必修五-不等式知识点总结
- 格式:doc
- 大小:285.00 KB
- 文档页数:4
不等式知识点小结1.不等式的定义我们用数学符号“”“>”“<”“”“”连接两个数或代数式, 以表示它们之间的不等关系, 含有这些不等号的式子, 叫做。
2.两个实数的比较如果是正数, 那么, 如果等于零, 那么, 如果是负数, 那么。
反之亦对, 也可以表示为,, 。
3.不等式的基本性质性质1: 称为不等式的对称性。
性质2: 称为不等式的传递性。
性质3: 。
推论1: 称为不等式的移项法则。
推论2: (同向不等式可以相加)。
性质4: (不等式两边同乘非0数值)。
推论1: 。
推论2: 。
推论3: 。
4.均值不等式(1)对任意两个实数, 数叫做的。
数叫做的。
(2)如果, 那么, 当且仅当时, 式中等号成立。
均值定理用文字语言可表述为。
(3)在使用均值不等式时注意满足三个条件:一、二、三, 三个条件缺一不可。
5.重要不等式对于任意实数, 有, 则当且仅当时, 式中等号成立。
6.直线的相关知识(1)直线方程:点斜式: 已知直线过点, 斜率为, 则直线方程为;斜截式:已知直线的斜率为, 在轴上的截距为, 则直线方程为;两点式: 已知直线过点 ( )则直线方程为 ;截距式:已知直线在 轴的截距为 , 在 轴的截距为 ( )则直线方程为(2)已知直线的倾斜角为 , 则斜率 ; 已知直线过点 , 则斜率 。
(3)已知直线 , , 若 ∥ 则 ; 若 , 则 。
已知直线 , , 若 ∥ 则 ; 若 , 则 。
7、二次函数的相关知识已知二次函数2()f x ax bx c =++(0a ≠)(1)顶点坐标为 ;对称轴方程为 ;(2)函数 与 轴交点个数的判断方法: 当 时, 与 轴有两个交点;当时, 与 轴有一个交点;当 时, 与 轴没有交点。
(3)二次函数的单调性:当 时, 在 上为增函数;在 上为减函数。
当 时, 在 上为增函数;在 上为减函数。
(4)二次函数的奇偶性:当 时, 为偶函数;否则 为非奇非偶函数。
必修 5 第 3 章不等式知识汇总一、常用的不等式的基天性质:( 1 )a b b a (反对称性)( 2 )a b,b c a c (传达性)( 3 )a b a c b c (可加性,也叫移项法例)( 4 )a b,c0ac bc (不等式两边乘同一个正数,不等号方向不变!)a b, c0ac bc (不等式两边乘同一个负数,不等号方向改变!)a ba cb d (同向不等式相加,不等号方向不变!)( 5 )cda b0ac bd0 (正数同向不等式相乘,不等号方向不变!)( 6 )cd0( 7 )a b0, n N , n1a n b n0 (正数乘方法例)( 8 )a b0, n N , n1n a n b0 (正数开方法例)二、一元二次不等式及其解法1 、三个“二次”间的关系(以下a> 0)△= b 2 - 4ac△> 0△=0△< 0二次函数y y yy=ax 2+bx+cx0x的图象x1x20x 一元二次方程有两个不等实根x1, x2有两个相等实根b无实根ax2+bx+c= 0的根x1< x2x1= x 2=2a一元二次不等式b{x|x < x1或x> x2 }R{x|x≠}2aax2+bx+c >0的解集一元二次不等式{x|x1< x < x2 }ΦΦax2+bx+c <0的解集2 、一元二次不等式的一般解法:一看二次项的系数,二算△,三绘图并据图写解集;3、含参数不等式的解法:分类议论;4 、不等式恒建立问题的解决:即不等式解集为R;5 、高次不等式的解法:数轴标根法(也叫穿针引线法)用曲线自右往左、自上往下挨次穿过,遇偶次重根穿而可是,遇奇次重根一次穿过。
三、基本不等式1 、关于随意两个正数a bab 。
