一元一次方程知识点总结
- 格式:docx
- 大小:17.95 KB
- 文档页数:4
简易方程公式知识点总结一、一元一次方程1. 一元一次方程的定义:一元一次方程是指只含有一个未知数的一次方程。
一般地,一元一次方程可以用ax+b=0(a≠0)来表示,其中a和b是已知数,x是未知数。
2. 方程的解:方程ax+b=0的解即为x=-b/a。
其中,如果a=0且b≠0,那么方程无解;如果a=0且b=0,那么方程有无数解。
3. 解方程的方法:解一元一次方程可以通过如下几种方法:a. 移项法:将未知数的项移到等式的一边,其他项移到另一边。
b. 相消法:通过相等的两边增加或减少同一个量,使得方程两边的某个项相消掉。
c. 等价变形法:通过等式的加减乘除变形,使得方程的解变得更明显。
4. 例题:解方程3x+5=2x-7解:将未知数项移到左边去,得到3x-2x=-7-5,即x=-12。
二、一元二次方程1. 一元二次方程的定义:一元二次方程是指含有一个未知数的二次方程。
一般地,一元二次方程可以用ax^2+bx+c=0(a≠0)来表示,其中a、b和c是已知数,x是未知数。
2. 方程的解:一元二次方程的解可以用求根公式来表示,即x=[-b±√(b^2-4ac)]/(2a)。
其中,当Δ=b^2-4ac>0时,方程有两个不相等的实根;当Δ=0时,方程有两个相等的实根;当Δ<0时,方程没有实根。
3. 方程的图像:一元二次方程的图像是一个开口朝上或开口朝下的抛物线,其顶点坐标为(-b/2a,-Δ/4a)。
4. 例题:解方程x^2-5x+6=0解:根据求根公式,Δ=5^2-4*1*6=1,因此方程有两个不相等的实根,即x=[5±√1]/2=3或2。
三、一元三次方程1. 一元三次方程的定义:一元三次方程是指含有一个未知数的三次方程。
一般地,一元三次方程可以用ax^3+bx^2+cx+d=0(a≠0)来表示,其中a、b、c和d是已知数,x是未知数。
2. 方程的解:一般地,一元三次方程没有通用的求解公式,而是需要通过因式分解、配方法、换元等多种方法来求解。
高中数学方程的知识点总结一、一元一次方程一元一次方程是高中数学中首先接触到的一种方程类型,也是最基础的方程类型之一。
一元一次方程的一般形式为ax+b=0,其中a和b为已知数,x为未知数。
解一元一次方程的基本方法是化简、变形,通过加减或乘除等运算得到方程的解。
1. 一元一次方程的解法(1)加减法,将方程化简成形如x=c的形式,即可求得x的值。
(2)代入法,将已知条件代入方程中,求出未知数的值。
(3)变形法,通过变形方程的形式或者将未知数移到方程的一侧,使方程等号两边相等,从而求得未知数的值。
(4)克莱姆法则,利用克莱姆法则可以得到一元一次方程的解,该方法通常适用于二元一次方程组求解。
2. 一元一次方程的应用(1)线性规划问题,通过建立一元一次方程模型,可以求解实际生活中的最优化问题。
(2)物品价格、消费等问题,通过一元一次方程可以解决生活中的购物、消费等实际问题。
二、一元二次方程一元二次方程是高中数学中比较重要的方程类型之一,一般形式为ax^2+bx+c=0,其中a、b、c为已知数,x为未知数。
一元二次方程的求解需要利用一元二次方程的求根公式或者配方法等方法。
1. 一元二次方程的求根(1)求根公式,即利用一元二次方程的一般形式ax^2+bx+c=0,通过求解二次方程的根公式x=\frac{-b±\sqrt{b^2-4ac}}{2a},得到方程的解。
(2)配方法,将一元二次方程利用配方法化为全平方或者差平方的形式,然后根据公式求解方程。
2. 一元二次方程的图像一元二次方程在平面直角坐标系中表示为一个抛物线的图像,通过方程的系数可以看出抛物线的开口方向、开口大小等特征。
3. 一元二次方程的应用(1)物理问题,通过一元二次方程可以解决流体力学、电磁学等领域的问题。
(2)几何问题,一元二次方程可以求解几何问题中的距离、面积等问题。
三、高次方程高次方程是指次数大于二的方程,一般形式为a_nx^n+a_{n-1}x^{n-1}+...+a_1x+a_0=0。
初中数学方程与不等式知识点总结方程和不等式是初中数学中的重要内容,它们在解决实际问题和数学运算中都有着广泛的应用。
接下来,让我们一起系统地梳理一下这部分的知识点。
