,ArH),7.72e 7.69(m,2H,ArH),8.15e 8.12(m,2H,ArH),6.98e 6.94(m,2H,ArH);13C NMR (DMSO-d 6,100MHz)d 182.07,167.02,159.06,138.56,133.11,132.07,128.94,126.42,125.86,111.14;IR (KBr,cm À1)v :3441(mb,N e H),3259(m,N e H),3065(m,N e H),1648(s,C ¼O),1609(s,C ¼C),1571(s,C ¼C),1470(s,C ¼C),1292(s,C ¼S);ESI-HRMS calcd.for [M þH]þ:m/z 316.0630,Found:317.0710;Anal.calcd.for C 14H 12N 4O 3S:C,53.16;H,3.82;N,17.71;Found:C,53.37;H,3.65;N,17.59.S3:yield:85.4%;m.p.216e 219 C;1H-NMR (DMSO-d 6,400MHz)d 11.77(s,2H,NH),10.65(s,1H,NH),8.90(s,1H,ArH),8.37(d,1H,J ¼7.2,ArH),8.00(d,2H,J ¼8.0,ArH),7.67(t,1H,J ¼7.2,ArH),7.55(t,Scheme 1.Synthetic procedures for sensors S1w S3.Fig.1.Color changes observed upon the addition of various cations (5equiv.)to the solutions of sensor S3(2Â10À5M)in DMSO solutions.A b s o r b a n c e /a .u .Wavelength/nmFig.2.UV e Vis absorption spectra of S3in the presence of 5equiv.of various cations in DMSO solution at room temperature.Q.Lin et al./Dyes and Pigments 96(2013)1e 622H,J ¼7.6,ArH),7.33(d,1H,J ¼9.6,ArH);13C NMR (DMSO-d 6,100MHz)d 181.35,167.07,162.32,147.00,137.25,133.18,132.01,129.99,128.78,128.50,123.07,116.17;IR (KBr,cm À1)v :3367(m,N e H),3265(m,N e H),3143(m,N e H),1682(s,C ¼O),1618(s,C ¼C),1596(s,C ¼C),1490(s,C ¼C),1275(s,C ¼S);ESI-HRMS calcd.for [M þH]þ:m/z 362.0481,Found:362.0554;Anal.calcd.for C 14H 11N 5O 5S:C,46.54;H,3.07;N,19.38;Found:C,46.83;H,3.28;N,19.27.3.Results and discussionThe colorimetric sensing abilities were primarily investigated by adding various cations (Ca 2þ,Mg 2þ,Cd 2þ,Fe 3þ,Co 2þ,Ni 2þ,Cu 2þ,Hg 2þ,Zn 2þ,Pb 2þ,Ag þand Cr 3þ)to the DMSO solutions of sensor S3.When 5equivalent (equiv.)of Hg 2þwas added to the solution of S3(2.0Â10À5M),the sensor responded with dramatic color changes from brown to colorless (Fig.1).In the corresponding UV e vis spectrum,the absorption at 470nm disappeared (Fig.2).When adding 5equiv.of Cu 2þ,the DMSO solution of S3showed color changes from brown to green.Meanwhile,the addition of Ag þand Fe 3þalso lead to slight color and UV e vis spectrum changes.Whereas when adding the cations Ca 2þ,Mg 2þ,Cd 2þ,Co 2þ,Ni 2þ,Zn 2þ,Pb 2þ,or Cr 3þinto the DMSO solutions of sensor S3,no signi ficant color or spectra changes were observed.Even though sensor S3showed colorimetric response toward Cu 2þ,Ag þand Fe 3þin DMSO solutions,owing to only Hg 2þcould bleaches the solution,therefore,in DMSO solution,S3showed speci fic colorimetric selectivity to Hg 2þ.The same tests were applied to S2and S1.In this case,when various cations were added to the DMSO solutions of S2respec-tively,it was not only Hg 2þthat induced a large blue shift from 495nm to 372nm (corresponding to a distinct color change from brown to colorless),but Fe 3þand Cr 3þcaused similar spectra and color changes also (Fig.3(a)).So sensor S2produced a colorimetric response to Hg 2þ,Fe 3þand Cr 3þin DMSO solutions,however,owing to the color and UV e vis spectra changes were very similar,sensor S2could not selectively recognize Hg 2þ,Fe 3þand Cr 3þ.In addition,when various cations were added to the DMSO solutions of S1respectively,no obvious color or spectra changes were observed (Fig.3(b)).Which indicated that S1couldn ’t colorimetric sense any cations under these conditions.In order to investigate the mercury recognition abilities of S3in aqueous solution,we carried out the similar experiments in DMSO/H 2O (9:1/v:v)HEPES buffered solution at pH 