a, b ,它们的算术均匀数是,几何均匀数是22 、基本不等式:关于随意 a 0, b 0 ,都有a b2 ab )此中等号建立的条件是 a b 。
不等式总结一、不等式的性质1.(不等式建立的基础)两个实数a 与b 之间的大小关系(1)a b 0a b (2)a b =0a =b (3)a b 0a b ->>;-;-<<.⇔⇔⇔⎧⎨⎪⎩⎪若、,则>>;;<<. a b R (4)a b 1a b (5)a b =1a =b (6)a b 1a b ∈⇔⇔⇔⎧⎨⎪⎪⎪⎩⎪⎪⎪+2.不等式的性质(1)a b b a()><对称性⇔(2)a b b c a c()>>>传递性⎫⎬⎭⇒(3)a b a c b c()>+>+加法单调性⇔a b c 0 ac bc >>>⎫⎬⎭⇒(4) (乘法单调性)a b c 0 ac bc ><<⎫⎬⎭⇒(5)a b c a c b()+>>-移项法则⇒(6)a b c d a c b d()>>+>+同向不等式可加⎫⎬⎭⇒ ---不等式相加(7)a b c d a c b d()><->-异向不等式可减⎫⎬⎭⇒ ---不等式相减(8)a b 0c d 0ac bd()>>>>>同向正数不等式可乘⎫⎬⎭⇒---不等式相乘(9)a b 00c d b d ()>><<>异向正数不等式可除⎫⎬⎭⇒a c --不等式相除(10)a b 0n N a b ()n n >>>正数不等式可乘方∈⎫⎬⎭⇒ 乘方法则(11)a b 0n N a ()n >>>正数不等式可开方∈⎫⎬⎭⇒b n 开方(12)a b 01a ()>><正数不等式两边取倒数⇒1b ----倒数法则3.绝对值不等式的性质 (1)|a|a |a|= a (a 0)a (a 0)≥;≥,-<.⎧⎨⎩(2)如果a >0,那么|x|a x a a x a 22<<-<<;⇔⇔|x|a x a x a x a 22>>>或<-.⇔⇔(3)|a ·b|=|a|·|b|.(4)|a b | (b 0)=≠.||||a b(5)|a|-|b|≤|a ±b|≤|a|+|b|.(6)|a 1+a 2+……+a n |≤|a 1|+|a 2|+……+|a n |.4. 基本不等式(1)如果a ,b 是正数,那么ab ≤2b a +,当且仅当a=b 时,等号成立。
高中不等式全套知识点总结一、不等式的基本概念1. 不等式定义不等式是指两个数量在大小上的关系,包含大于、小于、大于等于、小于等于四种关系。
一般用符号“>”表示大于,“<”表示小于,“≥”表示大于等于,“≤”表示小于等于。
2. 不等式的解不等式的解是指满足不等式关系的所有实数集合,解集可以是一个区间、一个集合或者一个无穷集合。
3. 不等式的性质(1)两个不等式如果左右两边分别相等,那么其关系也相等;(2)两个不等式如果相互交换左右两边,那么关系会相反;(3)不等式两边同时加或减同一个数,不等式关系不变;(4)不等式两边同时乘或除同一个正数,不等式关系不变;(5)不等式两边同时乘或除同一个负数,不等式关系反转。
二、一元一次不等式1. 线性不等式线性不等式的一般形式为 ax+b>c 或者ax+b≥c,其中a≠0。
2. 一次不等式的解法(1)基本不等式直接解法:按照不等式的性质逐步解题;(2)图像法:将不等式转化为直线或者直线段的图像,然后通过图像解题;(3)分情况讨论法:根据不等式的取值范围分情况进行讨论,再分别求解。
3. 一次不等式的应用(1)生活中常见的线性不等式问题,比如买苹果不超过20元;(2)工程建设中的线性不等式问题,比如某公式里的参数要求取值范围。
三、一元二次不等式1. 二次不等式定义二次不等式的一般形式为 ax²+bx+c>0 或者ax²+bx+c≥0,其中a≠0。