一、方程(一)一元一次方程1、定义:只含有一个未知数,并且未知数的最高次数是 1 的整式方程叫做一元一次方程。
一般形式为:$ax + b = 0$($a \neq 0$,$a$,$b$为常数)。
2、解法:(1)移项:把含未知数的项移到方程的一边,常数项移到方程的另一边。
(2)合并同类项:将同类项进行合并,化简方程。
(3)系数化为 1:方程两边同时除以未知数的系数,得到方程的解。
例如:解方程$3x + 5 = 14$移项得:$3x = 14 5$合并同类项得:$3x = 9$系数化为 1 得:$x = 3$(二)二元一次方程组1、定义:由两个含有两个未知数,且未知数的次数都是 1 的整式方程组成的方程组叫做二元一次方程组。
2、解法:(1)代入消元法:将一个方程中的某个未知数用含有另一个未知数的代数式表示出来,然后代入另一个方程,消去一个未知数,得到一个一元一次方程,解这个一元一次方程,求得一个未知数的值,再将其代入原方程组中的一个方程,求得另一个未知数的值。
例如:解方程组$\begin{cases}x + y = 5 \\ x y = 1\end{cases}$由第一个方程得:$x = 5 y$,将其代入第二个方程得:$5 y y = 1$$5 2y = 1$$-2y =-4$$y = 2$将$y = 2$代入$x = 5 y$得:$x = 3$所以方程组的解为$\begin{cases}x = 3 \\ y = 2\end{cases}$(2)加减消元法:当两个方程中同一未知数的系数相等或互为相反数时,将两个方程的两边分别相加或相减,消去这个未知数,得到一个一元一次方程,解这个一元一次方程,求得一个未知数的值,再将其代入原方程组中的一个方程,求得另一个未知数的值。
一元一次方程方程的有关概念夯实基础一.等式用等号(“=”)来表示相等关系的式子叫做等式。
温馨提示①等式可以是数字算式,可以是公式、方程,也可以是运算律、运算法则等,所以等式可以表示不同的意义。
②不能将等式与代数式混淆,等式含有等号,是表示两个式子的“相等关系”,而代数式不含等号,它只能作为等式的一边。
如x x 2735-=+才是等式。
二.等式的性质性质1:等式两边同时加(或减)同一个数(或式子),结果仍相等。
即如果b a =,那么c b c a ±=±。
性质2:等式两边同时乘同一个数,或除以同一个不为0的数,结果仍相等。
即如果b a =,那么bc ac =;如果b a =()0≠c ,那么cb c a =。
温馨提示①等式类似天平,当天平两端放有相同质量的物体时,天平处于平衡状态。
若在天平的两端各加(或减)相同质量的物体,则天平仍处于平衡状态。
所以运用等式性质1时,当等式两边都加上(或减去)同一个数或同一个整式时,才能保证所得的结果仍是等式,应特别注意“都”和“同一个”。
如31=+x ,左边加2,右边也加2,则有2321+=++x 。
②运用等式的性质2时,等式两边不能同除以0,因为0不能作除数或分母。
③等式性质的延伸:a.对称性:等式左、右两边互换,所得结果仍是等式,即如果b a =,那么a b =。
b.传递性:如果c b b a ==,,那么c a =(也叫等量代换)。
例1:用适当的数或整式填空,使所得的结果仍为等式,并说明根据等式哪一条性质,以及怎样变形得到的。
(1)如果51134=-x ,那么+=534x ; (2)如果c by ax -=+,那么+-=c ax ;(3)如果4334=-t ,那么=t 。
三.方程含有未知数的等式叫做方程。
温馨提示 方程有两层含义:①方程必须是一个等式,即是用等号连接而成的式子。
②方程中必有一个待确定的数,即未知的字母,这个字母就是未知数。
初中数学一元一次方程的解法知识点总结一元一次方程是初中数学中最基本的方程类型之一,也是解题的起点和基础。
掌握一元一次方程的解法是学好数学的必备基础,本文将对一元一次方程的解法进行总结。
一、一元一次方程的定义一元一次方程是指仅含有一个未知数的一次方程,一般表现形式为:ax + b = 0。
其中,a和b为已知数,a≠0。
方程中的未知数为x。
二、一元一次方程解的概念解是指使方程成立的未知数的值。
对于一元一次方程来说,解即是能使ax + b = 0成立的x的值。
