第8章 相关分析与回归分析及答案
- 格式:doc
- 大小:88.00 KB
- 文档页数:6
《应用统计学》第八章相关和回归分析相关和回归分析是统计学中常用的分析方法,用来研究变量之间的关系以及预测因变量的值。
本章将介绍相关和回归分析的原理和应用。
相关分析是研究两个或多个变量之间关系的统计方法。
通过计算相关系数来衡量变量之间的线性相关程度。
常用的相关系数有皮尔逊相关系数和斯皮尔曼相关系数。
皮尔逊相关系数适用于两个连续变量的相关分析,而斯皮尔曼相关系数适用于两个有序变量的相关分析。
回归分析是研究因变量与自变量之间关系的统计方法。
通过建立回归模型来预测因变量的值。
回归模型可以是线性模型、非线性模型或者多元回归模型。
线性回归模型的表达式为Y=a+bX,其中Y为因变量,X为自变量,a和b为参数。
回归分析有两个主要目的,一是预测因变量的值,二是研究自变量对因变量的影响程度和方向。
常用的回归分析方法有简单线性回归分析、多元线性回归分析和逻辑回归分析等。
相关和回归分析在实际应用中有着广泛的应用。
在社会科学研究中,相关和回归分析可以用来研究变量之间的关系,如收入和教育水平的相关性。
在医学研究中,相关和回归分析可以用来探索疾病与一些特定因素之间的关系,如高血压和体重的相关性。
在商业领域中,相关和回归分析可以用来分析销售量与广告投资的关系,预测未来的销售量。
需要注意的是,相关和回归分析只是描述性分析方法,并不能确定因果关系。
除了变量之间的线性关系,还可能存在其他非线性的关系。
此外,相关和回归分析只能用于连续变量的分析,不能用于分类型变量的分析。
在进行相关和回归分析时,需要注意几个问题。
首先是样本的选择和数据的收集,确保样本具有代表性,并获得准确和可靠的数据。
其次是确保数据满足相关和回归分析的假设前提。
例如,线性回归模型要求因变量与自变量之间呈线性关系,并且误差项满足正态分布和独立性。
最后是正确选择和解释统计指标,如相关系数和回归系数。
总之,相关和回归分析是应用统计学中常用的分析方法,用来研究变量之间的关系和预测因变量的值。
2015年《统计学》第八章相关与回归分析习题及满分答案一、单选题1.相关分析研究的是( A )A、变量间相互关系的密切程度B、变量之间因果关系C、变量之间严格的相依关系D、变量之间的线性关系2.若变量X的值增加时,变量Y的值也增加,那么变量X和变量Y之间存在着(A )。
A、正相关关系B、负相关关系C、直线相关关系D、曲线相关关系3.若变量X的值增加时,变量Y的值随之下降,那么变量X和变量Y之间存在着(B)。
A、正相关关系B、负相关关系C、直线相关关系D、曲线相关关系4.相关系数等于零表明两变量(B)。
A.是严格的函数关系B.不存在相关关系C.不存在线性相关关系D.存在曲线线性相关关系5.相关关系的主要特征是(B)。
A、某一现象的标志与另外的标志之间的关系是不确定的B、某一现象的标志与另外的标志之间存在着一定的依存关系,但它们不是确定的关系C、某一现象的标志与另外的标志之间存在着严格的依存关系D、某一现象的标志与另外的标志之间存在着不确定的直线关系6.时间数列自身相关是指( C )。
A、两变量在不同时间上的依存关系B、两变量静态的依存关系C、一个变量随时间不同其前后期变量值之间的依存关系D、一个变量的数值与时间之间的依存关系7.如果变量X和变量Y之间的相关系数为负1,说明两个变量之间(D)。
A、不存在相关关系B、相关程度很低C、相关程度很高D、完全负相关8.若物价上涨,商品的需求量愈小,则物价与商品需求量之间(C)。
A、无相关B、存在正相关C、存在负相关D、无法判断是否相关9.相关分析对资料的要求是(A)。
A.两变量均为随机的B.两变量均不是随机的C、自变量是随机的,因变量不是随机的D、自变量不是随机的,因变量是随机的10.回归分析中简单回归是指(D)。