2. 一元二次不等式解法(1)解法一:配方法、图像法;(2)解法二:利用一元二次不等式的图像特点;3. 一元二次不等式的应用(1)生活中常见的二次不等式问题,比如某项业务的收入和支出之间的关系;(2)工程建设中的二次不等式问题,比如求最大值、最小值。
四、多项式不等式1. 多项式不等式的定义多项式不等式是指由多项式构成的不等式,一般形式为 f(x)>0 或者f(x)≥0。
2. 多项式不等式的解法(1)概念法:直接按照多项式不等式的定义和性质进行解题;(2)函数法:将多项式在坐标系中的图像出发,进行解题。
高一必修五不等式的知识点不等式是数学中常见的一种数学关系符号,用于表示两个数或两个算式之间的大小关系。
高中数学中,不等式是一个重要的知识点,其中必修五的学习内容涉及到不等式的基本概念、性质、解法等。
下面将介绍高一必修五不等式的主要知识点。
一、不等式的基本概念不等式是用不等号表示两个数或两个算式之间的大小关系。
不等式中的不等号可以是小于号(<)、大于号(>)、小于等于号(≤)或大于等于号(≥)。
二、不等式的性质1. 加法性性质:对于不等式两边同时加减一个相同的数,不等式的方向不变。
例如,若a > b,则 a + c > b + c。
2. 乘法性性质:对于不等式两边同时乘除一个正数,不等式的方向不变;对于不等式两边同时乘除一个负数,不等式的方向改变。
例如,若a > b(a > 0),则 a · c > b · c。
3. 反身性:任何数与自身进行大小比较时都满足等式关系。
例如,a = a。
4. 传递性:若 a > b,b > c,则 a > c。
例如,若a > b,b > c,则 a > c。
5. 两边加或减一个相同的数对不等式关系不会改变。
例如,若a > b,则 a + c > b + c。
三、不等式的解法1. 图解法:通过在数轴上绘制对应数值的数轴图形,来解读不等式的解集。
例如,对于不等式 x > 3,可以在数轴上绘制一个开口向右的箭头,并在箭头右侧标记出无限大的数集。
2. 几何法:利用几何图形,如包含在坐标系上的点、线段、平面等,来求解不等式的解集。
例如,对于不等式 2x + y > 5,可以在坐标系上绘制直线 2x + y = 5,然后根据不等式的要求确定直线上、下两侧的解集。
3. 符号法:通过变量和符号的运算来对不等式进行转化,从而求解不等式的解集。
例如,对于不等式 3x + 2 < 10,可以通过减去2再除以3的方式将不等式转化为 x < 2。
一 . 不等式知识重点1. 两实数大小的比较ababab a b 0abab2.不等式的性质: 8条性质 .aa2 2b b 222 ab1( ab )22a2整式形式abb23.基aba 2b 2本不 2等式abab 定理2根式形式2 ( a 2b 2 )ba分 式 形 式ba 2 ( a ,b 同 号 )ab1a2a倒数形式aa12aa4.公式:a 12a ba 2b 2ab3.解不等式xb(a0)(1) 一元一次不等式 ax b(a 0)a(2) 一元二次不等式:xb(a0)a鉴别式△>0 △=0△ <0△ =b 2- 4acy=ax 2+bx+c的图象yyy(a> 0)x 1 Ox2xxOO x 1xax 2+bx+c= 0 有两相异实根有两相等实根没有实根x 1, x 2 (x 1< x 2)b(a >0) 的根x 1= x 2= 2aax 2+bx+c> 0 {x|x<x 1,或 {x|x ≠b } R2a(y> 0)的解集x>x 2}ax 2+bx+c< 0 {x|x 1< x <x 2 }ΦΦ(y <0 )的解集一元二次不等式的求解流程 :.一化:化二次项前的系数为正数.二判:判断对应方程的根 .三求:求对应方程的根 .四画:画出对应函数的图象.五解集:依据图象写出不等式的解集.