7.40.When adding 5equiv.of Hg 2þto the DMSO/H 2O HEPES buffered solution of S3(2.0Â10À5M),the sensor responded with dramatic color changes from brown to colorless,meanwhile,in the corresponding UV e visspectra,the absorption at 470nm disappeared (Fig.4).While other cations couldn ’t cause such distinct color and spectra changes,therefore,the sensor S3could colorimetric recognition Hg 2þin DMSO/H 2O binary solutions with speci fic selectivity.Simultaneously,the same tests were applied to S2and S1also.As shown in Fig.S-1in Supplementary data ,the compound S2could response a lot of cations such as Hg 2þ,Cu 2þ,Co 2þ,Cr 3þand Fe 3þin DMSO/H 2O (9:1/v:v)HEPES buffered solution,however,S2could not selectively recognize these cations.Similarly,S1couldn ’t colorimetric response any cations in DMSO/H 2O binary solutions as well (Fig.S-2in Supplementary data ).Therefore,according to these results we can find that,on the one hand,the nitrophenyl moiety acted as a signal group and played a crucial role in the process of colorimetric recognition.Because the S1doesn ’t employ nitrophenyl as signal group,it could not color-imetric sense any cations.On the other hand,S2and S3employ 4-nitrophenyl and 2,4-dinitrophenyl as signal groups respectively,they all possess colorimetric response abilities for above mentioned cations.However,due to the steric effects of ortho -nitro group on S3,other cations except Hg 2þcouldn ’t coordinate with S3,thus the sensor S3showed speci fic selectivity toward Hg 2þ.Owing to the compound S2does not contain ortho -nitro group,there are no steric effects,many cations could coordinate with S2,hence the S2could not show selectivity toward those cations.As S3showed speci fic selectivity for Hg 2þ,a series of experi-ments was carried out to investigate the Hg 2þrecognition capa-bility and mechanism of S3.To gain an insight into the stoichiometry of the S3-Hg 2þcomplex,the method of continuous2503003504004505005506006507007500.00.10.20.30.40.50.60.70.80.9A b s o r b a n c e /a .u .Wavelength/nm 3+Cu 2+Cr3+Hg 2+S2+other cationsOther cations are: Cd 2+, Ni 2+, Mg 2+2503003504004505005506000.00.20.40.60.81.01.21.4A o r b u .Wavelength/nmFe Ag Cu S1+Other cations are: Ca ,2+,Cd 2+,Co 2+,Ni 2+,Zn 2+,Pb 2+,an d Cr 3+aS2Ag +Fe ,Ni ,Mg ,Pb 2+,Co 2+,Zn 2+Ca 2+b s a nc e /a .3++2+Hg 2+S1,Other cations are: Ca 2+Mg Co and Cr bFig.3.UV e vis absorption of sensor (a)S2,(b)S1(2.0Â10À5M)in the presence of 5equiv.of various cations in DMSO solution at room temperature.3003504004505005506006507007500.00.20.40.60.81.0Host S3, other cations are Ca 2+, Mg 2+, Cd 2+,Fe 3+, Co 2+, Ni 2+, Cu 2+, Zn 2+, Pb 2+, and Cr 3+A b s o r b a n c e /a .u .Wavelength/nmHg2+Fig.4.UV e Vis absorption spectra of S3(2.0Â10À5M)in the presence of 5equiv.of various cations in (9:1/v:v)DMSO/H 2O HEPES buffered solution at pH 7.40,room temperature.Q.Lin et al./Dyes and Pigments 96(2013)1e 63variations (Job ’s method)was used (Fig.5a).As expected,when the molar fraction of sensor S3was 0.50,the absorbance value approached a maximum,which demonstrated the formation of a 1:1complex between the sensor S3and Hg 2þ.The binding properties of sensor S3with Hg 2þwere further studied by UV e vis titration experiments (Fig.5b).It turned out that in DMSO solution of S3,with an increasing amount of Hg 2þ,the absorbance at 470nm decreased while a new band appeared at 398nm.Such a blueshift led to the solution