重点讲解滤波器原理开关电容滤波器原理
- 格式:docx
- 大小:113.77 KB
- 文档页数:8
开关电源工作原理超详细解析开关电源(Switching Power Supply)是一种先将输入交流电转换为直流电,再通过变换器和开关元件进行调制和控制,最终输出所需电压和电流的电源装置。
它可以高效地进行能量转换,减少功耗,适用于各种电子设备。
下面将详细解析开关电源的工作原理。
1.开关电源的基本组成开关电源由输入滤波器、整流器、脉宽调制器、变压器、输出滤波器和反馈电路组成。
-输入滤波器:用于滤除输入电源中的干扰信号,并平滑输送到整流器。
-整流器:将交流电转换为直流电,常用的整流方式有全波整流和半波整流。
-脉宽调制器:根据反馈信号调整开关管的导通时间,控制开关元件的开关频率和占空比。
-变压器:将输入电压转换为所需的输出电压,并通过与脉宽调制器协调工作来控制输出电压的稳定性。
-输出滤波器:用于平滑输出电压,减少纹波幅度,并滤波输出电流。
-反馈电路:通过采样输出电压并与目标电压进行比较,产生反馈信号控制脉宽调制器的输出。
2.工作原理-输入滤波:交流电经过输入滤波器后,去除干扰信号,并保持电压稳定。
输入滤波器通常由电容和电感组成,它们通过电压和电流的交替变化,将输入电源趋于稳定。
-变压:通过变压器将输入电压进行转换,以获得需要的输出电压。
变压器一般由磁性材料、绕线、磁心等组成,通过众多的绕线匝数比实现输入电压于输出电压的变化。
-输出滤波:经过变压器的输出信号包含较多的纹波幅度,通过输出滤波器将纹波幅度减小到可以忽略不计的程度。
输出滤波器通常包括电感和电容,通过滤除高频杂波和平滑输出电流。
3.脉宽调制脉宽调制器是开关电源中至关重要的一个部件,负责控制开关元件(如晶体管或MOSFET)的开关频率和占空比,以调节输出电压的稳定性。
- 控制开关频率:脉宽调制器根据输出电压的需求,采用不同的控制方式,例如固定频率PWM(Pulse-Width Modulation)、可变频率PWM和电流模式控制。
通过调整开关频率,可以实现对输出电压的精确控制。
R,C,L串联可以搭建二阶带通滤波器等等。
个小电容并联。
也可以采用RC滤波的方式来实现电源的稳定,最好不要在电路板电源的根部采用RC滤波,而是在需要电源形成很大的压降,导致输出电压变小,而在芯片根处采用RC滤波,一般芯片的工作电流在几十mA,这时R的选择余地会比较大,而且滤波效果较好。
LC滤波我不经常使用,不是很了解,不知道大家的理解如何。
最近使用了美信的可编程滤波器和引脚可配置滤波器,它们采用都是开关电容滤波器。
右边时,电容器C1向电压源u2放电。
当开关以高于信号的频率fc工作时,使C1在u1和u2的两个电压节点之间交替换接,那么C1在u1、u2之间传递的电荷可形成平均电流I=fC1(u1-u2),相当于图1a的u1和u2之间接入了一个等效电阻,其值为1/fC1。
推导是这样的:在信号源向电容充电时Q=C1*U,然后这个电流供给运放使用,因此平均电流为I=C1*U/T,如果T足够短,可以近似认为这个过程是连续的,因而可以在两节点间定义一个等效电路Req=U/I=T/C1=1/f*C1。
这个电路的等效时间常数就是τ=RC2=C2/f*C1.我开始使用的是MAX274,这款开关电容滤波器是通过改变引脚的电阻值来改变中心频率f0,增益G,带宽Q。
它不需要外接时钟信号来提供开关频率用,估计是采用了内部RC振荡电路。
设计MAX274是美信官网上有个辅助软件,把所需的参数输进去,会自动计算出各个电阻的阻值,实践发现即使自己搭电路的阻值取得跟软件计算出的阻值有一点差别,中心频率等差别也不会很大。
后来觉得274改变参数太麻烦,采用了另外一款开关电容滤波器MAX262,这是个引脚可编程滤波器,使用起来非常方便,需要外接时钟信号提供f。