A.时间数列自身回归B.两个变量之间的回归C.变量之间的线性回归D.两个变量之间的线性回归11.已知某工厂甲产品产量和生产成本有直线关系,在这条直线上,当产量为10 00时,其生产成本为30000元,其中不随产量变化的成本为6000元,则成本总额对产量的回归方程为( A )A. y=6000+24xB. y=6+0.24xC. y=24000+6xD. y=24+6000x12.直线回归方程中,若回归系数为负,则(B) A.表明现象正相关B.表明现象负相关C.表明相关程度很弱D.不能说明相关方向和程度二、多项选择题1.下列属于相关关系的有(ABD )。
第八章相关与回归分析一1. 进行相关分析,要求相关的两个变量(A. 都是随机的B.C. 一个是随机的,一个不是随机的D.2. 相关关系的主要特征是(A.B. 某一现象的标志与另一标志之间存在着一定的关系,但它们不是确定的关系C.D. 某一现象的标志与另一标志之间存在着函数关系3. 相关分析是研究(A. 变量之间的数量关系B.C.变量之间相互关系的密切程度D.4. 相关关系的取值范围是(A. r=0B. -1≤r≤0C. 0≤r≤1D. -1≤r≤15. 现象之间相互依存关系的程度越低,则相关系数(A. 越接近于0B. 越接近于-1C. 越接近于1D. 越接近于0.56. 当所有观察值都落在回归直线上,则x与y之间的相关系数()。
A. r=0B. -1<r<1C. |r|=1D. 0<r<17. 在回归直线中,若b<0,则x与y之间的相关系数(A. r=0B. r=1C. 0<r<1D. -1<r<08. 在回归直线中,b表示(A. 当x增加一个单位,y增加a的数量B. 当y增加一个单位时,x增加bC. 当x增加一个单位时,y的平均增加量D. 当y增加一个单位时,x9. 当相关系数r=0时,表明(A. 现象之间完全无关B.C. 现象之间完全相关D.10. r值越接近于-1,表明两变量间(A. 没有相关关系B. 线性相关关系越弱C. 负相关关系越强D.11. 下列直线回归方程中,肯定错误的是(A. y=2+3x,r=0.88B. y=4+5x,r=0.55C. y=-10+5X,R=-0.90D. y=-100-0.9x,r=-0.8312. 正相关的特点是(A.B.C.D.13. 下列现象的相关密切程度高的是(A. 某商店的职工人数与商品销售额之间的相关系数为0.87B. 流通费用率与商业利润率之间的相关系数为-0.94C. 商品销售额与商业利润率之间的相关系数为0.51D. 商品销售额与流通费用率之间的相关系数为-0.8114. 计算估计标准误差的依据是(A. 因变量的数列B.C. 因变量的回归变差D.15. 两个变量间的相关关系称为(A. 单相关B. 复相关C. 无相关D.16. 从变量之间相关的方向看,可分为(A. 正相关与负相关B.C. 单相关与复相关D.17. 从变量之间相关的表现形式看,可分为()。
第八章 相关分析与回归分析习题参考答案一、名词解释函数关系:函数关系亦称确定性关系,是指变量(现象)之间存在的严格确定的依存关系。
在这种关系中,当一个或几个相互联系的变量取一定的数值时,必定有另一个且只有一个变量有确定的值与之对应。
相关关系:是指变量(现象)之间存在着非严格、不确定的依存关系。
在这种关系中,当一个或几个相互联系的变量取一定的数值时,可以有另一变量的若干数值与之相对应。
这种关系不能用完全确定的函数来表示。
相关分析:相关分析主要是研究两个或者两个以上随机变量之间相互依存关系的方向和密切程度的方法,直线相关用相关系数表示,曲线相关用相关指数表示,多元相关用复相关系数表示。
回归分析:回归分析是研究某一随机变量关于另一个(或多个)非随机变量之间数量关系变动趋势的方法。
其目的在于根据已知非随机变量来估计和预测随机变量的总体均值。
单相关:单相关是指仅涉及两个变量的相关关系。
复相关:复相关是指一个变量对两个或者两个以上其他变量的相关关系。
正相关:正相关是指两个变量的变化方向是一致的,当一个变量的值增加(或减少)时,另一变量的值也随之增加(或减少)。
负相关:负相关是指两个变量的变化方向相反,即当一个变量的值增加(或减少)时,另一个变量的值会随之减少(或增加)。