color changing from brown to colorless.Two clear isosbestic points were observed at 434and 337nm,which indi-cated the formation of an S3-Hg 2þcomplex.By nonlinear least-squares fitting [61]at l max ¼469nm,the association constant Ka of the sensor S3toward Hg 2þwas obtained as 6.04Â104M À1.To further elucidate the binding mode of the sensor S3with Hg 2þ,1H NMR-titration were carried out by gradually adding Hg 2þinto DMSO-d 6solution of S3.As shown in Fig.6,before the addition of Hg 2þ,there were two intramolecular hydrogen bonds in the molecular structure of S3:one was N e H b .O ¼C,and the other was N e H c .O ¼N.The formation of these hydrogen bonds led to the 1H NMR chemical shifts of N e H b and N e H c appearing at low-field.Owing to the fact that N e H b .O ¼C is a very strong intra-molecular hydrogen bond,as shown in Fig.7,the 1H NMR chemical shift of N e H b appeared at the lowest field of the molecular S3at d 11.77ppm,which overlapped the proton signal of N e H a .The 1H NMR chemical shift of N e H c appeared at d 10.65ppm.After the addition of 0.2equivalent of Hg 2þ,an intergradation was formed between S3and Hg 2þ(Fig.6),which caused the 1H NMR chemical shifts of the N e H a ,N e H b and N e H c to appear as two very broad peaks.For the same reason,the proton signals of N e H e and N e H f shifted down field and broadened (Fig.7).With the continuous addition of Hg 2þ,as shown in Fig.6the molecular structure underwent an intramolecular rotation,which induced the breaking of N e H b .O ¼C and N e H c .O ¼N;simultaneously,the interactions between the Hg 2þ.H e e C and Hg 2þ.H f e C were interruptedalso.Fig.5.(a)A Job plot of S3and Hg 2þ,which indicated that the stoichiometry of S3-Hg 2þcomplex was 1:1.(b)UV e vis spectral titration of sensor S3with Hg 2þin DMSO solution.The non-linear fitting curve of the change in absorbance of S3with respect to the amounts of Hg 2þis shown in theinset.Fig.6.The proposed reaction mechanism of the sensor S3with Hg 2þ.Fig.7.Partial 1H NMR of sensor S3(2.5mM)in DMSO-d 6upon the addition of Hg 2þ:(a)S3alone,then after adding (b)0.1,(c)0.2,(d)0.5,(e)0.7,(f)0.9and (g)1equiv.of Hg 2þ.Q.Lin et al./Dyes and Pigments 96(2013)1e 64As a result,the stable Hg 2þ-S31:1complex was formed via the coordination of Hg 2þwith S ¼C and O ¼C groups on S3.The breaking of the hydrogen bonds led to an obvious up field shift of N e H b and N e H c (Fig.7d e f).On the other hand,owing to the interactions between the Hg 2þ.H e e C and Hg 2þ.H f e C were broken,the signals of N e H e and N e H f returned to their original positions (Fig.7d e f).Namely,before all the 1equiv.of Hg 2þwas added,the intergradations and the stable Hg 2þ-S3complex coexisted in the solution.Therefore,every proton signal of N e H a ,N e H b ,N e H c ,C e H e and C e H f displayed two signals,for the intergradations state and the stable Hg 2þ-S3complex state respectively (Fig.7d e f).After 1equiv.of Hg 2þhad been added,the intergradations completely changed into stable Hg 2þ-S3complex.Accordingly,in the whole titration process,the signals of N e H c ,N e H b and N e H a shifted to d 11.22,10.49and 10.24ppm,respectively,and the proton signals of C e H e and C e H f were back to their original posi-tions (Fig.7g).In summary,according to the 1H NMR-titration experiments,the Hg 2þions and S3formed a stable 1:1complex by the coordination of Hg 2þwith S ¼C and O ¼C groups on