这样的好处是开关频率非常稳,使得中心频率也能够做到跟设定值1%的误差。
使用MAX262也有个辅助软件,但我觉得这个软件计算的MAX262的参数值是错的,还是以数据手册为准!使用MAX262也很方便,就是往寄存器里写入几个值(应该是ROM型,掉电不丢失),通过给定的时钟频率,然后除以想要的中心频率,得出的N值写出寄存器就可以了,N通过查表可以得到,这样可以设定F0.同时可以设定Q,Q对应的也有N值,写到对应的寄存器里。
开关电容低通滤波器的设计原理分析为了滤除信号中掺杂的高频噪声,设计一种六阶级联式开关电容低通滤波器,以数据采样技术代替传统有源RC滤波器中的大电阻,有利于电路的大规模集成。
滤波器由双二阶子电路级联而成,电路中的电容值利用动态定标技术计算确定。
用Hspice进行仿真验证,结果表明:开关电容低通滤波器能较好地时信号进行整形,其频率特性符合设计指标。
滤波技术是信号分析和处理中的重要分支,它的作用是从接收到的信号中提取有用的信息,抑制或消除无用的或有害的干扰信号,有助于提高信号完整度和系统稳定性。
滤波器正是采用滤波技术的具有一定传输选择性的信号处理装置。
随着现代集成电路技术和MOS工艺的飞速发展,模拟集成滤波器的实现已经成为现代工业的一个重大课题,也是当今国际上的前沿课题。
传统的连续时间模拟滤波器采用有源RC结构,能够应用到较高的频率,但是电路中多采用大电容和大电阻,在集成电路制造时会占用大量的芯片面积。
在现代集成电路工艺中,很难得到精确的电阻值和电容值,而且电阻值随温度变化很大,精度只能达到30%。
1972年,美国科学家Fried发表了用开关和电容模拟电阻R的论文,由此开关电容技术成为模拟集成滤波器设计中常用的方法。
开关电容滤波器是由运算放大器、电容器和MOS开关组成的有源开关电容网络,以数据采样技术代替大电阻,减小了芯片的面积和功耗,且电路的极点和时间常数由电容的比值确定,可实现高精度的模拟集成滤波器。
本文设计一种开关电容低通滤波器,用于滤除有用信号中掺杂的高频噪声。
1 开关电容技术的原理图1中的开关电容等效电阻电路由两个独立的电压源V1、V2,两个受控开关S1、S2和电容C组成。
开关S1和S2受两相不交叠的时钟φ1和φ2控制,时钟频率均为fs。
在时钟φ1和φ2的控制下,两个开关周而复始地闭合与断开。
φ1闭合时,C充电到V1,φ2闭合时,C放电到V2,传输的总电荷为C(V1-V2),流向V2的平均电流为:I=Qfs=C(V1-V2)*fs (1)根据欧姆定律,可知此开关电容电路的等效电阻(如图1(b)所示)为:Req=1/Cfs (2)利用开关电容等效电阻电路的最大优点是节省了硅片面积。
开关电源EMI滤波器原理和设计研究开关电源EMI滤波器是用来减少开关电源产生的电磁干扰(EMI)的一种装置。
EMI是指开关电源工作时产生的高频干扰信号,可能会对其他电子设备、无线通信和无线电接收产生干扰,影响它们的正常工作。
EMI滤波器通过合理设计,能有效地抑制开关电源产生的EMI信号,从而减少对其他设备的干扰。
EMI滤波器的原理是基于电流和电压的相位关系来实现的。
开关电源在工作时会产生高频电流脉冲,而这些电流脉冲会通过开关电源输入端的电容等元件,从而形成高频电流回路。
EMI滤波器通过给开关电源输入端加上一个电感元件,阻断高频电流回路的形成,从而减小EMI信号的辐射。
设计EMI滤波器时需要考虑以下几个因素:1.工作频率范围:EMI滤波器需要在开关电源产生EMI信号的频率范围内有效工作。
根据具体的应用环境和要求,选择合适的滤波器工作频率范围。
2.滤波特性:滤波器需要具有良好的滤波特性,对于较高频率的EMI信号能够有较好的抑制效果。
常用的滤波器类型有低通滤波器、带通滤波器和带阻滤波器等。