线性相关:如果相关的两个变量对应值在直角坐标系中的散点图近似呈一条直线,则称为线性相关。
非线性相关:如果相关的两个变量对应值在直角坐标系中的散点图近似呈现出某种曲线形式,则为非线性相关。
相关系数:相关系数是衡量变量之间线性相关密切程度及相关方向的统计分析指标。
取值在-1到1之间。
两个变量之间的简单样本相关系数的计算公式为:()()niix x y y r --∑二、单项选择1.B;2.D;3.D;4.C;5.A;6.D 。
三、判断题(正确的打“√”,错误的打“×”) 1.×; 2.×; 3.√; 4.×; 5.×; 6.×; 7.×; 8.√. 四、简答题1、什么是相关关系?相关关系与函数关系有什么区别?答:相关关系,是指变量(现象)之间存在着非严格、不确定的依存关系。
第八章相关分析与回归分析一、单项选择题(以下每小题各有四项备选答案,其中只有一项是正确的。
)1.根据散点图8-1,可以判断两个变量之间存在( )。
A.正线性相关关系B.负线性相关关系C.非线性关系D.函数关系[答案] A2.假设某品牌的笔记本市场需求只与消费者的收入水平和该笔记本的市场价格水平有关。
则在假定消费者的收入水平不变的条件下,该笔记本的市场需求与其市场价格水平的相关关系就是一种( )。
A.单相关B.复相关C.偏相关D.函数关系[答案] C[解析] 在某一现象与多种现象相关的场合,假定其他变量不变,专门考察其中两个变量的相关关系称为偏相关。
在假定消费者的收入水平不变的条件下,该笔记本的市场需求与其市场价格水平的关系就是一种偏相关。
3.相关图又称( )。
A.散布表B.折线图C.散点图D.曲线图[答案] C[解析] 相关图又称散点图,是指把相关表中的原始对应数值在乎面直角坐标系中用坐标点描绘出来的图形。
4.下列相关系数取值中错误的是( )。
A.-0.86 B.0.78 C.1.25 D.0[答案] C[解析] 相关系数r的取值介于-1与1之间。
5.如果相关系数r=0,则表明两个变量之间( )。
A.相关程度很低B.不存在任何关系C.不存在线性相关关系D.存在非线性相关关系[答案] C[解析] 相关系数r是根据样本数据计算的度量两个变量之间线性关系强度的统计量。
如果相关系数r=0,说明两个变量之间不存在线性相关关系。
6.当所有观测值都落在回归直线上,则两个变量之间的相关系数为( )。
A.1 B.-1C.+1或-1 D.大于-1,小于+1[答案] C[解析] 当所有观测值都落在回归直线上时,说明两个变量完全线性相关,所以相关系数为+1或-1。
即当两个变量完全正相关时,r=+1;当两个变量完全负相关时,r=-1。
7.对于回归方程,下列说法中正确的是( )。
A.只能由自变量x去预测因变量yB.只能由因变量y去预测自变量xC.既可以由自变量x去预测因变量y,也可以由变量因y去预测自变量xD.能否相互预测,取决于自变量x和变量因y之间的因果关系[答案] A[解析] 回归方程中,只能由自变量x去预测因变量y,而不能由因变量y不能预测自变量x。
第8章《相关与回归》练习题第八章《相关与回归分析》练习题一、单选题1、两线性相关变量的相关图形是一条:a、一条平行于x轴B的直线,一条平行于y轴C的直线,一条倾斜的直线D,一条倾斜45并穿过原点的直线02、若估计标准误s等于因变量的标准差,则说明回归方程:a、非常有意义的B,毫无价值的C,错误的计算D,这个问题是站不住脚的3、某校经济管理类的学生学习统计学的时间(x)与考试成绩(у)之间建立回归方程ηc=a+bx。
计算后,方程为k C=20-0.8x,该方程的计算:a、a值是明显不对的b、b值是明显不对的c、 A和B不正确,D、A和B正确4、已知某工厂产品产量和成本费用有直线关系,在这条直线上,当产量为1千吨时,其成本费用为3万元,其中不随产量变化的费用为6000元,则成本费用对产量的回归直线方程是:a、ηc=24+6000xb、ηc=24000+6xc、 crmk_c=6000+2.4xd、ηC=0.6+2.4x5。