(3)解分式不等式:f ( x)f (x) g( x)g( x)f ( x)f (x)g(x)g(x)g( x)高次不等式:( x a 1 )( x a 2 ) ( x a n )(4)解含参数的不等式: (1) (x –2)(ax –2)>0( 2)x 2 –(a + a 2)x + a 3 >0 ; ( 3)2x 2+ ax +2 > 0 ;注:解形如 ax 2+bx+c> 0 的不等式时分类讨 论的标准有: 1、议论 a 与 0 的大小; 2、议论⊿与 0 的大小; 3、议论两根的大小;二、运用的数学思想:1、分类议论的思想;2、数形联合的思想;3、等与不等的化归思想(4)含参不等式恒建立的问题:.1、函数2、分别参数后用最值3、用图象例 1.已知对于x 的不等式x2(3 a2 )x 2a 10在(–2,0)上恒建立,务实数 a 的取值范围.例 2.对于x的不等式y log 2 ( ax 2ax1)对全部实数 x∈R都建立,求 a 的取值范围.x例3.若对随意x0,a恒建立,x23x 1则 a的取值范围.(5)一元二次方程根的散布问题:方法:依照二次函数的图像特点从:张口方向、鉴别式、对称轴、函数值三个角度列出不等式组,总之都是转变为一元二次不等式组求解 ..二次方程根的分布问题的讨论:f (k )0y1.x1< x2< k b kk2a x10O xx2yf (k)0.1< x2b k2k < x2ax1O x2xky3.x1< k < x2 f (k) 0kx1O x x.4.k1 < x1 < x2 < k25.x1 < k1 < k2 < x2 yyk1k2Ok1k2x1O x2x x1x2xf (k1 )0f (k2 )0k1bk2 2a6.k1< x1< k2< x2< k3f ( k1 ) 0f ( k2 ) 0f ( k2 ) 0f (k1 ) 0f (k2 ) 0yO k2x2k1x1k3x4解线性规划问题的一般步骤:第一步:在平面直角坐标系中作出可行域;第二步:在可行域内找到最优解所对应的点;第三步:解方程的最优解,进而求出目标函数的最大值或最小值。
完整版)高中数学不等式知识点总结1、不等式的基本性质不等式有以下基本性质:①对称性:a>b等价于b<a。
②传递性:a>b。
b>c则a>c。
③可加性:a>b等价于a+c>b+c,其中c为任意实数。
同向可加性:a>b,c>d,则a+c>b+d。
异向可减性:a>b,cb-d。
④可积性:a>b,c>0则ac>bc,a>b,c<0则ac<bc。
⑤同向正数可乘性:a>b>0,c>d>0则ac>bd。
异向正数可除性:a>b>0,0bc。
a>b>0,则a^n>b^n,其中n为正整数且n>1.⑦开方法则:a>b>0,则√a>√b。
⑧倒数法则:a>b>0,则1/a<1/b。
2、几个重要不等式以下是几个重要的不等式:a/b+b/a>=2,当且仅当a=b时取等号。
a^2+b^2>=2ab,当且仅当a=b时取等号。
a+b/2>=√ab,当且仅当a=b时取等号。
a+b+c/3>=∛abc,当且仅当a=b=c时取等号。
a^2+b^2+c^2>=ab+bc+ca,当且仅当a=b=c时取等号。
a+b+c>=3√abc,当且仅当a=b=c时取等号。
a/b+b/c+c/a>=3,当且仅当a=b=c时取等号。
a-b|<=|a-c|+|c-b|,对任意实数a,b,c成立。
3、几个著名不等式以下是几个著名的不等式:a-b|<=√(a^2+b^2),对任意实数a,b成立。
a+b)/2<=√(a^2+b^2),对任意实数a,b成立。
a+b/2<=√(a^2+1)√(b^2+1),对任意实数a,b成立。
a+b)/2<=√(a^2-ab+b^2),对任意实数a,b成立。
a+b)/2>=√ab,对任意正实数a,b成立。
不等式知识点总结一、不等式的基本概念。
1. 不等式的定义。
- 用不等号(>、≥、<、≤、≠)表示不等关系的式子叫做不等式。