三、一元一次方程的解法1. 相反数法相反数法是一元一次方程的基本解法,其基本思想是方程两边同时加上或减去相同的数,使得方程变形后,未知数的系数或常数项可以消去。
举例说明:例1:求解方程2x - 5 = 1。
解:我们可以通过相反数法求解。
首先,将方程两边同时加上5,得到2x = 6。
然后,再将方程两边同时除以2,得到x = 3。
所以,方程2x - 5 = 1的解为x = 3。
2. 移项法移项法是一种较为常用的解一元一次方程的方法,其基本思想是将方程中包含未知数的项移动到方程的一边,使方程变形为ax = b的形式,进而求解未知数的值。
举例说明:例2:求解方程3x + 2 = 8。
解:我们可以通过移项法求解。
首先,将方程中包含未知数的项3x移动到方程的右边,得到2 = 8 - 3x。
然后,进一步化简得到3x = 8 - 2,即3x = 6。
最后,将方程两边同时除以3,得到x = 2。
所以,方程3x + 2 = 8的解为x = 2。
3. 等价方程法等价方程法是通过变形将一个方程转化为与之等价的方程,从而得到方程的解。
常用的等价方程变形方法包括通分、合并同类项等。
举例说明:例3:求解方程2(x + 3) - 5x = 3(2 - x) + 4。
解:我们可以通过等价方程法求解。
首先,将方程两边进行合并同类项,化简得到2x + 6 - 5x = 6 - 3x + 4。
一次方程与方程组知识点总结归纳一、一元一次方程。
1. 定义。
- 只含有一个未知数(元),未知数的次数都是1,等号两边都是整式的方程叫做一元一次方程。
- 一般形式:ax + b=0(a≠0),其中a是未知数x的系数,b是常数项。
例如2x + 3 = 0就是一元一次方程。
2. 方程的解。
- 使方程左右两边相等的未知数的值叫做方程的解。
例如x = - (3)/(2)是方程2x+3 = 0的解。
3. 等式的性质。
- 性质1:等式两边加(或减)同一个数(或式子),结果仍相等。
如果a=b,那么a±c = b±c。
- 性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
如果a = b,那么ac=bc;如果a=b(c≠0),那么(a)/(c)=(b)/(c)。
- 利用等式的性质可以求解一元一次方程,例如解方程2x+3 = 0,首先根据等式性质1,两边同时减3得2x=-3,再根据性质2,两边同时除以2得x = - (3)/(2)。
4. 一元一次方程的解法步骤。
- 去分母(若方程中存在分母时):根据等式性质2,在方程两边同时乘以各分母的最小公倍数,将分母去掉。
例如方程(x + 1)/(2)+(x - 1)/(3)=1,分母2和3的最小公倍数是6,方程两边同时乘以6得3(x + 1)+2(x - 1)=6。
- 去括号:根据乘法分配律将括号去掉。
如3(x + 1)+2(x - 1)=6去括号后变为3x+3 + 2x-2 = 6。
- 移项:把含未知数的项移到方程一边,常数项移到另一边,移项要变号。
例如3x+3 + 2x-2 = 6移项后得3x+2x=6 - 3+2。
- 合并同类项:将方程中同类项合并。
如3x+2x=6 - 3+2合并同类项得5x = 5。
- 系数化为1:根据等式性质2,方程两边同时除以未知数的系数。
如5x = 5两边同时除以5得x = 1。
二、二元一次方程(组)1. 二元一次方程。
初中数学知识点总结一元一次方程一元一次方程知识点总结一、从算式到方程(一)方程:含有未知数的等式叫做方程。
1、方程必须具备的两个条件(1)是等式。
(2)含有未知数。
(二)解方程:就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解。
二、等式的性质(一)等式的性质1:等式两边同加(或减)司一个数(或式子),结果仍相等。
符号语言:如果a=b,那么B土C=B土C。
(二)等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
符号语言:如果a=b,那么ac=bc;(三)等式的性质是解方程的依据。
三、一元一次方程(一)定义:只含有一个未知数(元),并且未知数的次数都是1,等号两边都是整式,形如ax+b=0,这样的方程就叫一元一次方程。