在进行相关和回归分析时,需要考虑是否需要确定自变量和因变量的问题:a、前者勿需确定,后者需要确定b、前者需要确定,后者勿需确定c、两者均需确定d、两者都勿需确定6、判定系数的值越大,则回归直线a、拟合度B越低,拟合度越高c、偏离原始数据定越远d、进行预测越不准确7、相关分析是研究:a、变量C之间的数量关系和变量之间的机器关系的密切程度b、变量之间的变动关系d、变量之间的因果关系8.在以下公式中,误差为:a、y=-40+1.6xr=0.89b、y=-5c3.8xr=-0.94c、y=36c2.4xr=0.96d、y=c36+3.8xr=0.989.估计的标准误差是否为SY/x?0表示a、全部观察值和回归值都不相等b、回归值代表性小c、所有观测值和回归值之间的偏差的乘积为零D,所有观测值都落在回归线上二、多项选择题1.判断系数越大,说明:a、观察值的离散程度也越大b、回归估计愈准确c、估计标准误的越大d、回归系数也越大e、相关系数的绝对值也越大2、在回归分析中,确定直线回归方程的两个变量必须是a、自变量B和因变量B分别是随机变量C、随机变量和可控变量d、对等关系e、不对等关系3.以下现象是相关的:a、家庭收入与消费支出之间的关系b、作物收获与施肥之间的关系C,圆圈面积与圆圈半径之间的关系D,身高与体重之间的关系e,年龄与血压之间的关系4、直线相关分析与直线回归分析的区别在于a、这两个变量是随机的,而回归分析中的自变量是给定值。
《统计学概论》第八章课后练习答案一、思考题1.什么是相关系数?它与函数关系有什么不同?P237- P2382.什么是正相关、负相关、无线性相关?试举例说明。
P238- P2393.相关系数r的意义是什么?如何根据相关系数来判定变量之间的相关系数?P245 4.简述等级相关系数的含义及其作用?P2505.配合回归直线方程有什么要求?回归方程中参数a、b的经济含义是什么?P2566.回归系数b与相关系数r之间有何关系?P2587.回归分析与相关分析有什么联系与区别?P2548.什么是估计标准误差?这个指标有什么作用?P2619.估计标准误差与相关系数的关系如何?P258-P26410.解释判定系数的意义和作用。
P261二、单项选择题1.从变量之间相互关系的方向来看,相关关系可以分为()。
A.正相关和负相关B.直线关系与曲线关系C.单相关和复相关D.完全相关和不完全相关2.相关分析和回归分析相比较,对变量的要求是不同的。
回归分析中要求()。
A.因变量是随机的,自变量是给定的B.两个变量都是随机的C.两个变量都不是随机的D.以上三个答案都不对3.如果变量x与变量y之间的相关系数为-1,这说明两个变量之间是()。
A.低度相关关系B.完全相关关系C.高度相关关系D.完全不相关4.初学打字时练习的次数越多,出现错误的量就越少,这里“练习次数”与“错误量”之间的相关关系为()。
A.正相关B.高相关C.负相关D.低相关5.假设两变量呈线性关系,且两变量均为顺序变量,那么表现两变量相关关系时应选用()。
A.简单相关系数r B.等级相关系数r sC.回归系数b D.估计标准误差S yx6.变量之间的相关程度越低,则相关系数的数值()。
A.越大B.越接近0C.越接近-1 D.越接近17.下列各组中,两个变量之间的相关程度最高的是()。
A.商品销售额和商品销售量的相关系数是0.9B.商品销售额和商品利润率的相关系数是0.84C.产量与单位成本之间的相关系数为-0.94D.商品销售价格与销售量的相关系数为-0.918.相关系数r的取值范围是()。
第八章相关与回归分析
一、本章重点
1.相关系数的概念及相关系数的种类。
事物之间的依存关系,可以分为函数关系和相关关系。
相关关系又有单向因果关系和互为因果关系;单相关和复相关;线性相关和非线性相关;不相关、不完全相关和完全相关;正相关和负相关等类型。
2.相关分析,着重掌握如何画相关表、相关图,如何测定相关系数、测定系数以及进行相关系数的推断。