例如:3x + 2>5,x - 1≤slant2x等。
2. 不等式的解与解集。
- 不等式的解:使不等式成立的未知数的值叫做不等式的解。
例如对于不等式x+1 > 0,x = 1是它的一个解,因为1 + 1>0成立。
- 不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。
例如不等式x - 2>0的解集是x>2,这表示所有大于2的数都是这个不等式的解。
3. 解不等式。
- 求不等式解集的过程叫做解不等式。
例如解不等式2x+3 < 7,通过移项可得2x<7 - 3,即2x<4,再两边同时除以2得到x < 2,这个过程就是解不等式。
二、不等式的基本性质。
1. 性质1(对称性)- 如果a>b,那么b < a;如果b < a,那么a>b。
例如5>3,那么3 < 5。
2. 性质2(传递性)- 如果a>b,b>c,那么a>c。
例如7>5,5>3,那么7>3。
3. 性质3(加法法则)- 如果a>b,那么a + c>b + c。
例如3>1,那么3+2>1 + 2,即5>3。
- 推论:如果a>b,c>d,那么a + c>b + d。
例如4>2,3>1,那么4 + 3>2+1,即7>3。
4. 性质4(乘法法则)- 如果a>b,c>0,那么ac>bc;如果a>b,c < 0,那么ac < bc。
例如2>1,当c = 3时,2×3>1×3,即6>3;当c=-1时,2×(-1)<1×(-1),即-2 < - 1。
高一必修五不等式知识点一、不等式的定义不等式是数学中表示数与数之间大小关系的一种符号体系。
不等式由不等号(<、>、≤ 或≥)构成,表示两个数的大小关系,其中“<”表示小于,“>”表示大于,“≤”表示小于等于,“≥”表示大于等于。
二、一元一次不等式1. 一元一次不等式的解集表示方法对于一元一次不等式ax + b > c(或 < c、≥ c、≤ c),可以通过解一元一次方程ax + b = c(或 = c、≠ c)求得解集。
例如,不等式2x - 5 > 1的解集为{x | x > 3}。
2. 一元一次不等式的性质(1)对于不等式两边同时加上(或减去)同一个数,不等号的方向不变。
(2)对于不等式两边同时乘以(或除以)同一个正数,不等号的方向不变。
(3)对于不等式两边同时乘以(或除以)同一个负数,不等号的方向相反。
三、一元二次不等式1. 一元二次不等式的解集表示方法对于一元二次不等式ax^2 + bx + c > 0(或 < 0、≥ 0、≤ 0),可以通过求解一元二次方程ax^2 + bx + c = 0(或 = 0)的解集,并结合一元二次函数的图像来确定不等式的解集。
例如,不等式x^2 - 4x - 5 > 0的解集为{x | x < -1 或 x > 5}。
2. 一元二次不等式的性质(1)对于不等式两边同时加上(或减去)同一个数,不等号的方向不变。
(2)对于不等式两边同时乘以(或除以)同一个正数,不等号的方向不变。
(3)对于不等式两边同时乘以(或除以)同一个负数,不等号的方向相反。
(4)一元二次不等式可化为一元二次方程求解,再通过一元二次函数的图像确定解集。
四、绝对值不等式1. 绝对值不等式的解集表示方法对于绝对值不等式|ax + b| > c(或 < c、≥ c、≤ c),可通过绝对值的定义进行分类讨论求得解集。
知识点一:不等式关系与不等式一、不等式的主要性质:1.对称性:a>bob<a2.传递性:a>b,b>c=>a>c3.加法法则:a>b=>a+c>b+c; a>b,c>d=a+c>b+d4.乘法法则:a>b,c>O=>ac>he;a>h,c<0=>ac<hc;a>b>0,c>d>0=>ac>hd5.倒数法则:a>h,ab>0=>—<—6.乘方法则:a>b>0=>a n>b n(neN*⅛w>1)ab7.开方法则:a>b>bn爪>底(JIEN*且冷>1)二、含有绝对值的不等式1.绝对值的几何意义:IX1是指数轴上点X到原点的距离;|玉-々1是指数轴上不,W两点间的距离2、如果。