3.过渡区域:滤波器在过渡区域需要平衡阻抗和频率之间的变化。
过渡区域越宽,滤波器的性能越好。
过渡区域的宽度需要根据具体要求进行设计。
4.安全和可靠性:EMI滤波器需要满足安全和可靠性的要求。
在设计过程中,需要考虑电源参数范围、电流和电压的安全范围等因素,以确保滤波器的稳定性和可靠性。
设计EMI滤波器的方法有多种,可以根据需求选择不同的设计方法。
常见的方法包括线性滤波器设计、Pi型滤波器设计和C型滤波器设计等。
其中,Pi型滤波器是应用最广泛的一种,它由两个电感和一个电容组成,能够对高频信号进行抑制。
总之,开关电源EMI滤波器的原理和设计研究是为了降低开关电源产生的电磁干扰,保证其他设备的正常工作。
通过合理的滤波器设计和选择合适的滤波器类型,可以有效地减少EMI信号对其他设备的干扰,提高系统的抗干扰性能。
3.3 滤波器设计3.3.1 滤波器的基本特性✓滤波器是一种频域变换电路。
它能让指定频段的信号顺利通过,甚至还能放大,而对非指定频段的信号予以衰减。
✓仅仅采用R、L、C元件组成的滤波器称无源滤波器,含有晶体管或运算放大器的称为有源滤波器,后者的储能元件只用电容器C 。
厦门理工学院电子与电气工程系12厦门理工学院电子与电气工程系3滤波器幅频响应四种理想滤波器的频域与时域特性厦门理工学院电子与电气工程系4滤波器幅频响应3阶Bessel 、Butterworth 、Chebyshev (1dB ripple)滤波器幅频响应3阶Chebyshev、Inverse Chebyshev厦门理工学院电子与电气工程系5滤波器幅频响应3阶椭圆(Elliptic or Cauer)厦门理工学院电子与电气工程系6典型有源滤波器电路Sallen-Key (压控电压源)对运放的要求不高,元件的比值较小。
厦门理工学院电子与电气工程系7厦门理工学院电子与电气工程系8典型有源滤波器电路Multiple feedback (多重反馈)对运放要求较高。
一般使用于低Q的应用中厦门理工学院电子与电气工程系9典型有源滤波器电路KHN (状态变量滤波器)。
对运放的非理想特性有较低的灵敏度。
可以精确地调整参数;可以获得HP 、BP 、LP厦门理工学院电子与电气工程系10典型有源滤波器电路Tow-Thomas (双二阶滤波器)可以精确地调整参数,可以获得BP 、LP 、-LP11厦门理工学院电子与电气工程系12end厦门理工学院电子与电气工程系13end 通带纹波和电压波动百分比的对应关系厦门理工学院电子与电气工程系14有源滤波器设计步骤归一化设计。
即将滤波器的截至频率视为1,其它频率除以它进行处理。
1.根据给定的通带频率fc阻带衰减fs计算陡度系数A=fc/fs2.查归一化图表,根据陡峭度、纹波、具体应用要求,查得滤波器阶数。
3.确定电路形式(Sallen Key KHN Two-Thomas)4.如果是二阶滤波器,可以直接计算得到元件的值。
有源滤波器Active Filter(信号分离电路) 测量系统从传感器拾取的信号往往包含噪声和许多与被测量无关的信号,并且原始的测量信号经传输、放大、变换、运算及各种其它处理过程,也会混入各种不同形式的噪声,从面影响测量精度。
这些噪声一般随机性很强,很难从时域中直接分离,但限于其产生的机理,其噪声功率是有限的,并按一定规律分布于频率域中某一特定频带中。
滤波器(信号分离电路):从频域中实现对噪声的抑制,提取所需要的信号,是各种测控系统中必不可少的组成部分。
对滤波器的要求:(1)滤波特性好;(2)级联特性好(输入,输出);(3)滤波频率便于改变滤波器举例:心电信号的滤波:主要受到50Hz的工频干扰,采用50Hz陷波(带阻)滤波器。
一.滤波器的基本知识⒈按处理信号的形式分类:模拟:连续的模拟信号(又分为:无源和有源)数字:离散的数字信号。