(二)列一元一次方程(三)解一元一次方程1、去分母:解含有分母的一元一次方程时,方程两边乘各自分母的最小分倍数,从而约去分母,这个过程叫做去分母。
依据:等式的性质2;2、去括号:解一元一次方程式时,按照去括号法则把方程中的括号去掉,这个过程叫做去括号。
依据:乘法分配律、去括号法则;3、移项:把等号一边的某项变号后移到另一边,叫做移项。
(1)依据:等式的性质1;(2)目的:将含有未知数的项移到等号的一边,将常数项移到等号的另一边;移项时,一般都习惯把含未知数的项数到等号的左边,把常数项移到等号的右边。
4、合并同类项:即将等号同侧的含未知数的项、常数项分别合并,把方程式转化为ax=b(a不等于0)的形式。
依据:合并同类项法则;5、系数化为1:即在方程两边同时除以未知数的系数(或乘以未知数系数的倒数,将未知数的系数为1,得到=—a不等于0)。
依据:等式的性质2;四、实际问题与一元一次方程(一)列一元一次方程解决实际问题的一般步骤1.审题找相等关系2、设未知数3、列方程4、解方程5、检验(1)检验所得结果是不是方程的解。
(2)检验方程的解是否符合实际意义。
6、写出答案。
关于一元一次方程的知识点关键信息项1、一元一次方程的定义定义:只含有一个未知数(元),未知数的次数都是 1,等号两边都是整式,这样的方程叫做一元一次方程。
形式:一般形式为 ax + b = 0(a ≠ 0,a、b 为常数)。
2、一元一次方程的解定义:使方程左右两边相等的未知数的值叫做方程的解。
求解方法:通过移项、合并同类项、系数化为 1 等步骤求得。
3、等式的性质性质 1:等式两边加(或减)同一个数(或式子),结果仍相等。
性质 2:等式两边乘同一个数,或除以同一个不为 0 的数,结果仍相等。
4、解一元一次方程的一般步骤去分母:方程两边同时乘各分母的最小公倍数。
去括号:先去小括号,再去中括号,最后去大括号。
移项:把含未知数的项移到方程左边,常数项移到方程右边。
合并同类项:将同类项合并,化为 ax = b 的形式(a ≠ 0)。
系数化为 1:方程两边同时除以未知数的系数,得到方程的解 x =b/a 。
11 一元一次方程的定义一元一次方程是数学中最基础的方程类型之一。
它具有简洁明了的形式和明确的求解方法。
只含有一个未知数,并且这个未知数的次数是 1,同时方程的等号两边都是整式。
例如,方程 3x + 5 = 11 就是一个典型的一元一次方程,其中 x 是未知数,3 是 x 的系数,5 是常数项。
111 一元一次方程的标准形式一元一次方程的一般形式为 ax + b = 0(a ≠ 0,a、b 为常数)。
其中,a 被称为方程的系数,b 是常数项。
当 a = 0 时,方程不再是一元一次方程。
112 一元一次方程的特点其特点在于未知数的个数为一个,且未知数的最高次数为 1。
这使得一元一次方程在解决实际问题中具有广泛的应用,因为它能够相对简单地描述一些线性关系。
12 一元一次方程的解方程的解是使方程左右两边相等的未知数的值。
对于给定的一元一次方程,通过一系列的运算步骤可以求出其解。
121 解的验证求出方程的解后,可以将其代入原方程进行验证。
一、知识要点梳理知识点一:一元一次方程及解的概念 1、 一元一次方程:一元一次方程的标准形式是:ax+b=0(其中x 是未知数,a,b 是已知数,且a≠0)。
要点诠释:一元一次方程须满足下列三个条件: (1) 只含有一个未知数; (2) 未知数的次数是1次; (3) 整式方程. 2、方程的解:判断一个数是否是某方程的解:将其代入方程两边,看两边是否相等. 知识点二:一元一次方程的解法1、方程的同解原理(也叫等式的基本性质)等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。
如果,那么;(c 为一个数或一个式子)。
等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
如果,那么;如果,那么要点诠释:分数的分子、分母同时乘以或除以同一个不为0的数,分数的值不变。
即:(其中m≠0)特别须注意:分数的基本的性质主要是用于将方程中的小数系数(特别是分母中的小数)化为整数,如方程:-=1.6,将其化为: -=1.6。
方程的右边没有变化,这要与“去分母”区别开。