>0,则不等式:∖x∖>a<=>X> <-a ∖x∖<a<=>-a<x<aIx∣≥α<=>x≥a^x≤-a∣x∣≤«<=>-a≤x<a3.当c>0时,I依+〃|>co双+/?>c或Or+bv-c,∖ax+b∖<c<^>-c<ax+b<c;当CVO时,ItU:+b∣>cox∈R,∖ax+h∖<cx≡φ.4、解含有绝对值不等式的主要方法:①解含绝对值的不等式的基本思想是去掉绝对值符号,将其等价转化为一元一次(二次)不等式(组)进行求解;②去掉绝对值的主要方法有:(1)公式法:∣x∣<4(α>0)o-α<x<4,|/|>4(々>0)0]>。
或不<一。
.(2)定义法:零点分段法;(3)平方法:不等式两边都是非负时,两边同时平方.三、其他常见不等式形式总结:①分式不等式的解法:先移项通分标准化,贝IJ/(x)>o°"χm>o∙/(χ)≥OOP(X)g(χR0②指数不等式:转化为代数不等式"'3>d3(α>∣)of(x)>g(x);〃⑶>αS3(0<"<1)=f(x)<g(x)/⑺>b(α>O力>0)=/(x)∙1g0>1g∕>③对数不等式:转化为代数不等式]og,j(χ)>iog,g(χ)(α>i)o.g(χ)>O;IOgaf(X)>1og“g(χ)(O<α<1)=,g(x)>O/(x)>g(x) /(x)<g(x)四、三角不等式: ∣a∣-∣b∣≤∣a+b∣≤∣a∣+∣b∣五、不等式证明的几种常用方法比较法(做差法、做商法)、综合法、分析法、换元法、反证法、放缩法。
不等式总结
一、不等式的主要性质:
(1)对称性:a b b a <⇔> (2)传递性:c a c b b a >⇒>>, (3)加法法则:c b c a b a +>+⇒>; d b c a d c b a +>+⇒>>, (4)乘法法则:bc ac c b a >⇒>>0,; bc ac c b a <⇒<>0,
bd ac d c b a >⇒>>>>0,0
(5)倒数法则:b
a a
b b a 110,<⇒
>> (6)乘方法则:)1*(0>∈>⇒>>n N n b a b a n n 且 (7)开方法则:)1*(0>∈>⇒>>n N n b a b a n n 且
二、一元二次不等式02>++c bx ax 和)0(02≠<++a c bx ax 及其解法
有两相异实根 有两相等实根注意:一般常用因式分解法、求根公式法求解一元二次不等式 顺口溜:在二次项系数为正的前提下:大于型取两边,小于型取中间 三、均值不等式
1.均值不等式:如果a,b 是正数,那么
).""(2
号时取当且仅当==≥+b a ab b
a
2、使用均值不等式的条件:一正、二定、三相等
3、平均不等式:平方平均≥算术平均≥几何平均≥调和平均(a、b为正数),即
2
11
2
a b
a b
+
+
(当a = b时取等)
四、含有绝对值的不等式
1.绝对值的几何意义:||x是指数轴上点x到原点的距离;
12
||
x x
-是指数轴上
12
,x x两点间的距离
2、则不等式:
如果,0
>
a
a
x
a
x
a
x-
<
>
<=>
>或
|
|a
x
a
x
a
x-
≤
≥
<=>
≥或
|
|
a
x
a
a
x<
<
-
<=>
<|
|a
x
a
a
x≤
≤
-
<=>
≤|
|
3.当0
c>时,||
ax b c ax b c
+>⇔+>或ax b c
+<-,
||
ax b c c ax b c
+<⇔-<+<;
当0
c<时,||
ax b c x R
+>⇔∈,||
ax b c xφ
+<⇔∈.