S3.The recognition mechanism of the sensor S3with Hg 2þwere investigated by IR spectra (Fig.S-3in Supplementary data )also.In the IR spectra of S3,the stretching vibration absorption peaks of C ¼O and C ¼S appeared at 1682and 1275cm À1respectively.However,when S3coordinated with Hg 2þ(1:1,solid complex,KBr),an electron transfer effect occurred from C ¼S and C ¼O to Hg 2þ,which induced the stretching vibration absorption peaks of C ¼O and C ¼S shifted to 1643and 1262cm À1accordingly.At the same time,owing to the in fluence of above mentioned electron transfer effect and the rupture of intra-molecular hydrogen bonds N e H b .O ¼C and N e H c .O ¼N,stretching vibration absorption peaks of N e H b and N e H c shifted from 3265and 3143to 3225and 3100cm À1respectively.Which con firmed that S3coordinated with Hg 2þby C ¼O and C ¼S groups as shown in Fig.6.An important feature of the sensor is its high selectivity toward the analyte over other competitive species.The variations of UV e vis spectral and visual color changes of sensor S3in DMSO solutions caused by the metal ions Ca 2þ,Mg 2þ,Cd 2þ,Fe 3þ,Co 2þ,Ni 2þ,Cu 2þ,Zn 2þ,Pb 2þ,Ag þand Cr 3þwere recorded in Fig.8.It is noticeable that the miscellaneous competitive metal ions did not lead to any signi ficant interference.In the presence of these ions,the Hg 2þstill produced similar color (Fig.8(b))and absorption changes (Fig.8(a):the absorption at 470nm disappeared).These results shown that the selectivity of sensor S3toward Hg 2þwas not affected by the presence of other cations and suggested that it could be used as a colorimetric chemosensor for Hg 2þ.The colorimetric and UV e vis limits of sensor S3for Hg 2þcation were also tested and are presented in Fig.9.The detection limit using visual color changes was a concentration of 5.0Â10À6M of Hg 2þcation in 1.0Â10À6M solution of sensor S3,while the detection limit of the UV e vis changes calculated on the basis of 3s B /S [62]is 1.0Â10À7M for Hg 2þcation,which pointing to the high detection sensitivity.4.ConclusionAn easy-to-make Hg 2þcolorimetric sensor S3,bearing thiourea moiety as the binding site and nitrophenyl moiety as the signal group,was designed and synthesized.This sensor showed speci fic selectivity for Hg 2þin DMSO and DMSO/H 2O binary parison with sensor S1indicated that the nitrophenyl moiety acted as a signal group and played a crucial role in the process of colorimetric recognition.Investigation of the recognition mechanism indicated that the sensor S3recognized Hg 2þby forming a stable 1:1S3-Hg 2þcomplex.The coexistence of other cations did not interfere with the Hg 2þrecognition process.Moreover,the detection limit of the sensor S3toward Hg 2þwas 1.0Â10À7M,which indicated that the sensor S3may be useful as a colorimetric sensor for monitoring Hg 2þlevels in physiological and environmental systems.AcknowledgmentThis work was supported by the National Natural Science Foundation of China (NSFC)(Nos.21064006and 21161018),the Natural Science Foundation of Gansu Province (1010RJZA018)and the Program for Changjian Scholars and innovative Research Team in University of Ministry of Education of China (IRT1177).Appendix A.Supplementary dataSupplementary data related to this article can be found online at /10.1016/j.dyepig.2012.06.023.Fig.8.