2、解一元一次方程的一般步骤:解一元一次方程的一般步骤变形步骤 具 体 方 法 变 形 根 据注 意 事 项去分母方程两边都乘以各个分母的最小公倍数等式性质21.不能漏乘不含分母的项;2.分数线起到括号作用,去掉分母后,如果分子是多项式,则要加括号去括号先去小括号,再去中括号,最后去大括号 乘法分配律、去括号法则 1.分配律应满足分配到每一项 2.注意符号,特别是去掉括号移 项 把含有未知数的项移到方程的一边,不含有未知数的项移到另一边等式性质11.移项要变号;2.一般把含有未知数的项移到方程左边,其余项移到右边合并同 类 项 把方程中的同类项分别合并,化成“b ax =”的形式(0≠a )合并同类项法则合并同类项时,把同类项的系数相加,字母与字母的指数不变未知数的系数化成“1”方程两边同除以未知数的系数a ,得a b x = 等式性质2 分子、分母不能颠倒要点诠释:理解方程ax=b 在不同条件下解的各种情况,并能进行简单应用:①a≠0时,方程有唯一解;②a=0,b=0时,方程有无数个解;③a=0,b≠0时,方程无解。
一元一次方程知识点总结一、知识1.含有未知数的等式叫方程2.只含有一个未知数,并且未知数的次数是1的方程叫一元一次方程二、知识1.判断下列各式哪些是一元一次方程:(1)43x=21; (2)3x -2; (3)71y -51=32x -1; (4)5x 2-3x+1; (5)3x+y=1-2y ; (6)1-7y 2=2y.2.若关于x 的方程3x3a+1-5=0是一元一次方程, 则a=____.3.写出一个解是-2的一元一次方程为____.4.若2x -a=3,则2x=3+___,这是根据等式的性质1,在等式两边同时______. 若-6a=4.5,则___=-1.5,这是根据等式的性质,在等式两边同时________.5.下列方程中以x=21为解的是( ) A.-2x=4 B.-2x -1=-3 C.-21x -1=-43 D.-21x+1=43 6.已知5a -3b -1=5b -3a, 利用等式的性质比较a 、b 的大小.7.某钢铁厂今年5月份的某种钢产量是50吨, 预计6月份产量是a 吨, 比5月份增长x%, 那么a 是( )A.50(1+x%)B.50x%C.50+x%D.50(1+x )%8.已知关于x 的方程5x+3k=24的解为3, 求k2-1+k 的值9.利用等式性质解方程: - x+3=-10.10.服装厂用355米布做成人服装和儿童服装,成人服装每套平均用布3.5米,儿童每套平均用布1.5米,现在已做了80套成人服装,用余下的布还可以做几套儿童服装?三、直通中考[2008年山东中考]下列方程是一元一次方程的是( ).A. -5x+4=3y2B. 5(m2-1)=1-5m2C. 2-D. 5x-33.2-3.3解一元一次方程【一元一次方程合并同类项与移向】一、基础知识把等式一边的某项变号后移向等式的另一边, 叫做移向。
(移向要变号)二、知识题库1.在1,-2, 21这三个数中,是方程7x+1=10-2x 的解的是____. 2.当k=____时,方程5x -k=3x+8的解是-2.3.若代数式21-x +612x 与31-x +1的值相等,则x=____. 4.如果2x 5a -4-3=0是关于x 的一元一次方程,那么a=____,此时方程的解是____. 5.如果x =-2是方程3x +5= -m 的解, 那么m2=____.6.解方程:5x-|x|=8.7.今年儿子13岁,父亲40岁,多少年后父亲的年龄是儿子年龄的2.5倍?8.一群小孩分一堆梨,1人1个多1个,1人两个少2个,问有几个小孩、几个梨?9.一个三位数, 三个数位上的和是17, 百位上的数比十位上的数大7, 个位上的数是十位上的3倍, 求这个三位数.10.某市居民生活用电基本价格为每度0.40元, 若每月用电量超过a 度, 超出部分按基本电价的70%收费.(1)某户五月份用电84度, 共交电费30.72元, 求a.(2)若该户六月份的电费平均为每度0.36元, 求六月份共用电多少度?应交电费多少元?三、直通中考[2010年辽宁中考]已知关于x的方程ax+2=2(a-x), 它的解满足|x+|=0, 则a=_。
一元一次方程知识点总结
一、方程的有关概念
1.方程:含有未知数的等式就叫做方程.