⒉理想滤波器对不同频率的作用:通带内,使信号受到很小的衰减而通过。
阻带内,使信号受到很大的衰减而抑制,无过渡带。
⒊按频谱结构分为5种类型:滤波器对信号不予衰减或以很小衰减让其通过的频段称为通带;对信号的衰减超过某一规定值的频段称为阻带;位于通带和阻带之间的频段称为过渡带。
根据通带和阻带所处范围的不同,滤波器功能可分为以下几种:低通(Low Pass Filter)高通(High Pass Filter)带通(Band Pass Filter)带阻(Band Elimination Filter)全通(All Pass Filter)(理想)各种频率信号都能通过,但不同的频率信号的相位有不同的变化,一种移相器。
图2-2 按频谱结构分类的各种滤波器的衰减(1-幅频)特性几个定义:(1)通带的边界频率:一般来讲指下降—3dB即对应的频率。
(2)阻带的边界频率:由设计时,指定。
(3)中心频率:对于带通或带阻而言,用f0或ω0表示。
(4)通带宽度:用Δf0或Δω0表示。
(5)品质因数:衡量带通或带阻滤波器的选频特性。
电源设计中最常见的四种滤波电路原理及特点解析引言在整流电路输出的电压是单向脉动性电压,不能直接给电子电路使用。
所以要对输出的电压进行滤波,消除电压中的交流成分,成为直流电后给电子电路使用。
在滤波电路中,主要使用对交流电有特殊阻抗特性的器件,如:电容器、电感器。
本文对其各种形式的滤波电路进行分析。
一、滤波电路种类滤波电路主要有下列几种:电容滤波电路,这是最基本的滤波电路;π 型 RC 滤波电路;π 型 LC 滤波电路;电子滤波器电路。
二、滤波原理1. 单向脉动性直流电压的特点如图 1(a)所示。
是单向脉动性直流电压波形,从图中可以看出,电压的方向性无论在何时都是一致的,但在电压幅度上是波动的,就是在时间轴上,电压呈现出周期性的变化,所以是脉动性的。
但根据波形分解原理可知,这一电压可以分解一个直流电压和一组频率不同的交流电压,如图1(b)所示。
在图1(b)中,虚线部分是单向脉动性直流电压 U。
中的直流成分,实线部分是 UO 中的交流成分。
2. 电容滤波原理根据以上的分析,由于单向脉动性直流电压可分解成交流和直流两部分。
在电源电路的滤波电路中,利用电容器的“隔直通交”的特性和储能特性,或者利用电感“隔交通直”的特性可以滤除电压中的交流成分。
图 2 所示是电容滤波原理图。
图 2(a)为整流电路的输出电路。
交流电压经整流电路之后输出的是单向脉动性直流电,即电路中的 UO。
图 2(b)为电容滤波电路。
由于电容 C1 对直流电相当于开路,这样整流电路输出的直流电压不能通过C1 到地,只有加到负载 RL 图为 RL 上。
对于整流电路输出的交流成分,因 C1 容量较大,容抗较小,交流成分通过 C1 流到地端,而不能加到负载 RL。
这样,通过电容C1 的滤波,从单向脉动性直流电中取出了所需要的直流电压+U。
滤波电容C1 的容量越大,对交流成分的容抗越小,使残留在负载 RL 上的交流成分越小,滤波效果就越好。
3. 电感滤波原理图 3 所示是电感滤波原理图。
从电气工程上,所有的元件可以归纳为三类最基本的元件,即电阻,电感和电容.电阻的阻值与交流电的频率无关.电感的阻值(称为感抗)Xl=2πfL,即与交流电的频率成正比.频率越高,感抗越大.电容元件则与电感元件相反,它的容抗Xc=1/2πfC,即与交流电频率反比.因此,电气工程上,常利用LC元件对不同频率交流电量的电抗不同,对交流电量进行分流,称为滤波.按不同功能,滤波器通常分三类:低通,高通,带通.它们在电气电路及电子电路中都有着广泛的应用.最简单和最典型的一个例子就是我们常用的直流稳压电源中,整流电路后面接入的电容,就是为了减小交流脉动而设置的.它是一个低通滤波器.上面学习的整流电路,它们的输出电压都含有较大的脉动成分,只在一些特殊的场合使用,一般的直流电路都需要较理想的一条直线似的的直流电压,这就要平滑脉动的电压使其达到,这种措施就是滤波.滤波器一般由电感或电容以及电阻等元件组成.电容滤波,简单的说,滤波是利用电容对特定频率的等效容抗小,近似短路来实现的(与谐振无关)。