(a)UV e Vis absorption spectra,(b)photographs and UV e Vis absorption at 470nm of sensor S3(2.0Â10À5M)in DMSO solutions in the presence of Hg 2þ(5equiv.)and the miscellaneous cations Ca 2þ,Mg 2þ,Cd 2þ,Fe 3þ,Co 2þ,Ni 2þ,Cu 2þ,Zn 2þ,Pb 2þ,Ag þand Cr 3þ(5equiv.,respectively).Fig.9.Color changes observed upon the addition of 5equiv.of Hg 2þto the solutions of sensor S3(from right to left,1Â10À4M,1Â10À5M,1Â10À6M)in DMSO solutions.Q.Lin et al./Dyes and Pigments 96(2013)1e 65References[1]Campbell L,Dixon DG,Hecky RE.A review of mercury in lake Victoria,eastAfrica:implications for human and ecosystem health.J Toxicol Env Heal B 2003;6:325e56.[2]Harris HH,Pickering IJ,George GN.The chemical form of mercury infish.Science2003;301:1203.[3]Tchounwou PB,Ayensu WK,Ninashvili N,Sutton D.Environmental exposureto mercury and its toxicopathologic implications for public health.Environ Toxicol2003;18:149e75.[4]Curley A,Sedlak VA,Girling EF,Hawk RE,Barthel WF,Pierce PE,et anicmercury identified as the cause of poisoning in humans and hogs.Science 1971;2:65e7.[5]Onyido I,Norris AR,Buncel E.Biomolecule e mercury interactions:modalitiesof DNA base-mercury binding mechanisms.Remediation strategies.Chem Rev 2004;104:5911e29.[6]Aragay G,Pons J,Merkoçi A.Recent trends in macro-,micro-,andnanomaterial-based tools and strategies for heavy-metal detection.Chem Rev 2011;111:3433e58.[7]Nolan EM,Lippard SJ.Tools and tactics for the optical detection of mercuricion.Chem Rev2008;108:3443e80.[8]Quang DT,Kim JS.Fluoro-and chromogenic chemodosimeters for heavy metalion detection in solution and biospecimens.Chem Rev2010;110:6280e301.[9]Formica M,Fusi V,Giorgi L,Micheloni M.Newfluorescent chemosensors formetal ions in solution.Coord Chem Rev2012;256:170e92.[10]Kim HN,Guo Z,Zhu W,Yoon J,Tian H.Recent progress on polymer-basedfluorescent and colorimetric chemosensors.Chem Soc Rev2011;40:79e93.[11]Zalups RK.Molecular interactions with mercury in the kidney.Pharm Rev2000;52:113e43.[12]Strong LE.Mercury poisoning.J Chem Educ1972;49:28e9.[13]Ando S,Koide K.Development and applications offluorogenic probes for mer-cury(II)based on vinyl ether oxymercuration.J Am Chem Soc2011;133:2556e66.[14]Song F,Watanabe S,Floreancig PE,Koide K.Oxidation-resistantfluorogenicprobe for mercury based on alkyne oxymercuration.J Am Chem Soc2008;130:16460e1.[15]Ko S-K,Yang Y-K,Tae J,Shin I.In vivo monitoring of mercury ions usinga rhodamine-based molecular probe.J Am Chem Soc2006;128:14150e5.[16]Yan Y,Hu Y,Zhao G,Kou X.A novel azathia-crown ether dye chromogenic che-mosensor for the selective detection of mercury(II)ion.Dyes Pigm2008;79:210e5.[17]Leng B,Zou L,Jiang J,Tian H.Colorimetric detection of mercuric ion(Hg2þ)inaqueous media using chemodosimeter-functionalized gold nanoparticles.Sensor Actuat B2009;140:162e9.[18]Zou Q,Jin J,Xu B,Ding L,Tian H.New photochromic chemosensors for Hg2þand FÀ.Tetrahedron2011;67:915e21.[19]Guo Z,Zhu W,Zhu M,Wu X,Tian H.Near-infrared cell-permeable Hg2þ-selective ratiometricfluorescent chemodosimeters and fast indicator paper for MeHgþbased on tricarbocyanines.Chem Eur J2010;16:14424e32. [20]Ruan Y-B,Maisonneuve S,Xie J.Highly selectivefluorescent and colorimetricsensor for Hg2þbased on triazole-linked NBD.Dyes Pigm2011;90:239e44.[21]Ruan Y-B,Xie J.Unexpected highly selectivefluorescence‘turn-on’andratiometric detection of Hg2þbased onfluorescein platform.Tetrahedron 2011;67:8717e23.[22]Peng X,Wang Y,Tang X,Liu W.Functionalized magnetic core e shellFe3O4@SiO2nanoparticles as selectivity-enhanced chemosensor for Hg(II).Dyes Pigm2011;91:26e32.