2. 一元一次方程:只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程.例如:1700+50x=1800,2(x+1.5x)=5等都是一元一次方程.
3.方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解.
注:⑴ 方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程. ⑵ 方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论.
二、等式的性质
等式的性质(1):等式两边都加上(或减去)同个数(或式子),结果仍相等.
等式的性质(1)用式子形式表示为:如果a=b,那么a±c=b±c
等式的性质(2):等式两边乘同一个数,或除以同一个不为0的数,结果仍相等,等式的性质(2)用式子形式表示为:如果a=b,那么ac=bc;如果a=b(c≠0),那么ca=cb
三、移项法则:
把等式一边的某项变号后移到另一边,叫做移项.
四、去括号法则
1. 括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.
2. 括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号改变.
五、解方程的一般步骤
1. 去分母(方程两边同乘各分母的最小公倍数)
2. 去括号(按去括号法则和分配律)
3. 移项(把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号)
4. 合并(把方程化成ax = b (a≠0)形式)
5. 系数化为1(在方程两边都除以未知数的系数a,得到方程的解x=a(b).
六、用方程思想解决实际问题的一般步骤
1. 审:审题,分析题中已知什么,求什么,明确各数量之间的关系.
2. 设:设未知数(可分直接设法,间接设法)
3. 列:根据题意列方程.
4. 解:解出所列方程.
5. 检:检验所求的解是否符合题意.
6. 答:写出答案(有单位要注明答案)
七、有关常用应用类型题及各量之间的关系
1. 和、差、倍、分问题:
增长量=原有量×增长率现在量=原有量+增长量
(1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现.
(2)多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现.
2. 等积变形问题:
(1)“等积变形”是以形状改变而体积不变为前提.常用等量关系为:
①形状面积变了,周长没变;
②原料体积=成品体积.
(2 )常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.
①圆柱体的体积公式 V=底面积×高=S·h=πr2h
②长方体的体积 V=长×宽×高=abc
3. 劳力调配问题:
这类问题要搞清人数的变化,常见题型有:
(1)既有调入又有调出;
(2)只有调入没有调出,调入部分变化,其余不变;
(3)只有调出没有调入,调出部分变化,其余不变
4. 数字问题
(1)要搞清楚数的表示方法:一般可设个位数字为a,十位数字为b,百位数字为c.
十位数可表示为10b+a,百位数可表示为100c+10b+a. 然后抓住数字间或新数、原数之间的关系找等量关系列方程(其中a、b、c均为整数,且1≤a≤9,0≤b≤9,0≤c≤9)
(2)数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2n表示,连续的偶数用2n+2或2n—2表示;奇数用2n+1或2n—1表示.
5. 工程问题:
工程问题:工作量=工作效率×工作时间
完成某项任务的各工作量的和=总工作量=1
6.行程问题:
路程=速度×时间时间=路程÷速度速度=路程÷时间
(1)相遇问题:快行距+慢行距=原距
(2)追及问题:快行距-慢行距=原距
(3)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度
逆水(风)速度=静水(风)速度-水流(风)速度
抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.
7. 商品销售问题
(1)商品利润率=商品利润/商品成本×100%
(2)商品销售额=商品销售价×商品销售量
(3)商品的销售利润=(销售价-成本价)×销售量
(4)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售.有关关系式:商品售价=商品标价×
折扣率
(5)商品利润=商品售价—商品进价=商品标价×折扣率—商品进价
8. 储蓄问题
⑴ 顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率.利息的20%付利息税
⑵ 利息=本金×利率×期数
本息和=本金+利息
利息税=利息×税率(20%)
(3)利润=每个期数内的利息/本金×100%。