容抗Xc=1/(ωC)=1/(2πfC),滤高频用0.1uF陶瓷电容---它对1MHz信号的等效容抗只有1.6欧姆,而对50Hz的工频信号等效容抗有近似32千欧,所以只能滤高频;而要滤工频,2000uF电容的等效容抗才能与0.1uF对1MHz信号的等效容抗相当。
利用电容两端电压不能突变只能充放电的特性来达到平滑脉冲的电压的目的.在正半周D导通时分两个电流:一是电流IL向负载供电,二是IC向电容充电;如忽略D的压降则在电容上的电压等于U2,当U2达到最大的峰值后开始下降, 此时电容C上的电压UC也将由于放电而逐渐下降,当U2<UC时,二极管被反偏而截止,于是UC向负载供电且电压继续下降,直到下一个正半周 U2>UC时二极管再导通,再次循环下去.但半波整流滤波的输出的电压还是带有锯齿装的成分现在多用桥式整流滤波电路;原理同上.根据上面的分析可知,采用电容滤波后,有如下特点:1、负载电压中的脉动的成分降低了许多;2、负载电压的平均值有所提高。
讲解滤波器原理开关电容滤波器原理
对于滤波器原理,很多朋友充满好奇。
但对于不同类型滤波器而言,其滤波器原理往往有所不同。
所以对于滤波器原理的学习,需尽可能多的了解各式各样的滤波器。
本王中,将主要为大家讲解开关电容滤波器原理,并带来与开关电容滤波器相关的内容。
对于滤波器原理,很多朋友充满好奇。
但对于不同类型滤波器而言,其滤波器原理往往有所不同。
所以对于滤波器原理的学习,需尽可能多的了解各式各样的滤波器。
本王中,将主要为大家讲解开关电容滤波器原理,并带来与开关电容滤波器相关的内容。
1. 简介
开关电容滤波器是由MOS开关、MOS电容和MOS运算放大器构成的一种大规模集成电路滤波器。
开关电容滤波器可直接处理模拟信号,而不必像数字滤波器那样需要A/D、D/A变换,简化了电路设计,提高了系统的可靠性。
此外,由于MOS器件在速度、集成度、相对精度控制和微功耗等方面都有独特的优势,为开关电容滤波器电路的迅猛发展提供了很好的条件。
2. 基本原理
SCF电路的实质是采样数据系统,它直接处理模拟连续信号。
与数字滤波器相比,省去了A/D、D/A装置,这也是SCF能很快进入应用的原因之一。
因此,SCF虽然在离散域工作,但仍属模拟滤波器之列。
各类SCF的设想主要起因于流过电阻器与开关电容的电荷相同。
这一点是很自然的,有源RC滤波技术已有效地取代了电感器,开关电容技术首先的设想当然是试图用开关电容(SC)来取代电阻器。
开关电容滤波器的基本原理是,电路的两节点间接有带高速开关的电容器,其效果相当于该两节点间连接一个电阻。
由MOS开关、电容器和运算放大器构成的一种离散时间模拟滤波器。
开关电容滤波器广泛应用于通信系统的脉冲编码调制。
在实际应用中它们通常做成单片集成电路或与其他电路做在同一个芯片上。
通过外部端子的适当连接可获得不同的响应特性。
某些单独的开关电容滤波器可作为通用滤波器应用。
例如自适应滤波、跟踪滤波、振动分析以及语言和音乐合成等。
但运算放大器带宽、电路的寄生参数、开关与运算放大器的非理想特性以及MOS器件的噪声等,都会直接影响这类滤波器的性能。
开关电容滤波器的工作频率尚不高,其应用范围目前大多限于音频频段。
开关电容滤波器基本原理最简单的开关电容滤波器
见图1。
开关K置于左边时,信号电压源u1向电容器C1充电;K 倒向右边时,电容器C1向电压源u2放电。