4、解含有绝对值不等式的主要方法:
①解含绝对值的不等式的基本思想是去掉绝对值符号,将其等价转化为一元一次(二次)不等式(组)进行求解;
②去掉绝对值的主要方法有:
(1)公式法:|| (0)
x a a a x a
<>⇔-<<,|| (0)
x a a x a
>>⇔>或x a
<-.(2)定义法:零点分段法;(3)平方法:不等式两边都是非负时,两边同时平方.
五、其他常见不等式形式总结:
①分式不等式的解法:先移项通分标准化,则
()()0
()()
0()()0;0
()0
()()
f x
g x
f x f x
f x
g x
g x
g x g x
≥
⎧
>⇔>≥⇔⎨
≠
⎩
②无理不等式:转化为有理不等式求解
()0
()0
()()
f x
g x
f x
g x
⎧≥⎫
⇒
⎪⎬
≥
⎨⎭
⎪>
⎩
定义域
⎩
⎨
⎧
<
≥
⎪⎩
⎪
⎨
⎧
>
≥
≥
⇔
>0
)
(
)
(
)]
(
[
)
(
)
(
)
(
)
(
)
(
2
x
g
x
f
x
g
x
f
x
g
x
f
x
g
x
f或
⎪⎩
⎪
⎨
⎧
<
≥
≥
⇔
<
2
)]
(
[
)
(
)
(
)
(
)
(
)
(
x
g
x
f
x
g
x
f
x
g
x
f
③指数不等式:转化为代数不等式
()()()()
()
(1)()();(01)()()
(0,0)()lg lg
f x
g x f x g x
f x
a a a f x g x a a a f x g x
a b a b f x a b
>>⇔>><<⇔<
>>>⇔⋅>
④对数不等式:转化为代数不等式
()0()0log ()log ()(1)()0;
log ()log ()(01)()0()()()()a a a a f x f x f x g x a g x f x g x a g x f x g x f x g x >>⎧⎧⎪
⎪>>⇔>><<⇔>⎨⎨⎪⎪><⎩
⎩
六、三角不等式: |b ||a ||b a ||b |-|a |+≤+≤
七、不等式证明的几种常用方法
比较法(做差法、做商法)、综合法、分析法、换元法、反证法、放缩法。
八、数轴穿跟法: 奇穿,偶不穿
例题:不等式03
)4)(23(2
2≤+-+-x x x x 的解为( )
A .-1<x ≤1或x ≥2
B .x <-3或1≤x ≤2
C .x =4或-3<x ≤1或x ≥2
D .x =4或x <-3或1≤x ≤2
九、零点分段法
例题:求解不等式:|21||2|4x x ++->. 十、练习试题
1.下列各式中,最小值等于2的是( )
A .x y y x +
B .4
522++x x C .1tan tan θθ+ D .22x x -+
2.若,x y R ∈且满足32x y +=,则3271x y ++的最小值是( ) A
.
.1+.6 D .7 3.设0,0,1x y x y A x y +>>=
++, 11x y
B x y
=+++,则,A B 的大小关系是( )
A .A
B = B .A B <
C .A B ≤
D .A B >
4.函数46y x x =-+-的最小值为( ) A .2 B
C .4
D .6 5.不等式3529x ≤-<的解集为( )
A .[2,1)[4,7)-
B .(2,1](4,7]-
C .(2,1][4,7)--
D .(2,1][4,7)- 6.若0a b >>,则1
()
a b a b +
-的最小值是_____________。
7.若0,0,0a b m n >>>>,则
b a , a b , m a m b ++, n
b n a ++按由小到大的顺序排列为 8.已知,0x y >,且221x y +=,则x y +的最大值等于_____________。
9.设101010111111
2212221
A =
++++++-,则A 与1的大小关系是_____________。
10.函数212
()3(0)f x x x x =+>的最小值为_____________。
11.求证:221a b ab a b +≥++-。