相关表和相关图是变量间相关关系的生动表示,对于未分组资料和分组资料计算相关系数的方法是不同的,一元线性回归中相关系数和测定系数有着密切的关系,得到样本相关系数后还要对总体相关系数进行科学推断。
3.回归分析,着重掌握一元回归的基本原理方法,一元回归是线性回归的基础,多元线性回归和非线性回归都是以此为基础的。
用最小平方法估计回归参数,回归参数的性质和显著性检验,随机项方差的估计,回归方程的显著性检验,利用回归方程进行预测是回归分析的主要内容。
4.应用相关与回归分析应注意的问题。
相关与回归分析都有它们的应用范围,必须知道在什么情况下能用,什么情况下不能用。
相关分析和回归分析必须以定性分析为前提,否则可能会闹出笑话,在进行预测时选取的样本要尽量分散,以减少预测误差,在进行预测时只有在现有条件不变的情况下才能进行,如果条件发生了变化,原来的方程也就失去了效用。
二、难点释疑
本章难点在于计算公式多,不容易记忆,所以更要注重计算的练习。
为了掌握基本计算的内容,起码应认真理解书上的例题,做完本指导书上的全部计算题。
初学者可能会感到本章公式多且复杂,难于记忆,其实只要抓住Lxx、Lxy、Lyy 这三个记号,记住它们的展开式,几个主要的公式就不难记忆了。
如果能自己把这些公式推证一下,搞清其关系,那就更容易记住了。
三、练习题
(一)填空题
1事物之间的依存关系,根据其相互依存和制约的程度不同,可以分为(函数关系)和(相关关系)两种。
2.相关关系按相关关系的情况可分为()和();按自变量的多少分(单相关)和(复相关);按相关的表现形式分(线性相关)和(非线性相关);按相关关系的密切程度分(完全相关)、(不完全相关)和(不相关);按相关关系的方向分(正相关)和(负相关)。
3.回归方程只能用于由(自变量)推算(因变量)。
4.一个自变量与一个因变量的线性回归,称为(一元线性回归)
5.估计变量间的关系的紧密程度用(相关系数)
6.在相关分析中,要求两个变量都是随机的,而在回归分析中要求自变量是(不是随机的),因变量是(随机的)。
7.已知剩余变差为250,具有12对变量值资料,那么这时的估计标准误差是()。
8.将现象之间的相关关系,用表格来反映,这种表称为(相关表),将现象之间的相关关系用图表示称(相关图)。
9.若两个变量完全不相关,则相关系数等于(0 ),若两个变量完全相关,则相关系数等于( 1 )。
10.在回归方程y=a+bx中,待定系数a为(直线的起点值),b为(回归系数)。
11.若已知y为每亩蔬菜产量(单位:百公斤),x为每亩地施肥量(单位:公斤),已知y=9.964+0.891x并已知每亩地最高施肥量为70公斤,最低施肥量为35公斤,那么每亩地蔬菜产量的大致变动范围为(41.15)到(72.33)。
(二)名词解释
1.函数关系
2.相关关系
3.单项因果关系
4.互为因果关系
5.回归分析
6.一元线性回归模型
7.估计标准误差
(三)判断题
1.某一变量的每一个数值都有另一变量的确定的值与之对应,这种关系叫相关关系。
(×)
2.任何两个有相关关系的现象,计算其相关系数一定是在-1至1之间。
(×)
3.当相关系数等于1或-1时,两个变量的关系是函数关系,当相关系数等于零时,说明两个变量之间的关系不是相关关系。
(×)
4.计算相关系数时,首先要确定自变量和因变量。
(×)
5.积距相关系数的正负号主要取决于计算公式的分子符号。
(√)
(四)单项选择题
1.相关分析研究的是(A)。
A、变量间相互关系的密切程度
B、变量之间因果关系
C、变量之间严格的相依关系
D、变量之间的线性关系
2.若变量X的值增加时,变量Y的值也增加,那么变量X和变量Y之间存在着( A )。
A、正相关关系
B、负相关关系
C、直线相关关系
D、曲线相关关系
3.若变量X的值增加时,变量Y的值随之下降,那么变量X和变量Y之间存在着(B)。
A、正相关关系
B、负相关关系
C、直线相关关系
D、曲线相关关系
4.相关系数等于零表明两变量( C )。
A、是严格的函数关系
B、不存在相关关系
C、不存在线性相关关系
D、存在曲线线性相关关系