当开关以高于信号的频率fc工作时,使C1在u1和u2的两个电压节点之间交替换接,那么C1在u1、u2之间传递的电荷可形成平均电流
I=fcC1(u1-u2),相当于图1a的u1和u2之间接入了一个等效电阻,其值为1/fcC1。
这样,图1a的开关电容电路就可等效于一阶有源低通滤波器(图1b),其传递函数为
从上式可见,开关电容滤波器的传递特性取决于比值C1/C2和开关频率fc。
事实上,图1b是一个积分电路,因此,开关电容滤波器可用于模拟滤波器的相应电路,以实现LC滤波器、有源滤波器等的特性。
设计设计开关电容滤波器的方法,大致可归结为两大类。
一类以模拟连续滤波器为基础,通过一定的变换关系把连续系统的网络函数变换为对应的离散时间系统网络函数,以便直接在离散时间域内精确设计。
这时可把网络函数分解为低阶函数,然后用开关电容电路模块通过级联或反馈结构实现。
另一类是以LC 梯形滤波器为原型用信号流图法或阻抗模拟法以开关电容电路取代LC电路中的各支路或电阻、电感,元件之间有一一对应关系。
跳耦型开关电容滤波器有源滤波器跳耦电路的实现,是基于对无源LC梯形滤波器的模拟。
这时跳耦电路的各支路分别对应于无源滤波器原型各支路,且其导纳都是以积分函数形式出现的。
开关电容滤波器如果将跳耦电路各支路的积分函数用差分输入的开关电容积分器(图2)实现,并计入端接负载的影响,就可以得到和五阶LC低通滤波电路(图3a)相对应的开关电容滤波器电路(图3b),而且仍然保持原型无源LC滤波器的低灵敏度特性。
开关电容积分器在每个时钟周期对输入信号取样一次,为了避免输出信号产生附加相移,严重影响滤波响应,必须如图3b 那样,使相邻积分器的开关向相反的方向投掷。
开关电容滤波器,电压反向开关型开关电容滤波器,也是用LC滤波器为原型电路,但用开关电容等效元件替换模拟元件。
电路工作时要求用“电压反向开关”控制电容网络中的电荷流动,使等效元件内部开关动作时元件所构成的环路中没有电荷流动。
实现“电压反向开关”的方法很多,图4a是用运算放大器构成的电压跟随器形式的电压反向开关,图4b是它的电路符号。
其工作过程是:当开关K1闭合、K2打开时,因电压跟随作用,电容器CH上的电压uH等于输入电压ua,即uH=ua;而在开关K1打开、K2闭合时,电容CH上的电压反向加在运算放大器输入端。
这样,因运算放大器虚短路,在每个开关周期内,端口上电压恰好反向。
开关电容滤波器图5a是按这种方法构成的五阶低通电压反向开关型开关电容滤波器的电原理图,图5b是它的原型电路。
与跳耦型开关电容滤波器相比,这种型式的电路需要的运算放大器数目较少,且仍能保持无源LC网络的低灵敏度特性,但它的开关时钟相位关系比较复杂。
开关电容滤波器还有许多种构成方式,如在波数字滤波器原理基础上用开关电容实现的波开关电容滤波器。
这种滤波器的原型电路可以是LC滤波器,也可以是含单位元的电路;而对选择性要求比较尖锐的窄带通滤波特性,可用N通道及伪N通道开关电容滤波器所呈现的梳状滤波特性实现。
它们大多也以LC滤波器或含单位元电路为原型。
由于它们各具特点,可用来构成型式多样、用途广泛的滤波电路。
开关电容滤波器中的开关是周期工作的,它的接通时间只占一个周期的一部分。
如果几组开关轮流在一个周期内工作,就可构成时间复用的开关电容滤波器,并可节省运算放大器,简化电路。
改变时钟频率可改变电路参数,如中心率、峰值增益、选择性等,因此可构成通用型多功能滤波器或可编程序开关电容滤波器。
制造技术开关电容滤波器可用NMOS或CMOS工艺制造。
制造技术关系到分布电容、开关的通导电阻、放大器的带宽、电容器公差以及电压节点的泄漏电流。
按标准工艺制造,通常能
够满足应用于音频范围的要求。
运用某些改进的技术可以扩展工作频段和进一步减小电容器公差。