[23]Wang L,Yan JX,Qin W,Liu W,Wang R.A new rhodamine-based singlemolecule multianalyte(Cu2þ,Hg2þ)sensor and its application in the biological system.Dyes Pigm2012;92:1083e90.[24]Suresh M,Mandal AK,Saha S,Suresh E,Mandoli A,Liddo RD,et al.Azine-based receptor for recognition of Hg2þion:crystallographic evidence and imaging application in live Lett2010;12:5406e9.[25]Tan H,Zhang Y,Chen Y.Detection of mercury ions(Hg2þ)in urine usinga terbium chelatefluorescent probe.Sensor Actuat B2011;156:120e5.[26]Wang H-H,Xue L,Yu C-L,Qian Y-Y,Jiang H.Rhodamine-basedfluorescent sensorfor mercury in buffer solution and living cells.Dyes Pigm2011;91:350e5. [27]Cheng X,Li S,Zhong A,Qin J,Li Z.Newfluorescent probes for mercury(II)withsimple structure.Sensor Actuat B2011;157:57e63.[28]Zou Q,Tian H.Chemodosimeters for mercury(II)and methylmercury(I)basedon2,1,3-benzothiadiazole.Sensor Actuat B2010;149:20e7.[29]Santra M,Roy B,Ahn KH.A“reactive”ratiometricfluorescent probe formercury Lett2011;13:3422e5.[30]Cheng C-C,Chen Z-S,Wu C-Y,Lin CC,Yang CR,Yen Y-P.Azo dyes featuringa pyrene unit:new selective chromogenic andfluorogenic chemodosimetersfor Hg(II).Sensor Actuat B2009;142:280e7.[31]Yin BC,You M,Tan W,Ye BC.Mercury(II)ions detection via pyrene-mediatedphotolysis of disulfide bonds.Chem Eur J2012./10.1002/ chem.201103348.[32]Leng B,Jiang J,Tian H.A mesoporous silica supported Hg2þchemodosimeter.AIChE J2010;56:2957e64.[33]Liu B,Tian H.A selectivefluorescent ratiometric chemodosimeter for mercuryion.Chem Commun2005:3156e8.[34]Zou Q,Zou L,Tian H.Detection and adsorption of Hg2þby new mesoporoussilica and membrane material grafted with a chemodosimeter.J Mater Chem 2011;21:14441e7.[35]Aksuner N,Basaran B,Henden E,Yilmaz I,Cukurovali A.A sensitive andselectivefluorescent sensor for the determination of mercury(II)based ona novel triazine-thione derivative.Dyes Pigm2011;88:143e8.[36]Ramesh GV,Radhakrishnan TP.A universal sensor for mercury(Hg,Hg I,Hg II)based on silver nanoparticle-embedded polymer thinfilm.ACS Appl Mater Interfaces2011;3:988e94.[37]Liu Y,Lv X,Zhao Y,Chen M,Liu J,Wang P,et al.A naphthalimide e rhodamineratiometricfluorescent probe for Hg2þbased onfluorescence resonance energy transfer.Dyes Pigm2012;92:909e15.[38]Cheng X,Li S,Jia H,Zhong A,Zhong C,Feng J,et al.For mercury(II):tunablestructures of electron donor and p-conjugated bridge.Chem Eur J2012;18: 1691e9.[39]Wang C,Xu L,Wang Y,Zhang D,Shi X,Dong F,et al.Fluorescent silvernanoclusters as effective probes for highly selective detection of mercury(II)at parts-per-billion levels.Chem Asian J2012;7:1652e6.[40]Hu J,Wu T,Zhang G,Liu S.Highly selectivefluorescence sensing of mercuryions over a broad concentration range based on mixed polymeric micelles.Macromolecules2012;45:3939e47.[41]Huang R,Zheng X,Wang C,Wu R,Yan S,Yuan J,et al.Reaction-based two-photonfluorescent probe for turn-on mercury(II)sensing and imaging in live cells.Chem Asian J2012;7:915e8.[42]Wen S,Zeng T,Liu L,Zhao K,Zhao Y,Liu X,et al.Highly sensitive and selectiveDNA-based detection of mercury(II)with a-hemolysin nanopore.J Am Chem Soc2011;133:18312e7.[43]Khan TK,Ravikanth M.3-(Pyridine-4-thione)BODIPY as a chemodosimeter fordetection of Hg(II)ions.Dyes Pigm2012;95:89e95.[44]Tang X,Liu H,Zou B,Tian D,Huang H.Afishnet electrochemical Hg2þsensingstrategy based on gold nanoparticle-bioconjugate and thymine e Hg2þe thy-mine coordination chemistry.Analyst2012;137:309e11.