第八章 相关分析和回归分析
- 格式:ppt
- 大小:578.00 KB
- 文档页数:42
《应用统计学》第八章相关和回归分析相关和回归分析是统计学中常用的分析方法,用来研究变量之间的关系以及预测因变量的值。
本章将介绍相关和回归分析的原理和应用。
相关分析是研究两个或多个变量之间关系的统计方法。
通过计算相关系数来衡量变量之间的线性相关程度。
常用的相关系数有皮尔逊相关系数和斯皮尔曼相关系数。
皮尔逊相关系数适用于两个连续变量的相关分析,而斯皮尔曼相关系数适用于两个有序变量的相关分析。
回归分析是研究因变量与自变量之间关系的统计方法。
通过建立回归模型来预测因变量的值。
回归模型可以是线性模型、非线性模型或者多元回归模型。
线性回归模型的表达式为Y=a+bX,其中Y为因变量,X为自变量,a和b为参数。
回归分析有两个主要目的,一是预测因变量的值,二是研究自变量对因变量的影响程度和方向。
常用的回归分析方法有简单线性回归分析、多元线性回归分析和逻辑回归分析等。
相关和回归分析在实际应用中有着广泛的应用。
在社会科学研究中,相关和回归分析可以用来研究变量之间的关系,如收入和教育水平的相关性。
在医学研究中,相关和回归分析可以用来探索疾病与一些特定因素之间的关系,如高血压和体重的相关性。
在商业领域中,相关和回归分析可以用来分析销售量与广告投资的关系,预测未来的销售量。
需要注意的是,相关和回归分析只是描述性分析方法,并不能确定因果关系。
除了变量之间的线性关系,还可能存在其他非线性的关系。
此外,相关和回归分析只能用于连续变量的分析,不能用于分类型变量的分析。
在进行相关和回归分析时,需要注意几个问题。
首先是样本的选择和数据的收集,确保样本具有代表性,并获得准确和可靠的数据。
其次是确保数据满足相关和回归分析的假设前提。
例如,线性回归模型要求因变量与自变量之间呈线性关系,并且误差项满足正态分布和独立性。
最后是正确选择和解释统计指标,如相关系数和回归系数。
总之,相关和回归分析是应用统计学中常用的分析方法,用来研究变量之间的关系和预测因变量的值。
第八章 相关分析与回归分析习题参考答案一、名词解释函数关系:函数关系亦称确定性关系,是指变量(现象)之间存在的严格确定的依存关系。
在这种关系中,当一个或几个相互联系的变量取一定的数值时,必定有另一个且只有一个变量有确定的值与之对应。
相关关系:是指变量(现象)之间存在着非严格、不确定的依存关系。
在这种关系中,当一个或几个相互联系的变量取一定的数值时,可以有另一变量的若干数值与之相对应。
这种关系不能用完全确定的函数来表示。
相关分析:相关分析主要是研究两个或者两个以上随机变量之间相互依存关系的方向和密切程度的方法,直线相关用相关系数表示,曲线相关用相关指数表示,多元相关用复相关系数表示。
回归分析:回归分析是研究某一随机变量关于另一个(或多个)非随机变量之间数量关系变动趋势的方法。
其目的在于根据已知非随机变量来估计和预测随机变量的总体均值。
单相关:单相关是指仅涉及两个变量的相关关系。
复相关:复相关是指一个变量对两个或者两个以上其他变量的相关关系。
正相关:正相关是指两个变量的变化方向是一致的,当一个变量的值增加(或减少)时,另一变量的值也随之增加(或减少)。
负相关:负相关是指两个变量的变化方向相反,即当一个变量的值增加(或减少)时,另一个变量的值会随之减少(或增加)。
线性相关:如果相关的两个变量对应值在直角坐标系中的散点图近似呈一条直线,则称为线性相关。
非线性相关:如果相关的两个变量对应值在直角坐标系中的散点图近似呈现出某种曲线形式,则为非线性相关。
相关系数:相关系数是衡量变量之间线性相关密切程度及相关方向的统计分析指标。
取值在-1到1之间。
两个变量之间的简单样本相关系数的计算公式为:()()niix x y y r --∑二、单项选择1.B;2.D;3.D;4.C;5.A;6.D 。
三、判断题(正确的打“√”,错误的打“×”) 1.×; 2.×; 3.√; 4.×; 5.×; 6.×; 7.×; 8.√. 四、简答题1、什么是相关关系?相关关系与函数关系有什么区别?答:相关关系,是指变量(现象)之间存在着非严格、不确定的依存关系。
统计学基础第八章相关与回归分析【教学目的】1.掌握相关系数的测定和性质2。
明确相关分析与回归分析的特点3.建立回归直线方程,掌握估计标准误差的计算【教学重点】1。
相关关系、相关分析和回归分析的概念2。
相关系数计算3.回归方程的建立和依此进行估计和预测【教学难点】1.相关分析和回归分析的区别2.相关系数的计算3。
回归系数的计算4。
估计标准误的计算【教学时数】教学学时为8课时【教学内容参考】第一节相关关系一、相关关系的含义宇宙中任何现象都不是孤立地存在的,而是普遍联系和相互制约的。
这种现象间的相互联系、相互制约的关系即为相关关系。
相关关系因其依存程度的不同而表现出相关程度的差别。
有些现象间存在着严格的数据依存关系,比如,在价格不变的条件下销售额量之间的关系,圆的面积与半径之间的关系等等,均具有显著的一一对应关系。
这些关系可由数学中的函数关系来确切的描述,因而也可以认为是一种完全相关关系.有些现象间的依存关系则没有那么严格。
当一种现象的数量发生变化时,另一种现象的数量却在一定的范围内发生变化,比如身高与体重的关系就是如此。
一般来说,身高越高,体重越重,但二者之间的关系并非严格意义上的对应关系,身高1.75米的人,对应的体重会有多个数值,因为影响体重的因素不只身高而已,它还会受遗传、饮食习惯等因素的制约和影响.社会经济现象中大多存在这种非确定的相关关系。
在统计学中,这些在社会经济现象之间普遍存在的数量依存关系,都成为相关关系。
在本章,我们主要介绍那些能用函数关系来描述的具有经济统计意义的相关关系。
二、相关关系的特点1。
现象之间确实存在数量上的依存关系如果一个现象发生数量上的变化,则另一个现象也会发生数量上的变化.在相互依存的两个变量中,可以根据研究目的,把其中的一个变量确定为自变量,把另一个对应变量确定为因变量。
例如,把身高作为自变量,则体重就是因变量.2。
现象之间数量上的关系是不确定的相关关系的全称是统计相关关系,它属于变量之间的一种不完全确定的关系。