5.相关关系的主要特征是(B)。
A、某一现象的标志与另外的标志之间的关系是不确定的
B、某一现象的标志与另外的标志之间存在着一定的依存关系,但它们不是确定的关系
C、某一现象的标志与另外的标志之间存在着严格的依存关系
D、某一现象的标志与另外的标志之间存在着不确定的直线关系
6.时间数列自身相关是指( C )。
A、两变量在不同时间上的依存关系
B、两变量静态的依存关系
C、一个变量随时间不同其前后期变量值之间的依存关系
D、一个变量的数值与时间之间的依存关系
7.如果变量X和变量Y之间的相关系数为负1,说明两个变量之间( D )。
A、不存在相关关系
B、相关程度很低
C、相关程度很高
D、完全负相关
8.若物价上涨,商品的需求量愈小,则物价与商品需求量之间( C )。
A、无相关
B、存在正相关
C、存在负相关
D、无法判断是否相关
9.相关分析对资料的要求是( A )。
A、两变量均为随机的
B、两变量均不是随机的
C、自变量是随机的,因变量不是随机的
D、自变量不是随机的,因变量是随机的
10.回归分析中简单回归是指( D)。
A、时间数列自身回归
B、两个变量之间的回归
C、变量之间的线性回归
D、两个变量之间的线性回归
(五)多项选择题
1.下列属于相关关系的有(ABD )。
A、农作物收获量和施肥量之间的关系
B、家庭收入与生活费支出间的关系
C、圆面积和圆半径之间的关系
D、身高与体重之间的关系
E、美国人口数和加拿大粮食产量之间的关系
2.下述关系中属于负相关的有( CE)。
A、在合理限度内,农业中施肥量和平均亩产量之间的关系
B、工业企业中生产用固定资产平均价值和产品总产量之间的关系
C、商业企业的劳动效率和流通费用率之间的关系
D、单位产品成本和原材料消耗量之间的关系
E、工业产品产量和单位产品成本之间的关系
3.现象间相互依存的类型有( AB)。
A、函数关系
B、相关关系
C、回归关系
D、随机关系
E、结构关系
4.下列语句中正确的有(CD )。
A、具有明显因果关系的两变量一定不是相关关系
B、只要相关系数数值较大,两变量就一定存在密切的相关关系
C、相关系数的符号可说明两变量相互关系的方向
D、样本相关系数和总体相关系数之间存在着抽样误差
E、不具有因果关系的变量一定不存在相关关系
5.回归方程可用于( AD )。
A、根据自变量预测因变量
B、给定因变量推算自变量
C、推算时间数列中缺失的数据
D、给定自变量推算因变量
E、用于控制因变量
6、直线相关分析的特点有(BCD )。
A、两变量不是对等的
B、两变量只能算出一个相关系数
C、相关系数有正负号
D、两个变量都是随机的
E、相关系数的绝对值是介于0-1之间的数
(六)简答题
1.什么是相关关系,相关分析有什么作用?
2.简述相关分析的特点。
3.简述相关分析和回归分析的关系。
(七)论述题
试述相关与回归分析应注意的几个问题。
(八)计算题
②列出正规方程组求单位成本倚产量的回归方程并解释回归方程中各系数的经济意义;
③试估计产量为3千件的单位成本;
④计算估计标准误差。
3.已知:n=6 ∑x=21 ∑y=426 ∑x2=79 ∑y2=30268
∑xy=1481
要求:
①计算相关系数
②建立回归方程
③计算估计标准误差
(1)以人均收入为自变量,商品销售额为因变量,建立直线回归方程;
(2)用最小平方法求人均收入数列的直线趋势方程,并估计2000年该市的人均收入;
(3)根据2000年的人均收入的估计值,利用回归方程推算2000年该市的商品销售额。
(1)计算相关系数;(2)建立回归直线方程;(3)计算估计的标准误差;(4)估计生产性固定资产为1100万元时的工业总产值。
b 待定系数的经济意义;若新建一企业,其年设备能力为6.5千瓦/人,估计劳动生产率将为多少?
误差;(4)若个人收入为213亿元时,估计个人消费支出。
)建立直线回归方程;(4)若某商店每人月平均销售额为2千元,估计其利润率;(5)计算估计的标准误差。
准误差;(3)计算相关系数,判断相关程度。