[45]Lin L-Y,Chang L-F,Jiang S-J.Speciation analysis of mercury in cereals by liquidchromatography chemical vapor generation inductively coupled plasma-mass spectrometry.J Agric Food Chem2008;56:6868e72.[46]Dolan SP,Nortrup DA,Bolger PM,Capar SG.Analysis of dietary supplementsfor arsenic,cadmium,mercury,and lead using inductively coupled plasma mass spectrometry.J Agric Food Chem2003;51:1307e12.[47]Filippelli M.Determination of trace amounts of organic and inorganic mercuryin biological materials by graphite furnace atomic absorption spectrometry and organic mercury speciation by gas chromatography.Anal Chem1987;59: 116e8.[48]Erxleben H,Ruzicka J.Atomic absorption spectroscopy for mercury,auto-mated by sequential injection and miniaturized in lab-on-valve system.Anal Chem2005;77:5124e8.[49]Yang H,Zhou Z,Huang K,Yu M,Li F,Yi T,et al.Multisignaling optical-elec-trochemical sensor for Hg2þbased on a rhodamine derivative with a ferrocene Lett2007;9:4729e32.[50]Zhang M,Yu M,Li F,Zhu M,Li M,Gao Y,et al.A highly selectivefluorescenceturn-on sensor for cysteine/homocysteine and its application in bioimaging.J Am Chem Soc2007;129:10322e3.[51]Ros-Lis JV,Marcos MD,Mártinez-Máñez R,Rurack K,Soto J.A regenerativechemodosimeter based on metal-induced dye formation for the highly selective and sensitive optical determination of Hg2þions.Angew Chem Int Ed 2005;44:4405e7.[52]Cheng X,Li S,Jia H,Zhong A,Zhong C,Feng J,et al.Fluorescent and colori-metric probes for mercury(II):tunable structures of electron donor and p-conjugated bridge.Chem Eur J2012./10.1002/ chem.201102376.[53]Zhang Y-M,Lin Q,Wei T-B,Wang D-D,Yao H,Wang Y-L.Simple colorimetricsensors with high selectivity for acetate and chloride in aqueous solution.Sensor Actuat B2009;137:447e55.[54]Zhang Y-M,Lin Q,Wei T-B,Qin X-P,Li Y.A novel smart organogel which couldallow a two channel anion response by proton controlled reversible sol e gel transition and color changes.Chem Commun2009:6074e6.[55]Liu M-X,Wei T-B,Lin Q,Zhang Y-M.A novel5-mercapto triazole schiff base asa selective chromogenic chemosensor for Cu2þ.Spectrochim Acta A2011;79:1837e42.[56]Li J-Q,Wei T-B,Lin Q,Li P,Zhang Y-M.Mercapto thiadiazole-based sensorwith colorimetric specific selectivity for AcOÀin aqueous solution.Spec-trochim Acta A2011;83:187e93.[57]Zhang Y-M,Li P,Lin Q,Wei T-B,Li J-Q.A simple colorimetric sensor with highselectivity for mercury cation in aqueous solution.Phosphorus Sulfur2011;186:2286e94.[58]Zhang Y-M,Li Q,Zhang Q-S,Lin Q,Cao-C,Liu M-X,et al.Novel hydrazone-based tripodal sensors:single selective colorimetric chemosensor for acetate in aqueous solution.Chin J Chem2011;29:1529e34.[59]Zhang Y-M,Liu M-X,Lin Q,Li Q,Wei T-B.Mercapto thiadiazole-based sensorswith high selectivity and sensitivity for Hg2þin aqueous solution.J Chem Res 2010:619e21.[60]Zhang Y-M,Qin J-D,Lin Q,Li Q,Wei T-B.Convenient synthesis and anionrecognition properties of N-flurobenzoyl-N’-phenylthioureas in water-containing media.J Fluorine Chem2006;127:1222e7.[61]Valeur B,Pouget J,Bouson J,Kaschke M,Ernsting NP.Tuning of photoinducedenergy transfer in a bichromophoric coumarin supermolecule by cation binding.J Phys Chem1992;96:6545e9.[62]Analytical Methods Committee.Recommendations for the definition,esti-mation and use of the detection limit.Analyst1987;112:199e204.Q.Lin et al./Dyes and Pigments96(2013)1e6 6。